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1 Introduction
The post-Newtonian framework of the Earth sur-
rounding space is the framework that actually meets
the present needs in accurate Positioning and Navi-
gation [1]-[4]. In fact, this is the framework used to
synchronize the atomic clocks on board the GPS satel-
lites, so as to determine the round-trip times taken by
the laser beams in SLR and LLR [5]-[8].

The emerging importance of space-based systems
in locating radio transmitters, both on the Earth sur-
face or in space, is also leading to build up the Ge-
olocation models within this framework. The reason
is that increasing accuracy in locating emitters is be-
coming a must, and, after all, the Geolocation prob-
lem can be posed, and solved, equally well than the
Navigation problem. In fact, the Geolocation prob-
lem is mathematically the inverse of the Navigation
problem [9]. Hence some post-Newtonian formulae
related to Geolocation are considered to be standard,
such as Soffel’s frequency shift formula is considered
by Montenbruck and Gill [10]-[11].

Likewise, the implementation of accurate Acqui-
sition, Pointing, and Tracking (APT) systems is be-
coming a relevant task. In particular, systems with
Laser technology merit more and more attention due
to the fact that this technology has matured substan-
tially in recent years [12]-[13].

However, the post-Newtonian framework is not
used yet by the Sat-to-Sat laser communication sys-
tems, despite one important issue into the major tasks
of engineering inertial guided laser terminals is to

provide accurate tracking procedures for systems en-
dowed with very narrow laser beams [14].

Now, since this fact is not due to the lack of ac-
curacy of the APT hardware, we may reasonably con-
clude that it could be due to the difficulty for the New-
tonian procedures to account in real time for the dif-
ferent curvatures of the Earth surrounding space at the
positions of the targeted satellite and the APT system.
That is, in Newtonian terms, it can be due to the dif-
ficulty to account in real time for the different tidal
effects of the Earth on the respective orbital positions,
particularly when the target is far from the system.

The post-Newtonian equations introduced below
account for these small but important differences.
Therefore, they can help increase the standard accu-
racy in the determination of the relative motion of the
target, let us say S2 from now on, with respect to the
APT system, say S1.

To derive the equations keeping consistency with
previous works, the structure of the space-time about
the Earth assumed in this paper is the same assumed
by some authors and/or recommended in Geodesy and
Geolocation (so as in other fields, such as in Elec-
tronic Warfare) [15]-[27]. The structure is the weak
approximation to the Schwarzschild field generated
by the Earth.

The equations are derived from Synge’s equations
of geodesics, which are written in terms of Fermi
coordinates. Hence they involve Synge’s world-
function. Now, despite this function is a genuine rel-
ativistic tool, and so powerful that it is considered
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nowadays to be universal [28], it is not certainly a
familiar tool. For this reason, we start showing the
procedure followed to derive the equations by intro-
ducing this function, together with its most relevant
properties (used in the paper) in Section 2. Then the
equations are derived in Section 3. Finally, numerical
simulations showing some typical relative trajectories,
so as the validity of the equations, are shown in Sec-
tion 4.

2 The World-function
The world-function is an old function. In fact, it
was introduced into tensor calculus by Ruse [29], but
it was only after Synge that it appeared as an out-
standing tool to work with within space-time frame-
works [30]. Since then it is known as Synge’s world-
function, and many relevant results have been ob-
tained with it, among them those in [1].

To show this function, so as its properties (used
in this paper), let us first consider, as an example,
the form it takes for the 3-D Euclidean space, E3, in
Cartesian coordinates.

