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Abstract: - Wind direction has a substantial effect on the environment and human lives. Wind direction 
influences the dispersion of particulate matter in the air and affects the construction of engineering structures, 
such as towers, bridges, and tall buildings. In fact, knowledge of the wind direction and wind speed can be used 
to obtain information about the energy potential. This study investigates the characteristics of the wind regime 
involving the wind direction in Kudat, Malaysia using a mixture of von Mises-Fisher model (mvMF). The 
suitability of each mvMF was judged based on a graphical representation and goodness-of-fit statistics. In 
addition, the best-fit mvMF model was compared with the circular distribution based on nonnegative 
trigonometric sums to determine the best model. The results found that the mvMF model with 2H ≥  
components is the best model. Additionally, the circular density plots of the suitable model clearly show the 
dominant wind directions in the Kudat region. 
 
Key-Words: - Circular distribution based on nonnegative trigonometric sums, directional statistics; directional 
distribution, mixture of von Mises-Fisher distributions, wind direction modelling. 
 
1 Introduction 
Wind direction is the direction from which the wind 
is blowing. It is expressed in terms of degrees 
measured clockwise from geographical north, which 
can be represented as an angle measured from a 
point chosen as the “zero direction”. The starting 
point and rotation from this point, regardless of 
whether it is clockwise or anticlockwise, are taken 
as positive values. Observations using these two 
dimensions are also called circular or directional 
data [1]. In practice, the wind direction is an 
important feature that should be considered in 
building wind turbines and in structural and 
environmental design analysis [2, 3, 4]. Wind 
direction has also been recognised as an important 
aspect for the evaluation of wind energy because 
wind direction data can complement wind speed 
data to yield information about the energy potential  

Wind direction is a type of directional data. 
Thus, it has unique characteristics that are different 
from standard linear or real-line data sets. Such 
distinctive features have made directional statistics 
analysis substantially different from linear analysis 

[5, 6]. Let θ  be a random variable that measures the 
directional data that take values in the range 0° to 
360° or 0 to 2π . An analysis of θ  would depend 
on the selection of the starting point as the “zero-
direction” and the sense of rotation, i.e., clockwise 
or anti-clockwise. For example, in Figure 1, if the 
zero direction is due east, corresponding to anti-
clockwise rotation, the data will take the value of 
60°, whereas if the zero direction is due north, 
corresponding to clockwise rotation, the data will 
take the value of 30°. However, the "beginning" are 
always coincides with the "end", i.e., 0°-360°, and 
the measurement is also periodic, with θ  being the 
same as 2pθ π+ ×  for any integer p [1]. 

In addition, directional data that take values of 
0  to 360θ = ° °  or 0 to 2θ π=  are commonly 

termed polar coordinate data with magnitude = 1, 
namely, (1, θ). On the other hand, the directional 
data can be transformed into rectangular coordinate 
form, (X, Y), through cos and sinx yθ θ= =  
for every θ . Figure 2 shows the directional data in 
terms of both polar coordinates (1, θ) and 
rectangular coordinate (X, Y). There are many other 
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unique features of directional data; for further 
reference, see [1, 7, 8] 
 
 

 
Fig 1. The observed directional data depend on 

choice of origin and the sense of rotation [1] 
 

 
Fig 2. Relationship between polar coordinate data 
(1, θ) and rectangular coordinate data (X, Y) [1] 

 

Based on the features of directional data 
described above, it is clear that frequently used 
statistical analyses cannot be used indiscriminately 
when analysing directional data. In this study, we 
describe some of the characteristics of the wind 
direction in the region of Kudat, Malaysia, by 
analysing directional data to gain some insight 
regarding the behaviour of the wind regime. 
 
