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Abstract: - In this paper we propose a new procedure for testing independence of random variables, which is 
based on the conditional expectation. As it is well known, the behaviour of the conditional expectation may 
determine a necessary condition for stochastic independence, that is, the so called mean independence. We 
provide a necessary and sufficient condition for independence in terms of conditional expectation and propose 
an alternative method to test independence based on this result. Consequently, we provide general class of tests. 
Observe that generally some non-parametric methods are needed to approximate the conditional expectation, 
since its exact expression (given the joint distribution) is usually unknown, except for few trivial cases (e.g. 
Gaussian): we generalize this well known result to the family of elliptical distributions. In order to obtain a 
sufficiently accurate approximation of the conditional expectation, we propose to use the kernel method or, 
alternatively, the recently introduced OLP method. 
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1 Introduction 

The definition of stochastic independence states that 
two events are independent if and only if the 
probability of both occurring equals the product of 
the probabilities of each occurring. Hence, 
independence of random variables (r.v.’s) basically 
corresponds to independence between each couple 
of events they are related to. Based on this 
definition, many statistical tests that have been 
proposed in the literature are generally suitable for 
discrete and in particular categorical r.v.’s, rather 
than continuous r.v.’s. In this paper we attempt to 
bridge this gap by introducing an alternative 
necessary and sufficient condition for stochastic 
independence, thereby we propose a new 
methodology for testing independence.  
Several well known procedures, such as the 
Pearson’s Chi squared test [1], or the Hoeffding’s 
test [2] are based on the main definition of 
independence, provided above. By the application of 
this criterion, it is possible to evaluate independence 
of random variables trough their realizations. 

Nevertheless, if some realizations are not 
independent, this approach is sufficient to guarantee 
that the random variables are not independent, 
which leads to rejection of the so called null 
hypothesis (i.e. independence). However, it is worth 
noting that methods that are based on this logic but 
could present some drawbacks when dealing with 
continuous r.v.’s. Indeed, in this case we are not 
able to guarantee that the random variables are 
independent only because a few events are 
independent. In other words, these tests may present 
a high probability of type II error, that is, the failure 
to reject a false null hypothesis, especially in the 
continuous case. 
We argue that an alternative method for testing 
stochastic independence is needed, especially in 
those areas of study where distributions are 
generally assumed to be continuous. Speaking of 
which, in several financial applications, the Chi-
squared test and other similar methods are typically 
used although the financial random variables are 
continuous. For instance, when we evaluate the risk 
interval forecasts, with reference to the information 
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available at each time, we may use the tests 
proposed by [3] and [4], or, with a Chi-squared test, 
we may also evaluate the time-independence.  
The alternative method proposed in this paper is 
based on the conditional expectation between 
random variables. Speaking of which, it should be 
stressed that generally the conditional expectation 
between two random variables � and �, i.e. ���|��, 
needs to be approximated with some non parametric 
method, because its form is often unknown. Indeed, 
we recall that, for a given joint distribution, we are 
not generally able to derive an exact mathematical 
expression of the conditional expectation, except for 
some trivial text book examples. For instance, the 
distribution of ���|�� is well known in the 
Gaussian case where, in particular, ���|�� is a 
linear function of the r.v. � (this rule holds also for 
the Student’s t distribution, see e.g. [5]). In this 
paper, we extend this result to a larger class of 
distribution, that is, the family of elliptical joint 
distributions. 
As observed by [6], the conditional expectation 
between two random variables � and �, i.e. ���|��, 
can be approximated in a satisfactory way by the 
use of two different methodologies, namely the 
Kernel method and the OLP method, recently 
introduced by [7]. On the one hand, the kernel non-
parametric regression (see [8] and [9]) allows to 
estimate ���|� = �� as a locally weighted average, 
based on the choice of an appropriate kernel 
function: the method yields consistent estimators, 
provided that the kernel functions and the random 
variable � satisfy some conditions. On the other 
hand, the OLP method is aimed at estimating the 
random variable ���|�� and it has been proved to 
be consistent without requiring any regularity 
assumption.  
The main result of the paper is a theorem which 
determines a necessary and sufficient condition for 
independence, based on the conditional expectation. 
Generally, the conditional expectation is related to 
independence because of the definition of mean 
independence, that is, ���|�� = ����. However, 
mean independence is a weak condition, compared 
to stochastic independence, therefore we generally 
cannot analyze the independence structure between � and � by observing ���|��. Nevertheless, in 
section 4 we prove that two random variables � and � are independent if and only if, given a non 
constant, continuous and positive (or negative) 
function ℎ, ��ℎ���|�� = ��ℎ����. Hence, once we 
have chosen ℎ, we are able to approximate the r.v. ��ℎ���|�� and verify if this condition is verified. In 
particular, we can analyze the dependence structure 
between � and � reducing the risk of 