Let us then assume that xα1 and xα2 (α = 1, 2, 3)
are the Cartesian coordinates in E3 of two spots P1,
P2 supposedly occupied, not necessarily at the same
instant, by two satellites that are moving in the Earth
surrounding space. (To get as closer as possible to our
problem, let us evoke it by denoting the satellites by
S1, S2). Let us now assume that the geometry of the
space about the Earth is Euclidean. Then the world-
function Ω(P1, P2) is given by

Ω(P1, P2) =
1
2
[(∆x1)2 + (∆x2)2 + (∆x3)2], (1)

or, in compact form, by

Ω(P1, P2) =
1
2
∆xα∆xα =

1
2
δαβ∆xα∆xβ, (2)

where ∆xα = xα2 − xα1 . Thus, δαβ appears as what
it actually is: the metric tensor of E3 in Cartesian co-
ordinates.

The most important characteristic of Ω(P1, P2)
emerges from the most significant feature of Eu-
clidean spaces: since there is only one straight line
in E3 joining P1 and P2, we have that if S1, S2 move
along smooth paths, and P1, P2 are spots successively
occupied by S1, S2 (not necessarily at the same in-
stants), Ω(P1, P2) results in a smooth function, non-
negative in this case, of the three coordinates of P1

and of the three of P2. Or shortly said, Ω(P1, P2) re-
sult to be a two-point smooth scalar function of P1 and
P2, which are the end points of the segment P1P2, as
suggested by the notation (Fig.1).

Figure 1: The world-function for the 3-D Euclidean
space.

Let us now assume that the space-time about the
Earth is flat, that is, that the structure of the space-
time about the Earth is Minkowskian. This leads to
assume that the 3-D space about the Earth is still Eu-
clidean; also, that the model for the gravitational ac-
tion of the Earth on the satellites is Newtonian, and
finally, that the speed of any electromagnetic signal in
vacuo is c, so that the metric tensor for this space-time
in Earth Centered Inertial (ECI) coordinates, (xα, ct),
is ηij = diag(1, 1, 1,−1). (Latin indices range from
1 to 4). Then, unlike in (2), P1 and P2 are now events,
and the world function relates events P1 of S1 to
events P2 of S2 as for any other space-time, although
this time according to the following rule: if (xα1 , ct1),
(xα2 , ct2) are the ECI coordinates of P1, P2, then

Ω(P1, P2) =
1
2
[∆xα∆xα − c2∆t2], (3)

where, as before, ∆xα = xα2 − xα1 , and now ∆t =
t2 − t1. Or in compact form, to show the role of ηij ,

Ω(P1, P2) =
1
2
ηij∆xi∆xj , (4)

where ∆xi = xi2−xi1 , with x41 = ct1 and x42 = ct2.
This function is illustrated in Fig.2, where L1 rep-

resents the time history of events, or world line, of
S1, and L2, the world line of S2. Therefore, the pro-
jections of L1 and L2 onto the 3-D Euclidean space
(spanned by the three space axis at the bottom of
the picture) represent the trajectories of S1 and S2 in
space.

Let us now note that the expression in (4) con-
tains all the information on the intrinsic geometry of
Minkowskian space. In fact, it contains the informa-
tion in finite form. Thus we have for the classification
of events in Minkowskian space that Ω(P1, P2) can
be positive, negative, or null. In fact, if the geome-
try of the space-time about the Earth is assumed to be
Minkowskian, then for a given event P1 ∈ S1 there
are infinite events P2 ∈ S2 for which Ω(P1, P2) < 0,
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Figure 2: The world-function for Minkowskian space.

i.e. that can be experienced, at least in theory, by in-
finite travelers, after they have experienced P1 (in this
case P1P2 is known as a time-like segment); there are
also infinite events of L2 for which Ω(P1, P2) > 0,
i.e. that cannot be experienced by any traveler after it
has experienced P1 (in this case P1P2 is space-like),
and finally, what is most important: there is only one
event of L2, say P2, for which Ω(P1, P2) = 0, so that
P2 can only be reached from P1 by means of elec-
tromagnetic signals (whose world-lines are the same,
and null, because the Minkowskian length of P1P2 is
zero, according to (4)). This fact is important, since,
after computing the coordinates of S2 with respect to
S1 by means of two-way laser link series from S1, it is
what could allow us to conclude that the space about
the Earth may not be Euclidean.