 
2 Study area and data 
Sabah is a state of Malaysia, located in the northern 
section of the island of Borneo. It is the second 
largest state in the country after Sarawak, which it 
borders to the southwest. Sabah is relatively wet 
(annual precipitation exceeding 200 mm) due to 
the tail effect of typhoons, which frequently traverse 
the Philippine islands across the South China Sea. It 
is worth mentioning that from April to November 
each year, when typhoons frequently develop over 

the west Pacific and move westward across the 
Philippines, the south-westerly winds over the 
northwest coast of Sabah may reach speeds of 10.30 
m/s or more [9, 10] 
 

 
 

Fig 3. Map of Sabah state 
 

The data used in this study were obtained from 
the Malaysian Meteorological Department. In this 
study, hourly wind direction data from 1 January 
2007, to 30 November 2009 were used. Wind 
direction data are circular because they are recorded 
in terms of degrees, from 0° to 360°. However, for 
modelling, data transformation into radian units can 
be performed easily. Apart from that, the missing 
data has been estimated by using the method of 
single imputation [11]. 
 

3  Descriptive statistics 
Before a detailed analysis is conducted, it is 
important to evaluate the descriptive statistics to 
obtain some preliminary information about the data. 
As mentioned above, directional data have many 
features that differ from those of standard linear data 
sets. For example, the arithmetic mean, which is 
commonly used for linear data, cannot be used as a 
measure of the centre of the directional data. The 
sample variance s2, which depends on the sample 
mean, also suffers from the same problem. Thus, we 
need an alternative measure of centre and dispersion 
when dealing with directional data [1]. Let 

1 2, , nθ θ θ  be a set of directional data; the mean 
direction can then be calculated as 
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where, 
1

cos
n

i
i

C θ
=

=∑  and 
1

S sin
n

i
i

θ
=

=∑  accomplish 

the polar-to-rectangular transformation. On the other 
hand, the measure for the dispersion of the 
directional data is commonly derived from the 
circular variance, which is given as 
 

( )2 211 2V C S
n

= − +  

A small value of the circular variance indicates the 
data have a large concentration around the mean 
direction. 

The percentile measure for directional data is 
same as that for linear data: it is a measure of the 
value of a variable below a certain percent of 
observations. For example, the (100p)-th percentile 
is often called the quantile of order p. Let 

1 2 ny y y≤ ≤ ≤  be an order statistic for n 
observations; yr is then the quantile of order 

( )1
rp

n
=

+
 as well as the 

( )
100

1
r

n +
 percentile. Thus, 

the p-th percentile of the data is also a quantile of 
order p for the data. Using these descriptive 
measurements, Table 1 shows the descriptive 
statistics for the wind directional data in Kudat. 

 
Table 1.  Descriptive statistics for Kudat wind 

direction. 
Kudat wind station 

Mean direction 218.21° 
Circular variance 0.978 

25th percentile 80° 
50th percentile 220° 
75th percentile 240° 

Based on the descriptive statistics in Table 1, the 
circular mean of the wind direction is approximately 
218.21°. However, the circular variance is 0.978, 
which implies that the data were not well 
concentrated around their mean direction. Thus, we 
suspect that the data are either approximately 
uniformly distributed or have a several-directional 
mean. The values of 25th, 50th

, and 75th percentile are 
80°, 220°, and 240°, respectively.  
 
 
4 Wind direction modelling 
For the purpose of modelling the wind direction in a 
particular area, various circular distributions have 
been used, such as the von Mises distribution, the 
generalised von Mises distribution, finite mixtures 

of von Mises distributions, the wrapped Cauchy 
distribution, the uniform distribution, and the 
wrapped round-normal distribution. The von Mises 
model is among the most commonly used and was 
found to provide good results. For examples, 
Kamisan et al.[6] evaluated the best fitting model 
for the wind directional data in southwesterly 
Malaysian using four different types of circular 
probability distribution namely circular uniform 
distribution, von Mises distribution, wrapped-
normal distribution and wrapped-Cauchy 
distribution. Based on the result of performance 
indicators, they found that the von Mises 
distribution was the best circular distribution to 
describe the southwesterly monsoon wind direction. 
Carta et al. [12] have showed that a the finite 
mixture of von Mises is a very flexible model for 
wind direction studies particularly for the wind 
direction regimes in zones with several models or 
prevailing wind directions. In addition, Carta et al. 
[13] have showed that the finite von Mises is also a 
flexible model correspond to the wind speed density 
function in explaining the wind regime behaviours 
that takes into account the correlation between wind 
speeds and its directions. In fact, the same result 
have been showed by Azmani et al. [14] in 
modelling the sensor data  for the cases of a 
recursive change point estimate of the wind speed 
and direction. Apart from that, a lot of interesting 
studies have been done regarding the application of 
von Mises in modelling the directional data. For 
example, the Shieh et al. [15] has proposed a 
bivariate model with von Mises marginal 
distributions for independence in paired wins 
direction data. Dobigeon & Tourneret [16] proposed 
a method of joint segmentation for the wind speed 
and direction based on the information from the von 
Mises distribution. Williams et al. [17] has used the 
von Mises model to represented the wind direction 
data as a function of a regression model to described 
about the embedding dispersion of pollution source. 
Heckenbergerova et al. [18] have developed a 
method of Particle Swarm Optimization using the 
information from the finite mixture of von Mises 
distribution in order to provide an accurate 
information regarding wind direction distribution. 
There are still many more research studies that have 
used the von Mises distribution in modelling the 
wind directional data. However, most of the studies 
involving the von Mises distribution does not 
describe well about the dominant direction of the 
wind blows in term of the mean direction and their 
concentration parameter of the von Mises model. 
Thus, since the von Mises distribution is a flexible 
model for addressing wind directional data with 