misevaluations. We also observe that the behaviour 
of ��ℎ���|�� gives stronger indications about 
independence compared to other well known 
dependence measures, such as correlation and mean 
dependence measures. 
Finally, by using the aforementioned methods for 
approximating ��ℎ���|��, we propose a decision 
rule aimed at testing independence. This method 
could be especially useful and appropriate in case of 
continuous r.v.’s. 
The paper is organized as follows. In section 2 we 
establish the condition under which the conditional 
expectation ���|�� can be expressed as a linear 
function of �. Then, in section 3 we review two 
alternative methods for approximating ���|��, 
namely the OLP and the kernel methods. In section 
4 we prove that stochastic independence can be 
expressed in terms of conditional expectation, and 
thereby we provide a new alternative definition of 
independence, based on which we can propose a 
class of tests of independence. Future work and 
possible applications are eventually discussed in the 
conclusion. 

 
2 The determination of a conditional 
expectation 
 
As is stated in the introduction, the main objective 
of this paper is to present an alternative approach for 
testing independence of random variables, based on 
the concept of conditional expectation. In this 
section, we provide some definitions and, 
especially, an important result that makes it possible 
to determine the distribution of a conditional 
expectation when the random variables are jointly 
elliptically distributed, generalizing the well know 
rule that holds e.g. in the Gaussian case. 
Let � be an integrable random variable on the 
probability space �Ω, ℑ, �� and let ℑ′ be a sub-
sigma-algebra of ℑ (i.e. ℑ′ ⊆ ℑ�. The conditional 
expectation of � given ℑ′ is the unique (P a.s.) 
random variable ���|ℑ′� such that: 
 

i)  ���|ℑ′� is ℑ′-measurable; 

ii)  for any � ∈ ℑ′, � ���|ℑ′���� =� ���� .  

Let �: � → ℝ and �: � → ℝ be integrable random 
variables defined on the probability space ��, ℑ, ��. 
If ℑ′ = ���� is the sigma algebra generated by X we 
can write ���|����� = ���|�� =  ���. Generally, 
the distribution of  ��� is unknown, unless the joint 
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distribution of the random vector ��, �� follows 
some special distribution, e.g. the Gaussian 
distribution or the multivariate t distribution. 
However, if we assume that � and � are jointly 
normally distributed, i.e. ��, ��~"�#,Σ�, (where 
obviously # = �#$, #%� is the vector of means and 
Σ = &��$', ($%�$�%�, �($%�$�%, �%'� ) is the 
variance-covariance matrix1) we can obtain the 
distribution of the random variable ���|�� quite 
easily. Indeed, it is well known that  ��� =���|� = �� = #% + ($% +,+- �� − #$�,   and thereby   

���|�� = #% + ($% +,+- �� − #$�  (1) 

is normally distributed with mean #%  and variance  ($%' �%'. Clearly, if ($% = ±1, then � = #% +($% +,+- �� − #$�  P- almost surely and equation (1) 

holds for any joint distribution of the vector ��, ��. 
Equation (1) holds also for joint Student’s t bivariate 
vector, as pointed out by [5]. In this paper, we 
extend the application of equation (1) to a larger 
class of distributions, as stated in the following 
theorem.  