Analogously, for any curved space-time char-
acterized by the metric tensor gij(xk) (signature
+,+,+,−), and for any two events P1(xk1), P2(xk2),
for which there is a unique geodesic ΓP1P2 joining
them, the world-function is defined by the line inte-
gral

Ω(P1, P2) =
1
2

∫ 1

0
gijU

iU jdω, (5)

taken along ΓP1P2 , where ΓP1P2 is given by xi =
xi(ω), ω being an affine parameter satisfying 0 ≤ ω ≤
1, so that P1 ≡ xi(0), P2 ≡ xi(1) and U i = dxi/dω.
(As before, Latin indices range from 1 to 4, and Greek
from 1 to 3).

It is then straightforward to deduce from the defi-
nition that if ds is the arc length element of ΓP1P2 , we
have

Ω(P1, P2) =
1
2
ε
(∫ P2

P1

ds
)2

, (6)

where ε = +1, if ΓP1P2 is space-like; ε = −1,
if ΓP1P2 is time-like; and ε = 0, if ΓP1P2 is null;

therefore, the world-function is, to within the fac-
tor ε, nothing else but half the square of the mea-
sure of the geodesic (assumed unique) that joins any
two events in a given space-time. Hence, as a con-
sequence, we have: (I) Ω(P1, P2) is single-valued,
and does not depend on ΓP1P2 ; it only depends on
the eight coordinates xi1 , xi2 , of the events P1, P2,
which are the end points of ΓP1P2 , as suggested by
the notation; (II) Ω(P1, P2) is a two-point scalar func-
tion of xi1 and xi2 , i.e. it is invariant under coordi-
nate transformations both at P1 and P2; (III) succes-
sive covariant derivatives of Ω(P1, P2) can be taken
unambiguously with respect to the coordinates of P1

and/or with respect to the coordinates of P2 (follow-
ing Synge, these derivatives will be indicated with
simple subscripts, that is to say, without the usual
stroke); (IV) the partial derivatives of Ω(P1, P2) with
respect to P1, i.e. Ωi1(P1, P2), are equal to −Ui1 ,
and analogously, Ωi2(P1, P2) = Ui2 (the minus sign
in the first expression is consistent with the fact that
Ωi1 and Ωi2 are the gradients of Ω(P1, P2) at the
end points P1, P2). In particular, if ΓP1P2 is not
null (ε = ±1), then Ωi1(P1, P2) = −Lλi1 and
Ωi2(P1, P2) = Lλi2 , where L =

∫ P2
P1

ds, and λi1 ,
λi2 are the unit tangent vectors to ΓP1P2 at P1 and
P2 respectively; (V) the norms of Ωi1 and Ωi2 are
2Ω, that is, gi1j1Ωi1Ωj1 = gi2j2Ωi2Ωj2 = 2Ω, where
gi1j1 and gi2j2 are the contra-variant metric tensors
at P1 and P2 respectively; (VI) the second covari-
ant derivatives Ωi1j1(P1, P2) and Ωi2j2(P1, P2) are
equal to ∂Ωi1/∂xj1 − Γa1

i1j1
Ωa1 and to ∂Ωi2/∂xj2 −

Γa2
i2j2

Ωa2 respectively, where the Christoffel symbols
are taken at P1 and P2 respectively, as suggested
by the notation; (VII) Ωi1j2(P1, P2) = ∂Ωi1/∂xj2 ,
Ωi2j1(P1, P2) = ∂Ωi2/∂xj1 , and Ωi1j2k2(P1, P2) =
∂Ωi1j2/∂xk2 − Γa2

j2k2
Ωi1a2 ; (VIII) Ωi1(P1, P2) =

gi1j1Ωj1 and Ωi2(P1, P2) = gi2j2Ωj2 ; (IX) in flat
space-time with Cartesian coordinates xi,