WSEAS TRANSACTIONS on MATHEMATICS Nurulkamal Masseran, Ahmad Mahir Razali, Kamarulzaman Ibrahim

E-ISSN: 2224-2880 315 Volume 14, 2015

http://en.wikipedia.org/wiki/Percentage


several modes. This study attempts to address the 
issued regarding the strength of a dominant 
direction of a wind blows based on a von Mises-
Fisher distributions (von Mises-Fisher is a von 
Mises model in p dimensions). Apart from that, the 
suitability of von Mises model will be compare with 
the circular model based on nonnegative 
trigonometric sums in order to determine the best 
statistical model in describing the wind directional 
data in Kudat. 

The von Mises-Fisher distribution can be 
categorised as a single model or a mixture of several 
von Mises-Fisher distributions. The suitability of the 
von Mises model will be compared to the circular 
distribution based on nonnegative trigonometric 
sum to determine the best model for describing the 
wind directional data in Kudat. However, we first 
present a review of some interesting work by 
Banerjee et al. [19] regarding the von Mises-Fisher 
model (single/mixture) and parameter estimates 
 
4.1 Single von Mises-Fisher distributions 
(vMF) 
The single von Mises-Fisher distribution is a 
probability distribution function whose the total 
probability is concentrated on the circumference of 
a unit circle. It was introduced by von Mises in 
1918, and Gumbel et al. have emphasised its 
importance and its similarities to the normal 
distribution [20]. From a statistical inference 
viewpoint, the von Mises distribution is the most 
commonly used for modelling circular data. Let θ  
be a random variable representing the wind 
direction in radians, and let [ ]' cos ,sin 'i iθ θ=x  be 
a circular data point in rectangular coordinates. 
Thus, a d-dimensional unit random vector x  is said 
to have a d-variate von Mises-Fisher distribution, 
which can be written as 
 

( ) ( ) ( ) ( )'; , 3df c e κκ κ= xμxμ  
 
Where 1=μ  is the mean direction parameter, 

0κ >  is the parameter concentration with a larger 
values of κ  imply stronger concentration about the 
mean direction, and ( )dc κ

 is a normalising 
constant given by 
 
 

( )
( ) ( )

( )
2

2

2

1

1

, 4
2

d

d

d

dc
I

κκ
π κ

−

−

=  

where ( ).rI  represents the modified Bessel 
function of the first kind and order r. Next, to derive 
the maximum likelihood estimator (MLE) for the 
parameters of single vMF, assume ix  to be 
independent and identically distributed, and let 

{ }1, , nX = x x  be a finite set of sample units 

following ( ); ,f κxμ  The likelihood function can 
then be written as 
 

( ) ( )

( )

( ) ( ) ( )

1

1

'

1

| , , | ,

| ,

5i

n

n

ii
n

di

P X P

f

c e κ

κ κ

κ

κ

=

=

=

= Π

= Π xμ

μ x x μ

xμ



 