Theorem 1 Assume that the random vector 1 =��, �� with dispersion matrix 2 = &��$', �$%�, ��$%, �%'� ) and mean # =�#$, #%� belongs to a family of jointly elliptically 
distributed vectors �33�#, 2�.  Moreover, assume 
that 1 = # + �5, where � is a continuous positive 
random variable which is independent from the 
Gaussian vector 5 that has null mean and variance 
covariance matrix  2 (i.e. ��5� = �0,0�, 789�5� =2). Then,  

���|�� = #% + +-,+-: �� − #$�~�33 ;#%, +-,:
+-: <. 

 
Proof 
Without loss of generality we can prove the result 
when the mean vector (#$ , #%) is a null vector. Let =� be the density distribution of the random variable � and denote with 5 = ��>, �>�  the bivariate 
Gaussian vector. Then � = ��> and � = ��>. Then 
the cumulative distribution of  Y| � = � is given by: 

                                                 
1 With a little abuse of notation, in this paper we write the 
dispersion matrix as 

 Σ = @�$' �$%�%$ �%'A = &��$', �$%�, ��%$, �%'� ). 

B%|$CD�E� = ��� ≤ E|� = �� = 

= G � ;�> ≤ EH |�> = �H< =��H��HI∞
J  

and its density 
KL,|-MN�O�KO  is simply given by: 

=$,%��, E�=$��� = G =$P,%P ;�H , EH<
H=$P ;�H< =��H��H.I∞

J  

Therefore, the conditional expectation is given by: 

���|� = �� = G E =$,%��, E�=$��� �EI∞
Q∞

= G =��H� RG EH =$P,%P ;�H , EH<
H=$P ;�H< �EI∞

Q∞ S �H =I∞
J

= G H=��H� RG T =$P,%P ;�H , T<
=$P ;�H< �TI∞

Q∞ S �HI∞
J

= G H=��H�� ;�>|�> = �H< �HI∞
J= G H=��H� �$%�$'

�H �H =I∞
J

�$%�$' �. 
The above equalities are a consequence of the 
Fubini’s theorem and the change of variable T = E/H Thus, in the most general case, the equality ���|�� = #% + +-,+-: �� − #$� holds and ���|�� is 

elliptical, because elliptical distributions are scalar 
and translation invariant. 
 
Some examples of jointly elliptical distributions that 
admit the decomposition 1 = # + �5 are: the t-
Student multivariate distribution or all distributions 
used for symmetric Lévy processes where A is the 
subordinator such as Normal Inverse Gaussian 
(NIG) symmetric vectors, Variance Gamma (VG) 
symmetric vectors, alpha stable sub-Gaussian 
vectors (see, among others, [10], [11]). As a matter 
of fact, any semi-martingale can be written as a time 
changed Brownian Motion. Moreover, observe that 
when the vector Z admits finite covariance matrix, 
then ($% = +-,+,+N  is the Pearson’s correlation 

measure. However, this property of the conditional 
expected value holds even for some elliptical 
distributions which do not admit finite variance, for 
example V –stable sub-Gaussian vector with V ∈ �1,2�, where  

+-,+,+N represents an alternative 

measure of correlation. Basically, if we know that 
the bivariate random vector 1 = ��, �� admits the 
decomposition 1 = # + �5, we also know the 
general form of the distribution of  ���, and 
therefore we can estimate it quite easily. For 
instance, we could approximate  ��� by estimating 
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the unknown parameters #%, �$% and �$' 
respectively with the sample mean, the sample 
covariance (covariation) coefficient and the sample 
variance (dispersion). Furthermore, Theorem 1 can 
be easily extended to an n-dimensional (n>2) 
elliptical distributed vector as suggested in the 
following corollary.  

Corollary 1 Let 1 = [�, �]′ be an n-dimensional 
elliptically distributed �33�#, 2�  vector where X and 
Y are respectively m-dimensional and n-m 
dimensional vectors �Z > \ ≥ 1�, the dispersion 
matrix is 2 = &�Σ$,Σ$%�, �Σ%$,Σ%� ) and the mean 
is # = �#$ , #%�. Moreover, assume that 1 = # +�5, where � is a continuous positive random 
variable which is independent from the Gaussian 
vector 5 that has null mean and variance 
covariance matrix  2. Then,  

���|�� =#% + Σ%$Σ$Q>�� − #$�~�33&#% ,Σ%$Σ$Q>
Σ$%). 