Ω(P1, P2) =
1
2
ηij(xi2 − xi1)(xj2 − xj1), (7)

where ηij = diag(1, 1, 1,−1) and xi1 , xi2 are the
coordinates of P1 and P2 respectively; (X) for quasi-
Minkowskian metrics, i.e. for metrics having the form

gij(xk) = ηij + γij(xk), (8)

with γij(xk) = O(ε2) ¿ 1, like for the metric about
the Earth assumed in this paper, Ω(P1, P2) takes the
form

1
2
ηij∆xi∆xj +

1
2
∆xi∆xj

∫

C
γijdω +O(ε3), (9)

where ∆xi = xi2 − xi1 . Here C is the straight line
joining P1 and P2, i.e. xi = (1 − ω)xi1 + ωxi2
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(0 ≤ ω ≤ 1), and ε is a small dimensionless param-
eter such that ε2 is of the order of v2 and U , where
v is in our case the characteristic Classical 3-speed of
the satellites in orbit about the Earth with respect to
the Earth, and U the Newtonian potential of the Earth
in the neighborhood of the Earth. Thus, the first part
in (9) is the world-function in (7), and the remainder
is O(ε2) (note that we are now taking c = G = 1);
and (XI) the world-functions in (7) and (9), so as their
derivatives, can be expanded about P1 and/or P2 with
the usual methods of approximation without abandon-
ing the facilities of tensor calculus.

Since −Ωi1(P1, P2) is the Minkowskian 4-
position vector of P2 with respect to P1 for the par-
ticular case in (7), and analogously, −Ωi2(P1, P2) is
the 4-position vector of P1 with respect to P2, we
are entitled to consider −Ωi1 and −Ωi2 as 4-position
vectors for the more general case in (9). In fact,
when P1 and P2 occur in the vicinity of the Earth,
the heads of −Ωi1 and −Ωi2 can be thought as ”not
too far apart” from P2 and P1 respectively, provided
that ”far apart” is meant in the 4-Euclidean sense, that
is to say, with the 4-Euclidean topology associated
to Minkowskian space. Likewise, the second-order
covariant derivatives yield relative velocities, and the
third-order derivatives, relative accelerations [31].

3 The Equations of Motion
Let E be a space-time with metric gij(xk), i.e.
gij(xα, t), and world-function Ω(xk1 , xk2). Let
(λk1

(α)(s1), λk1

(4)(s1)) be an orthogonal tetrad of unit
vectors Fermi-transported along a time-like (base)
world line, let us say M1(xk1(s1)), with λk1

(4)(s1) =
Ak1(s1) = dxk1/ds1, where s1 is the proper time of
C1, i.e. of the object whose world-line is M1, so that
A41(s1) = λ41

(4)(s1) = dt/ds1; let P2(xk2) be an arbi-
trary event in a time-like geodesic, say M2(xk2(s2)),
where s2 is the proper time of C2, the object whose
world-line is M2; and let (X(α), s1) = (X(α), s1) be
the Fermi coordinates of P2(xk2) with respect to C1

(see e.g. [30]). If b1(s1), the first curvature of M1,
is null for all s1; if Ωi1j1l1 and Ωi1j1l2 are the third-
order covariant derivatives of Ω(xk1 , xk2) taken as in-
dicated by the indices, i.e. with respect to xi1 , xj1

and xl1 , in the first case, and with respect to xl2 for
the third derivative in the second case; if, furthermore,
Hk2 = Ak2(ds2/ds1) with Ak2 = dxk2/ds2, and fi-
nally, if

dL(α)/ds1 = χL(α) + Ωi1j1l2λ
i1
(α)A

j1H l2

+Ωi1j2l2λ
i1
(a)H

j2H l2 , (10)

with L(α) = Ωi1j2λ
i1
(a)H

j2 , where Ωi1j2 are the
second-order covariant derivatives of Ω(xk1 , xk2),
first with respect to xi1 , and then with respect to xj2 ;
χ = (d2s2/ds2