 
By taking the logarithm of both side of Equation (5), 
we obtain 
 

( ) ( ) ( )ln | , ln ' 6dP X n cκ κ κ= +μ μ r  
 

where 
1

n

i
i=

=∑r x . To derive the maximum 

likelihood estimator for parameters μ  and κ , the 
log-likelihood needs to be maximised subject to the 
constraints 1=μ  and 0κ > . This maximisation 
can be performed by applying the Lagrange 
multiplier λ  to the function, which is given as 
 
( ) ( )

( ) ( )
, , ; ln

' 1 ' 7
dL X n cκ λ κ

κ λ

=

+ + −

μ

μ r μ μ
 

Next, by differentiating Equation (7) with respect to 
μ , κ , and λ  and setting each derivative to zero, the 
equations that the parameter estimates μ , κ , and λ  
must satisfy are given by 
 

( )ˆˆ 8ˆ2
κ
λ

=μ r

 
( )ˆ ˆ' 1 9=μ μ
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ˆ
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By substituting Equation (8) into Equation (9), the 
MLEs for μ  and λ  are given by 
 

( )ˆˆ 11
2
κλ = r

 

( )1

1

ˆ 12

n

i
i
n

i
i

=

=

= =
∑

∑

x
rμ
r x

 
By substituting μ̂  from Equation (12) into Equation 
(10), the MLE for κ  is given by 
 

( )
( ) ( )

ˆ'
13

ˆ
d

d

c
r

c n
κ
κ

= − = −
r

 

 
On the other hand, Banerjee at al. [19] have shown 

that,
( )
( )

( )
( )

2

2 1

ˆˆ'
ˆ ˆ

d

d

d

d

Ic
c I

κκ
κ κ−

−
= ; thus, the MLE for κ  can 

be simplified as 
 

( )
( ) ( )2

2 1

ˆ
14

ˆ
d

d

I
r

I

κ

κ−

=  

 
The numerical approach needs to be applied to 
Equation (14) to obtain the final estimate for κ . 
 
4.2 Mixture of von Mises-Fisher distributions 
(mvMF) 
The single von Mises-Fisher is very useful for 
modelling unimodal wind directional data. 
However, in some applications, the observed wind 
direction data cannot be represented by a unimodal 
distribution. To overcome this problem, a finite von 
Mises-Fisher mixture distribution (mvMF), which is 
comprised of a sum of H von Mises probability 
distributions, has been proposed. The mixture of 
von Mises-Fisher distributions is given by 
 

( ) ( )

( ) ( ) ( )

1

'

1

; , ; ,

15h h

H

h h h h h
h
H

h d h
h

f f

c e κ

κ ω κ

ω κ

=

=

=

=

∑

∑ xμ

xμ x μ

 
where ,h hκμ  are the parameter mean direction and 
concentration parameter, respectively, for h=1, 2,… 

H components of the von Mises distribution, while 

hω  is a mixing parameter of nonnegative quantities 
that sum to one, given by 

 

( )
1

0 1 and 1, 1,2 , 16
H

h h
h

h Hω ω
=

≤ ≤ = =∑   

 

( )d hc κ  is a normalising constant given by 

( )
( ) ( )

2

2

2

1

1

,
2

d

d

d

h
d h

h

c
I

κκ
π κ

−

−

=  where ( ).rI  

represents the modified Bessel function of the first 
kind and order r. The MLEs for the mvMF are very 
difficult to derive in a standard way. However, 
Banerjee et al. [19] provided a solution of the 
parameter estimates for the mvMF distribution 
based on the expectation maximisation (EM) 
approach. Let ( ),h h hκ=α μ  denote the parameters 

of the von Mises-Fisher distribution, ( )|h hf xα , for 
1 h H< < . Then, the mvMF distribution can be 
written as 
 

( ) ( ) ( )
1

; | 17
H

h h h
h

f fω
=

Θ =∑x xα  

 
where ( )1 1 1 2, , , , , , ,H Hω ω ωΘ = …α α α . According 
to Banerjee et al. [19], to generate a random sample 
from this mixture distribution, the h-th von Mises 
distribution is randomly chosen with probability hω
. Let, { }1 2, , , 'nX = x x x be a data set of n 
independent sample points following Equation (17), 
and let { }1 2, , , 'nZ z z z=   be the corresponding 
set of hidden random variables that indicate a 
particular von Mises distribution from which a 
sample is generated. In particular, iz h=  if ix  is 