 
Therefore, for several symmetric distributions used 
in different branches of engineering (i.e., elliptical 
distributions that admits the decomposition 1 = # +�5) the conditional expectation depends on a 
particular linear correlation measure.  
Unfortunately, the non linearity cannot be 
contemplated by equation (1) and its extension of 
Theorem 1 and Corollary 1. In other words, with 
equation (1) we cannot distinguish whether two 
random variables are independent or uncorrelated 
and dependent, because in both cases equation (1) 
yields  ��� =  ���|�� = ����. Let us consider this 
elementary counterexample. 
Example. Let X be Gaussian distributed with null 
mean and Y=X2. Then X and Y are dependent and 
uncorrelated random variables, that is, ($% = 0 and  ���|�� = � ≠ ���'�.  
In the most general case, when the assumptions of 
Theorem 1 are not verified, we need to approximate 
the conditional expectation by the use of some non 
parametric methods: in the next section we illustrate 
two alternative approaches. 

 
 

3 Approximation methods 
 
Since in several cases we do not know the 
distribution of  ���, we generally cannot estimate it 
with parametric methods. Moreover, we generally 
do not have available a random sample drawn from 
the random variable  ���, and therefore the 

estimation of the conditional expectation may not be 
simple. However, there are two alternative methods 
for estimating  ��� and its distribution based on a 
standard bivariate random sample 

 ��>, E>�, ��', E'�, … , ��`, È � 
 

of independent observations from the bi-
dimensional variable ��, ��. In what follows, we 
briefly summarize the OLP method, recently 
introduced by, and the kernel non parametric 
regression method, as proposed in [6].  
 
The OLP method 
 
The OLP method, recently introduced by [7] (see 
also [6] and [12]), is aimed at approximating the 
conditional expectation, based on an appropriate 
partition of the sample space.  
Define by ���� the σ-algebra generated by X (that 
is, ���� = �Q>�ℬ� = {�Q>�c�: c ∈ ℬ}, where ℬ is 
the Borel σ-algebra on ℝ). The σ-algebra ���� can 
be approximated by a σ-algebra generated by a 
suitable partition of Ω. In particular, for any e ∈ ℕ, 

we consider the partition g�hijC>k = {�>, … , �k} of 

Ω in e subsets, described as follows: 

�> = lm: ��m� ≤ B$Q> ;>k<n, �o = lm: B$Q> ;oQ>k < < ��m� ≤ B$Q> ;ok<n ,=8q ℎ = 2, … , e − 1  �k = Ω − s �hkQ>jC> = {m: ��m� > B$Q> ;kQ>k <}. 
 

Note that the partition g�hijC>k
 is determined by a 

number (e − 1) of percentiles of �. Moreover, by 
definition of percentile, each interval �h has equal 
probability, that is, ���h� = 1/e, for t = 1, … , e. 
Starting with the trivial sigma algebra ℑ> = {∅, Ω}, 
we can obtain a sequence of sigma algebras 
generated by these partitions, for different values of 
k. Generally:  

ℑk = � ;g�hijC>k < , e ∈ ℕ.          (2) 

Hence, it is possible to approximate the random 
variable ���|ℑ$� by 

���|ℑk��m� =  v 1�w�m����h�k
hC> G ����w

= 

∑ ���|�h�1�w�m�khC> ,                    (3) 
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where 1��m� = l1   m ∈ �0   m ∉ �z. Indeed, by definition of 

the conditional expectation, observe that ���|ℑk) is 
a ℑk-measurable function such that, for any set 
� ∈ ℑk, (that can be seen as a union of disjoint sets, 
in particular � = s �h)�w⊆�  we obtain the equality 

� �(�|ℑk)��� = � �(m)��� (m)            (4) 

It is proved in [7] that �(�|ℑk(o)) converges almost 
certainly to the random variable �(�|�), that is: 

limk→~ �(�|ℑk) = �(�|�) a.s..              (5) 