1)/ (ds2/ds1), and Ωi1j1l2 , Ωi1j2l2 are
the third-order covariant derivatives whose interpre-
tation is similar to those of the previous derivatives,
then Synge’s equations for C2 in terms of the Fermi
coordinates associated to M1 read [30]

d2X(α)

ds2
1

= −Ωi1j1l1λ
i1
(α)A

j1Al1

−Ωi1j1l2λ
i1
(α)A

j1H l2 − dL(α)

ds1
. (11)

According to Synge the calculations to integrate
Equations (11) become unmanageable. However, they
become much simpler, and probably useful, if the fol-
lowing assumptions are considered to be reasonable
in order to determine the relative motion of S2 with
respect to S1: i) the structure of the space-time about
the Earth is that of the post-Newtonian approximation
of the Earth Schwarzschild field. In ECI coordinates
the metric of this field is

gij = ηij + γij , (12)

where

γαβ =
2m

r

xαxβ

r2
+O(ε2),

γα4 = O(ε3), γ44 =
2m

r
+O(ε2), (13)

m being the mass of the Earth measured in seconds
(c = G = 1) and r2 = xαxα; ii) ds2/ds1 = 1
approx.; and iii) L2 is nearly parallel to L1 (phys-
ically this means that the relative speed of S2 with
respect to S1 is small as compared to c); for in that
case (i) λk1

(α)(s1) becomes an inertial guided system
co-moving with S1, i.e.,

λµ1

(α)(s1) = δµ
α, λ41

(α)(s1) = vα1 , λµ1

(4)(s1) = vµ1 ,

λ41

(4)(s1) = 1 +
1
2
γ44(xα1) +

1
2
(v1)2, (14)

where vα1 = Aα1 = dxα1/ds1 and (v1)2 = vα1vα1 ,
and (ii) the space Fermi coordinates of P2 with respect
to λi1

(α)(s1), X(α2), become the quasi-Cartesian coor-
dinates of S2 with respect to S1 at s1. Further, if the
coordinates of the events P2, P2′ ∈ L2 with respect to
λi1

(α)(s1) and λi1
(α)(s1 + ds1) are X(i2) ≡ (X(α2), s1)

and X(i2) + dX(i) ≡ (X(α2) + dX(α), s1 + ds1) re-
spectively, and P1 is the foot at L1 of the geodesic
drawn from P2 to cut orthogonally L1 (or, in other
words, if P2 is in the instantaneous local space of
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P1 ∈ L1), then the structure of the space-time as seen
by S1 at s1 is given by

2Ω(P2, P2′) = g(ij)dX(i)dX(j), (15)

with
g(αβ) = δαβ + 2h(α1β2) +O(ε2),

g(α4) = O(ε3),

g(44) = −1 + 2h(4141) + 2h(4142) +O(ε2), (16)

where

h(α1β2) =
3
2
X(µ2)X(ν2)

∫ 1

0
(1− u)uS(αβµν)du,

h(4141) =
3
2
X(µ2)X(ν2)

∫ 1

0
(1− u)2S(44µν)du,

h(4142) =
3
2
X(µ2)X(ν2)

∫ 1

0
(1−u)uS(44µν)du, (17)

the integrals being taken along the straight line C de-
scribed above (xi(u) = xi1(1− u) + xi2u);

S(abcd) = S(abcd)(x
i(u))

= Sjklm(xi(u))[λj
(a)λ

k
(b)λ

l
(c)λ

m
(d)](x

i(u)), (18)

where λi
(a)(x

i(u)) are the tetrads obtained by parallel

transport from λi1
(a) along C according to the metric

(12), and

Sjklm(xi(u)) = −1
3
(Rjlkm + Rjmkl)(xi(u)), (19)

where Rjklm(xi(u)) is the Riemann tensor of (12) at
xi(u).1

In fact, under these hypothesis Equations (11) be-
come

d2X(α2)

ds2
1

= −Ω(α14141) − 2Ω(α14142) − Ω(α14242),

(20)
where

Ω(α14141) = −Ω(α14142)