generated from ( )|h hf xα . Thus, the log-likelihood 
can be written as 
 

( ) ( )( ) ( )
1

ln , | ln | 18
i i i

H

z z i z
i

f X Z fω
=

Θ =∑ xα  

 
Assume that the posterior distribution, ( )| ,ip h Θx  

, of the hidden variables ( )| ,Z X Θ  are known. 
Then, the expectation of the log-likelihood over the 
given posterior distribution p is given by 
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Next, the parameter Θ  is re-estimated to maximise 
the expectation function. To maximise the 
expectation function with respect to hω , the 
Lagrangian multiplier λ  corresponding to the 

constraint 
1

1
H

h
h
ω

=

=∑  is used, and by taking the 

partial derivatives with respect to each hω  from the 
Lagrangian, the following is obtained 
 

( ) ( )
1

| , 20
n

i h
i

p h λω
=

Θ = −∑ x

 
 
Next, by summing both sides of Equation (20) over 
all h, Banerjee at al. [19] found that nλ = − ; thus, 
the parameter estimate for hω is given by 
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p h
n

ω
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= ∑ xΘ  

 
The parameter estimates for ( ),h h hκ=α μ  can be 

derived under the constraints 1=μ  and 0hω ≥  

for h=1, 2, … H. Let hλ  be the Lagrange multiplier 
corresponding to the constraint; if 0κ = , then 
( )|f xα  is the uniform distribution on the sphere, 

and if 0κ > , then the multiplier for the inequality 
constraint has to be zero. Thus, the Lagrangian is 
given as 
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By taking the partial derivative with respect to 

{ } 1
, , H

h h h h
κ λ

=
μ  from Equation (22), and setting it 

equal to zero, for each h, Banerjee et al. [19] 
obtained 
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1
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n
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Using Equations (23) and (24), it is found that 
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Next, substituting Equation (27) into Equation (25) 
provides the parameter estimates for hκ  as given by 
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ω
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x

x
x

. Readers 

desiring a detailed discussion of the parameter 
estimates for the von Mises-Fisher distribution 
(single/mixture) should consult [19, 21, 22]. 
 
5  Results and Discussion 
As mentioned above, the objective of this study was 
to identify the most appropriate distribution for 
wind direction at the Kudat station to better 
understand the wind regime in this area. Tables 2 
shows the parameter estimates for the von Mises 
mixture distribution (H=1, 2, 3, and 4) at the Kudat 
station. Figure 4 presents the fitted mvMF (H=1, 2, 
3, and 4) for the wind direction at the Kudat station. 
From the figure, it is clear that the single mvMF 
distribution (H=1) failed to model the wind 
direction data at the Kudat station accurately. 
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However, as the number of components of the vMF 
increase, the mvMF models fit the data in a more 
precise way. As a result, the fitted mvMF model 
with H=2, 3, and 4 components model the data with 
similar accuracies. It is quite difficult to determine 
the suitability precision of the mvMF model based 
on graphical representations only. Thus, the R2 
coefficient was used to evaluate each mvMF model. 
 

Table 2. The parameter estimates for the mvMF 
(H=1, 2, 3, and 4) based on the EM algorithm. 

 
mvMF Parameter estimates 

 'μ  κ  ω  

H=1 
 

-0.785452 
 

-0.6189218 0.42187 1 

H=2 -0.5153732 -0.8569659 7.242308 0.4787608 
 
 

0.2909280 0.9567449 1.628116 0.5212392 
 

H=3 0.02426039 0.9997057 8.096920 0.4945873 
    0.56316151 0.8263469 1.002905 0.3759604 
 
 

-
0.50926732 

 

-0.8606084 12.27827 0.1294524 

H=4 0.56772170 0.8232205 11.65820
4 

0.3474064 

 -
0.31381192 

-0.9494852 9.227239
8 

0.1439757 

 -
0.63765746 

-0.7703200 10.75235
9 

0.1412261 

 
 

0.02245815 0.9997478 0.970675 0.3673919 

 
 