Hence, if we approximate �(�|ℑk), then we also 
approximate  (�), for sufficiently large k. 
However, in practical situations, we do not know the 
probability measure �, which is necessary in order 
to approximate �(�|�h) in equation (3). In these 
cases, we are able to approximate the random 
variable �(�|ℑk), which in turns approximates 
�(�|�), using the large number law based on the 
observations of a random sample. Let 
(�>, E>), (�', E'), … , (�`, È ) be a random sample of 
independent observations from the bi-dimensional 
variable (�, �). First, as we generally do not know 
the marginal distribution of �, we can determine the 

partition g��hijC>
k

 using the percentiles of the 

empirical distribution, obtained from the 
observations (�>, … , �`). The number of intervals e 
should be basically an increasing function of the 
number of observations Z, as discussed below. 
Then, if we assume to know the probability ��, 
corresponding to the i-th outcome E�, we obtain: 

�(�|��h) = ∑ E���D�∈��w �(��h)⁄ .                    (6) 

Otherwise, we can give uniform weight to each 
observation, and thus we can use the following 
estimator of �(�|�h): 

H�h = >
`��w

∑ E�D�∈��w ,                          (7) 

where Z�w is the number of observations in ��h, that 

is, Z�w = #{��: �� ∈ �h, � = 1, . . , Z} ≅ Z/e (to 

clarify the explanation, for e = 4 we obtain the 
three quartiles, and therefore Z�w ≅ `

� and similarly 

�(�h) can be estimated by 
>
�). Note that, fixed e, as 

the number of observations n grows, �&��h) `→~���� 
�(�h) = 1/e and H�h is an asymptotically unbiased 

estimator of �(�|�h). Therefore, we are always able 
to approximate �(�|ℑk) and the conditional 
expectation �(�|�) by using the following 
estimator : 

 ��̀��(�) = v 1$∈��w v E�D�∈��w

1
Z��w

k
hC>

= 

= ∑ 1$∈��w
khC> H�h.                       (8) 

where X  is assumed to be independent from the 
i.i.d. observations (��, E�). Note that  ��̀�� is a 
simple ℑk    measurable function, and it is 
conceptually different from the classical estimators, 
which are generally aimed at estimating an 
unknown parameter rather than a random variable. 
Observe that, given a bivariate sample of size Z, 
 ��̀�� yields e distinct values, where each one has 
frequency Z��w ≅ Z/e, for t = 1, … , e. These 

outcomes can be used to estimate the unknown 
distribution function of  (�).  
Obviously, the selected number of intervals k can 
vary between 1 and n and, in order to improve the 
accuracy of the estimates, it must generally be an 
increasing function of n. In particular, for e = 1 we 
approximate the random variable  (�) with a 
number, i.e. the sample mean E�, which is obviously 
not appropriate. On the other hand, for e = Z  we 
approximate  (�) with the marginal distribution of 
�, given by E>, . . , È , which is also generally 
inappropriate. As shown by [6], in order to 
maximize i) the number of intervals, and ii) the 
number of observations in each interval (Z��w) and to 

enhance the performance of the method as well, we 
can choose: 

e = �√Z�,                              (9) 
where ��� is the integer part of �. By doing so, we 
obtain e intervals containing (approximately) e 
observations.  
 
The kernel method 
 
The kernel method is typically used to estimate the 
regression function  (�) = �(�|� = �). In 
particular, if we do not know the general form of 
 (�), except that it is a continuous and smooth 
function, then we can consider the following kernel 
estimator: 