= −X(γ2)
∫ 1

0
(1− u)2R(α4γ4)du,

Ω(α14242) = 2X(γ2)
∫ 1

0
u2R(α4γ4)du

1The quasi-Cartesian angle directions do not differ from the
Euclidean angles (see the components of λµ1

(α) in (14)). The quasi-
Cartesian coordinates differ from the Cartesian coordinates only
in that, instead of computing the range from S1 to S2 by means of
the principal terms in (15), thus getting Cartesian coordinates, the
range required to derive quasi-Cartesian coordinates is computed
by means of (15)-(19).

−X(µ2)X(ν2)
∫ 1

0
(1− u)u2 ∂R(µ4ν4)

∂xα
du, (21)

and

R(α4γ4) = −m

(
3xα(u)xγ(u)

r(u)5
− δαγ

r(u)3

)
, (22)

with r(u)2 = xδ(u)xδ(u). These are the post-
Newtonian equations for the relative motion of S2

with respect to S1 that are valid even when S2 is far
from S1.

In this regard, let us note that h(α1β2) in (17) need
not be used to derive (20), nor γαβ in (13) to de-
rive (22). Note, finally, that the equations (20) reduce
to the equations of the geodesic deviation for nearby
satellites. These equations are

d2X(α)

ds2
1

= −R(α4β4)X
(β), (23)

with R(α4β4) evaluated at xk1(s1).

4 Numerical Simulations
To show the qualitative behavior of the solutions of
(20), it is enough to assume that S1 and S2 are in
coplanar circular orbits, taking care of not exceeding
two time limits, which are unavoidable and character-
istics of each simulation: the first is an upper bound
that fix the mathematical validity of the equations in
each case; the second is the upper bound from which
the relative position of S2 with respect to S1 cannot
be materialized by S1. Otherwise, the fact is that the
differences between the Newtonian relative motions
and the solutions of (20) for arbitrary orbital motions,
so as between the solutions of (23) and those of the
linear approximation to (20), which are only valid for
small differences of orbital radii and short time inter-
vals, are significant enough, and straightforwardly an-
alyzable. The reason is that, whatever the orbital ele-
ments are, those differences essentially depend on the
semi-major axis and eccentricities of the orbits of S1

and S2.
Under the restrictions mentioned above, (23) be-

comes

d2X(1)

ds2
1

=
m

r3
1

[(
3 cos2 M1 − 1

)
X(1)

+(3 cosM1 sinM1)X(2)
]
,

d2X(2)

ds2
1

=
m

r3
1

[
(3 cosM1 sinM1)X(1)

+
(
3 sin2 M1 − 1

)
X(2)

]
; (24)
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the linear approximation to (20) for short time inter-
vals and small radial distances is

d2X(1)

ds2
1

=
m

r3
1

(
1− 7

4
η
)[(

3 cos2 M1 − 1
)

X(1)

+(3 cos M1 sinM1)X(2)
]
,

d2X(2)

ds2
1

=
m

r3
1

(
1− 7

4
η
)[

(3 cosM1 sinM1)X(1)

+
(
3 sin2 M1 − 1

)
X(2)

]
, (25)

and the linear equations corresponding to (20) are

d2X(1)

ds2
1

= m

[ ∫ 1

0

[(
3r2

1(1− u)2 cos2 M1

+6r1r2(1− u)u cosM1 cosM2

+3r2
2u

2 cos2 M2

)/(
r2
1(1− u)2 + 2r1r2(1− u)u

cos(M1 −M2) + r2
2u

2
)5/2

−1
/(

r2
1(1− u)2 + 2r1r2(1− u)u cos(M1 −M2)

+r2
2u

2
)3/2]

(1− 2u + 3u2)du

]
X(1)

+m

[ ∫ 1

0

[(
3r2

1(1− u)2 sinM1 cosM1

+3r1r2(1− u)u sin(M1 + M2)