Table 3 and Figure 5 show the R2 coefficient for 
each fitted mvMF model. The R2 values are found to 
increase significantly for H=2, 3, and 4. From these 
results, it is clear that the mvMF more precisely 
model the actual modality of the wind direction 
histogram as the value of R2 increases. The R2 
values indicate how much of the observed data the 
mvMF model is able to describe. Thus, the mvMF 
distribution with the highest value of R2 will be able 
to model the data most accurately. For example, the 
value of R2 for the mvMF with H=1 component is 
approximately 0.8954; thus, most of the data can 
still be modelled by this mvMF. However, the 
modality of the data cannot be modelled accurately. 
As the number of components for the mvMF model 
increase, the R2 value also increases. This implies 
that the highest values of R2 will correspond to the 
best model for the wind direction in Kudat. 
However, as seen in Table 3 and Figure 5, the R2 
value does not increase significantly for the mvMF 
model with H=2, 3, and 4. This result is found to be 
in agreement with the density plot shown in Figure 
4. Thus, we can conclude that the mvMF model 
with 2H ≥  components is able to provide a good 
fit of the wind directional data in Kudat. By fitting 
the mvMF model with 2H ≥ , most of the data, 

including the modality in the histogram can be 
modelled accurately. The most parsimonious model 
for wind direction in Kudat is mvMF (H=2); 
however, the most accurate model is mvMF (H=4). 

 
Fig 4. The mvMF (H=1, 2, 3, and 4) for wind 
direction in Kudat 
 

Table 3. R2 coefficient for each mvMF model 
H R2 value 
1 0.89540 
2 0.99760 
3 0.99861 
4 0.99862 

 
 

 
Fig 5. R2 values for each fitted mvMF model 
 
Based on the mvMF fitted models shown in 

Figure 3, Table 3, and Figure 5, it is clear that 
higher R2 values indicate a better fitting mixture 
model. However, the weakness of R2 is that its 
values will always increase as the number of 
parameters in the model increases. Thus, it is better 
to use another method, such as Akaike’s information 
criteria (AIC) or Bayesian information criteria 
(BIC), for comparison with the R2 values for each 
fitted model. In addition, because the mvMF 
distribution has been shown to adequately fit the 
data, this study compares the fitted mvMF model 
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with the circular distribution based on nonnegative 
trigonometric sums (NNTS) in order to determine 
the most prominent model for wind direction in 
Kudat. 
 
 
5.1 Comparison with circular distribution 
based on nonnegative trigonometric sums 
(NNTS) 
The nonnegative trigonometric sum series for a 
circular variable θ  has been expressed by Fejer [23] 
as the squared modulus of a sum of complex 
numbers, which can be written as 
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c e k Mθ
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where 2θ π∈ , 1i = − , and kc  is a complex 
parameter. Using this series, Fernandez-Duran [24] 
proposed a new family of distributions for circular 
random variables, given as 
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= =∑ , is imposed to make the 

trigonometric sum integrate to 1. Thus, there are 
2*M free parameters, where the parameter 0c  must 
be real and positive. 

The parameter estimates for this model were 
conducted using the maximum likelihood estimation 
method (see [25]). This type of circular distribution 
has been found to be flexible enough to model 
directional data sets exhibiting multimodality or 
skewness. Thus, the fitted mvMF will be compared 
to this model to determine the best model for wind 
direction in Kudat. Figure 6 shows the fitted NNTS 
(M=1, 2, 3, and 4). Based on this figure, the fitted 
NNTS model is able to provide a good result for 
wind directional data. In particular, for the NNTS 
model with M=4 components provides a similar 
result to the mvMF model (H=4). However, instead 
of graphical evaluation, Table 4 provides a more 
meaningful comparison using AIC and BIC values. 

 
Fig 6. The NNTS model (M=1, 2, 3 and 4) for wind 
direction in Kudat 
 
Table 4. Comparison between the mvMF model and 
circular distribution based on the NNTS model 
(M=1, 2, 3, and 4). 
 