 �k̀��(�) = ∑ O��;N�N��(�)<��MP
∑ �;N�N��(�)<��MP

,                        (10) 
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where �(�), denoted by kernel, is a density function 
(typically unimodal and symmetric around zero) 
such that i) �(�) < 7 < ∞; ii) lim¡→±~ |��(�)| =
0 (see [8] and [9]). Moreover, ℎ(Z) is the smoothing 
parameter, often referred to as the bandwidth of the 
kernel, and it is a positive number such that 
ℎ(Z) → 0 when Z → ∞. When the kernel � is the 
probability density function of a standard normal 
distribution, then the bandwidth is the standard 
deviation. It was proved in [8] that if � is 
quadratically integrable (see also [13]) then  �k̀��(�) 
is a consistent estimator for  (�). As a 
consequence, we know that  �k̀��(�) →¢.£.  (�). 
Then, from a practical point of view, if we apply the 
kernel estimator to a bi-variate random sample 
(�>, E>), … , (�`, È ) we obtain the vector 
( >, … ,  `) = ( �k̀��(�>), . . ,  �k̀��(�`)). In other 
words, each value  � is a weighted average of 
kernels, centered at each sample observation ��. 
Since we know that  � → �(�|� = ��) when 
Z → ∞, then we can also estimate the distribution 
function �( (�) ≤ �) of  (�) with any parametric 
or non-parametric method, based on the outcomes 
( >, … ,  `).  
With regard to the choice of the kernel function and 
the bandwidth, we recall that many several 
sophisticated techniques have been proposed in the 
literature. For instance, under assumptions of 
normality we can simply use the normal kernel,  
and, as for the bandwidth parameter, we can use the 
Sturge’s or the Scott’s rule (see [14] and [15]). 
In order to clarify the interpretation of Theorem 1 as 
well as the application of the Kernel method, we 
make use of some figures. Let us consider a 
bivariate random sample from a joint Student’s t 
random vector (�, �), where � and � are strongly 
correlated. As Theorem 1 holds, we know that 
�(�|�) = #% + +-,

+-:
(� − #$). This is apparent from 

Fig. 1, which shows the observations and the 
regression function, estimated via the kernel 
method. However, the best approximation of the 
relationship between � and |�| cannot obviously be 
linear, and the conditional expectation estimator is 
able to identify it, as it is shown in Fig. 2.  
Therefore, since the proposed methodology to 
approximate the relationships among random 
variables is non parametric, we do not need to 
assume any formal or distributional relationships 
among the random variables. We can simply 
computing it and this represents one of the principal 
advantages of using conditional expectation 
estimators in statistical approximations. Moreover, 
in the next section we show that the application of a 
positive and non-constant function is indeed a key 

point for identifying a dependence structure between 
random variables. 

 
Fig. 1. Random generated values of � and � and kernel 
approximation.  

 
Fig. 2. Random generated values of � and |�| and kernel 
approximation  
 
 

4 New tests of independence 
 
In this section, we describe a new method for testing 
independence of random variables. The method is 
based on the conditional expectation and it could be 
a useful alternative to the well-known Pearson Chi 
squared test and other tests which have been 
proposed for continuous random variables. We 
recall that many well-known tests, such as the Chi 
squared test and the Hoeffding’s test, are based on 
the main definition of stochastic independence, that 
is as follows. 
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Definition. Two random variables X and Y are 
independent if, for any couple of Borel sets � and c, 
we obtain 

 
 �(� ∈ �, � ∈ c) = �(� ∈ �)�(� ∈ c).   (11) 

 

The Chi squared statistics is actually a probability 
distance (or divergence, see e.g. [16], [17]) which 
measures the dissimilarity between the true 
distribution and a theoretical one (e.g. under the 
condition of independence defined above). 
Therefore, if � = ∑ H�¤[$∈��]�̀C>  and  � =
∑ ¥h¤[%∈¦w]§hC>  are discrete random variables (where 

the collections {��}�C>,…,` and gchihC>,…,§ are 

partitions of the real line), the Chi squared test can 
be performed properly. As a matter of fact, in order 
to verify the independence it is sufficient to show 
that, for any i=1,…,n and j=1,…,m, we have 

 

��h = �&� ∈ ��, � ∈ ch) = 

= �(� ∈ ��)�&� ∈ ch) = ���h.       (12) 

 

The Chi squared statistic is given by 

 

¨' = " ∑ ∑ &©�wQ©�©w):
©�©w

§hC>�̀C>            (13) 

 

where N is the sample size. As is well known, a 
small value of ̈ ' corresponds to a situation of 
“closeness” to independence. Observe that ¨' can 
also be used to test independence of continuous 
random variables although, in this case, it can only 
guarantee that the random variables are not 
independent. In other words, ¨' ≠ 0 is a sufficient 
condition for non-independence while ¨' = 0 is just 
a necessary condition for independence.  

Nevertheless, the following theorem identifies a 
necessary and sufficient condition for independence 
and thereby it establishes an alternative definition of 
stochastic independence. It is well known that when 
two integrable random variables X and Y are 
independent then �(�|��=E(Y) but generally the 
converse is not true. However, if we apply a positive 
and non-constant function to the r.v. � we obtain the 
following result. 

Theorem 2. Let �, � be real-valued and continuous 
random variables defined on the probability space ��, ℑ, ��. Let ℎ be a non-constant, continuous 
positive function defined on the support of �, such 

that �[ℎ���] < ∞. Then �, � are stochastically 
independent if and only if, �[ℎ���|�] = �[ℎ���]. 
Proof. 
If �, � are independent the results is well known. 

Assume that �[ℎ���|�] = �[ℎ���], let us consider 
the set 

ª = {��, E�: =$,%��, E� > =$���=%�E�} 
and the projection �'��, E� = �. Then, given c = �'�ª�, we obtain ��� ∈ c� ≥ ����, �� ∈ ª�. 
Moreover: 

G �[ℎ���|�]��$∈¦ −  ��� ∈ c��[ℎ���] = 

= G =$�����¦ G ℎ�E� =$,%��, E�=$��� �E~
Q~− G =$�����¦ G ℎ�E�=%�E��E~

Q~= 0 

therefore 

G G ℎ�E��=$,%��, E� − =$���=%�E����~
Q~ �E = 0¦ . 

As, by definition, the integrand is a positive 
function, the equation holds only if «�c × ℝ� = 0 
(where « is the Lebesgue measure) which implies 
that ��� ∈ c� = �&��, �� ∈ ª) = 0 as � ≪ «. 
Similarly we prove that, if 

ª® = g��, E�: =$,%��, E� < =$���=%�E�i, 
then �&��, �� ∈ ª′) = 0. We conclude that =$,%��, E� = =$���=%�E� q.e.d.. 

Now, let us consider the following hypotheses 

H0: X and Z are independent; 

H1: X and Z are not independent.  

Given a bivariate random sample of Z observations 
from ��, 1�, let � = ℎ�1�, where ℎ satisfies the 
assumptions of Theorem 2. In particular, for 
simplicity, we propose to use the absolute value, 
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that is, ℎ(1) = |1|. Then we can approximate the 
conditional expectation of � given �, i.e. 
�(ℎ(1)|�), by the use of the approximation 
methods described in section 3. In other words, we 
approximate  (�) = �(ℎ(1)|�) with the estimator 
 �`(�), where  �`(�) may be obtained alternatively 
with the Kernel or the OLP methods. Theorem 2 
states that � and 1 are independent if �(ℎ(1)|�) =
�(ℎ(1)) or, equivalently, when the r.v. �(ℎ(1)|�) 
is actually a contant. Thus, as  �`(�) converges to 
�(ℎ(1)|�), we choose H0 when  �`(�) presents a 
null (or small) variance, otherwise we choose H1. 
Therefore, this procedure makes it possible to 
determine whether two random variables are 
independent, based on the approximation of 
�(ℎ(1)|�). Indeed, the variance of �(ℎ(1)|�) is 
null only in case of independence and not, for 
instance, in case of uncorrelation. Fig. 3 confirms 
that, for two independent Student’s t distributions, 
 �`(�) tends to a constant, while the same result 
does not hold when the two random variables are 
only uncorrelated.  

 
Fig. 3. Distributions of E(|Y||X) for i) independent; and 

ii) uncorrelated Student’s t random variables. 

As specified in the following proposition, under 
some particular assumptions we can apply the Z-
test. Consider the statistic 

1` = √Z +̄°̄�(-):

±k� °̄�(-)
                       (14) 

��²��($)'  is the variance and e�²��($) is the central 
moment of order four of the outcomes 
( �`(�>), . . ,  �`(�`)) (obtained with the kernel or 
OLP methods). Thus, we propose the following 
decision rule: 

Reject H0 if  1` = √Z +̄°̄�(-):

±k� °̄�(-)
≥ ³´             (15) 

where ³´ = Bµ(J,>)Q> (1 − V). Indeed, the following 
proposition holds.  