Model AIC BIC  Model AIC BIC 
mvMF 
(H=1) 

31451.2 31472.4  NNTS 
(M=1) 

31562.1 31576.2 

mvMF 
(H=2) 

26447.7 26468.9  NNTS 
(M=2) 

27783.1 27811.4 

mvMF 
(H=3) 

26210.6 26231.8  NNTS 
(M=3) 

26269.1 27311.6 

mvMF 
(H=4) 

26120.3 26141.5  NNTS 
(M=4) 

26311.6 26368.2 

mvMF 
(H=5) 

26102.3 26123.5  NNTS 
(M=5) 

26285.3 26356.1 

mvMF 
(H=6) 

26091.9 26113.1  NNTS 
(M=6) 

26154.4 26239.3 

 

 
Fig 7. BIC values for each  mvMF and NNTS model 
 

From Table 4 and Figure 7, by comparing each 
mvMF model, it is clear that the single mvMF has 
the highest AIC and BIC values, implying that the 
single mvMF is not a good model for wind direction 
in Kudat. In fact, this result is similar for the NNTS 
model with M=1 component. However, as the 
number of components increase for both mvMF and 
NNTS, the AIC and BIC values decrease, which 
implies that the use of more components in the 
mvMF and NNTS models provides a model that 
more adequately fits the data. These results agree 
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with those obtained using R2. In addition, by 
comparing the values of AIC and BIC for both 
models, it is found that the AIC and BIC values for 
the mvMF models are lower than those for the 
NNTS models for all components. For example, the 
value of AIC and BIC for the mvMF model with 
H=4 components are lower than those for the NNTS 
model with M=1, 2, 3 4, 5, and 6 components. 
Therefore, the mvMF models were able to provide 
better results in fitting the wind directional data in 
Kudat compared to the NNTS models. Thus, the 
mvMF model is preferred to the NNTS model for 
fitting the wind directional data in Kudat..In fact, a 
suitable mathematical equation for the Kudat wind 
directional data that can written as a mvMF (H=4) 
model is given by 
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with the parameter of mean directions: 
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Because the mvMF has been determined to be a 
good model for the data, it can be used to describe 
some characteristics of the wind direction in Kudat. 
In this study, the parameter μ  for mvMF has been 
defined in terms of rectangular coordinates. The 
interpretation of the dominant direction of the wind 
is not suitable to be described in this way. Thus, by 
transforming the results into units of degrees, 
0 360µ≤ <  may be more appropriate. Based on 
Equation (31), the measured parameters for the 
mean directions in terms of degrees are 233.37°, 
256.06°, 55.52° and 82.65°. In addition, Figure 8 
shows a circular density plot for the mvMF with 
H=4 components. This figure clearly shows that 
most of the wind was blowing from the north-
northeast and the west-southwest and some from the 
east-southeast. The circular density plot reveals that 

the wind direction has two different dominant 
directions: from 190°-270° with mean directions of 
233.37° to 256.06° with respect to the parameter 
concentration 11.658κ =  and 10.752κ = , while 
the other dominant direction are found to be in the 
range of 30°-90° with mean directions of 55.52° and 
82.65° and also the concentration parameter 

9.227κ =  and 0.971κ = . These implies that a 
stronger concentration about the mean direction of 
the wind blow comes from the South-West direction 
and follow by the minor dominant direction of the 
wind blows from the North-East direction. 

Apart from that, the others direction are found 
to be quite uniformly distributed. Determining the 
dominant wind direction will contribute valuable 
information to planning or forecasting activities in 
such sectors as wind energy generation, air pollution 
assessment, climate change, construction, and 
maritime activities. For example, in wind energy 
evaluation, based on this information, the wind 
turbine can be positioned such that the production of 
energy is maximised. 

 

 
Fig 8. Circular density plot for the mvMF (H=4) 
model at the Kudat station 
 
6  Conclusions 
Our study focused on determining the best statistical 
model for wind direction in the Kudat region. The 
single von Mises-Fisher distribution and mixtures 
thereof were fit to the data. The results obtained 
showed that von Mises-Fisher distributions with 

2H ≥  components adequately modelled the wind 
direction distribution in Kudat. Additionally, the 
mixture of von Mises-Fisher distributions was 
compared with the circular distribution based on 
nonnegative trigonometric sums. The results 
obtained based on AIC and BIC values indicated 
that the mixture of von Mises-Fisher distributions 
are preferable to the circular distribution based on 
nonnegative trigonometric sums for modelling the 
wind directional data in Kudat. Circular plots of the 
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model clearly show that several wind directions are 
more dominant in Kudat, while the other directions 
show an approximately uniform dispersion 
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