Proposition 1. Assume that �̀ = ( �`(�))^2 is a 
stationary process that admits finite the third 
moment (for any n). Suppose the process {�`|Z ∈ ℕ} 
is an V -mixing process with mixing coefficients V` 
such that V` = ·(ZQ¢) for some H > 3 for large Z. 
Then the following limits are verified for the test 
(15)  

lim`→~ �(q¹t¹³T ºJ |ºJ �» Tq¼¹) ≤ V and 

 lim`→~ �(q¹t¹³T ºJ |ºJ �» =H3»¹) = 1 

 
Proof 

We know that, under these conditions, the statistic  

1` converges to a Gaussian distribution (see [18]). 
q.e.d.. 

Since test (15) can be applied for any non constant 
continuous positive function h, then we can consider 
a parametric function ℎ(�) = ℎ(�, ½) with ½ ∈
Θ and enhance the performance of the with this 
alternative decision rule: 

Reject H0 if  \�Z¿∈À√Z +̄°̄�(-):

±k� °̄�(-)
≥ ³´.     (16) 

For instance, we can approximate the proposed 
statistic for the conditional expectation �(ℎ(1)|�) 
with ℎ(1) = |1|¿ and then apply test (15) in order 
to verify independence.  

In what follows we provide a simple example of 
application of the proposed decision rule. 

 

Example 

 

As one of the several possible applications of these 
tests, we may propose a particular comparison of 
financial variables (portfolios). Indeed, in a financial 
context the r.v.’s are generally assumed to be 
continuous.  
Let us consider two portfolios of daily returns X and 
Y, taken from the NYSE (New York Stock 
Exchange), which are empirically uncorrelated. 
Suppose that we have available about three years of 
historical daily joint observations (750 trading 
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days). We need to test whether the losses and gains 
of the two portfolios are independent (see [19]).  
Using the chi-squared test with one degree of 
freedom we fail to reject the null hypothesis (i.e. 
independence) at a significance level of 95%.  
As an alternative approach,  we apply the test given 
by (15) with ℎ(�) = |�| to the standardized random 
variables XÂ and YÂ. We obtain that the variance of 
�&Ä�ÅÄ|�Å) is equal to 0.0512, with the OLP method, 
and 0.0445, with the Kernel method. With regard to 
returns (i.e. percentages) such variances are 
apparently large. This is confirmed by the 1` 
statistic as well as the Z test given by (15), that lead 
to reject the null hypothesis, differently from the 
chi-squared test. Hence, in this case we have 
verified that the newly introduced test is more 
powerful than the chi-squared test.   

 

5 Conclusions 
 
The new methodology proposed in this paper makes 
it possible to evaluate the independence structure of 
random variables based on an alternative definition 
of independence, where the approximation of the 
conditional expectation plays a key role. In this 
framework, the kernel method as well as the OLP 
method may provide sufficiently accurate 
approximations. Under the assumptions of 
Proposition 1, we can use a Gaussian approximation 
and apply a Z test in order to establish whether two 
r.v.’s are independent or dependent. This method for 
testing independence represents an alternative to 
other well known tests, such as the Chi squared test, 
and is especially suitable for dealing with 
continuous random variables. Moreover, it is worth 
noting that the method determines a general class of 
independence tests, in that, depending on the 
approximation method (OLP, kernel) and on the 
choice of the function ℎ, we may obtain different 
decision rules with different characteristics. It 
should be stressed that these tests can be easily 
performed with the use of a computational software 
and are especially suitable for large samples, 
because of the convergence property of the test 
statistic (see Proposition 1). 
As it is well known, tests of independence may have 
several applications in diverse areas of study, from 
medicine to engineering. However, we believe that 
the proposed class of tests could be especially 
suitable for dealing with financial data, that are 
often assumed to be continuous. The usefulness of 
this approach has been stressed at the end of section 
4. We argue that the newly introduced test could 

generally yield an inferior probability of a type II 
error, in particular when random variables are 
continuous.  
In future work, it would be interesting to investigate 
the properties of the different tests according to the 
form of the function ℎ: this can be done with 
theoretical studies or with simulation studies as 
well. Furthermore, based on this method it would be 
interesting to provide an alternative approach to 
independent component analysis, that is particularly 
useful in several fields of research.  
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