+3r2
2u

2 sinM2 cosM2

)/(
r2
1(1−u)2+2r1r2(1−u)u

cos(M1 −M2) + r2
2u

2
)5/2]

(1− 2u + 3u2)du

]
X(2),

d2X(2)

ds2
1

= m

[ ∫ 1

0

[(
3r2

1(1− u)2 sinM1 cosM1

+3r1r2(1− u)u sin(M1 + M2)

+3r2
2u

2 sinM2 cosM2

)/(
r2
1(1−u)2+2r1r2(1−u)u

cos(M1 −M2) + r2
2u

2
)5/2]

(1− 2u + 3u2)du

]
X(1)

+m

[ ∫ 1

0

[(
3r2

1(1− u)2 sin2 M1

+6r1r2(1− u)u sinM1 sinM2

+3r2
2u

2 sin2 M2

)/(
r2
1(1− u)2 + 2r1r2(1− u)u

cos(M1 −M2) + r2
2u

2
)5/2

−1
/(

r2
1(1− u)2 + 2r1r2(1− u)u cos(M1 −M2)

+r2
2u

2
)3/2]

(1− 2u + 3u2)du

]
X(2), (26)

where X(1), X(2) are the plane orbital coordinates;
M1 = M1(s1) is the mean anomaly of S1 at s1;
r2
1 = xδ1xδ1 ; r2

2 = xδ2xδ2 as before, and η =
((r2 − r1)/r1) ¿ 1.
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Figure 3: Relative orbits from S1.
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Figure 4: ECI centered orbits.

We note with respect to (25) that η does not
depend on s1. It can also be verified, as a mat-
ter of checking, that if η = 0, and the initial con-
dition are X(1)0 = X(2)0 = 0, (dX(1)/ds1)0 =
(dX(2)/ds1)0 = 0, then X(1)(s1) = X(2)(s1) = 0,
as expected.

Finally, we note that when S1 and S2 are in oppo-
sition with respect to the Earth, then the line integrals
in (26) become singular, since then cos(M1 −M2) =
−1, and there is a value of u (u = r1/(r1 + r2)) for
which the denominators in the integrands are zero.
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Therefore, from the mathematical point of view
the equations in (26) are valid until the instant at
which that configuration is reached. But this implies
that these equations are always applicable, since fortu-
nately that limit is far beyond the physical limits men-
tioned above, which are due to the Earth size (as is
known, these limits correspond to the time intervals
within which S2 is in the line of sight of S1, so that
the largest limit is reached when S1 is geostationary).
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Figure 5: ECI distance from S2-New. Orb. to S2-p-
New. Orb.
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Figure 6: Relative orbits from S1.

Since c = G = 1 in all the expressions and equa-
tions derived in the paper, the data involved in the sim-
ulations corresponding to Figs. 3-8 have been intro-
duced in seconds. In particular, m has been assumed
to amount 1.479 · 10−11 sec. Figs. 3-5 have been gen-
erated by means of (26) for r1 = 14.002 · 10−2 sec,
X1

0 = r2 − r1 = −3 · 10−3 sec, and X2
0 = 0 sec, for

the time interval [0, 400000] sec. Figs. 6-8 have been

−0.05 0 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

x1

x2

N.Abs.Orb.
p−N.Abs.Orb.

Figure 7: ECI centered orbits.
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Figure 8: ECI distance from S2-New. Orb. to S2-p-
New. Orb.

generated for r1 = 4.0 · 10−2 sec, X1
0 = r2 − r1 =

−8 · 10−4 sec, and X2
0 = 0 sec, for the time interval

[0, 50000] sec. Figs. 3 and 6 show the Newtonian and
post-Newtonian relative orbits of S2 with respect to
S1. The respective ECI orbits are shown in Figs. 4,
7, and to generate them, the transformations from the
inertial local system given in (14) have been used to
the respective order of approximation. In comparing
Figs. 3, 6 with Figs. 4, 7 it can be seen, particularly
when these last are sequentially plotted, that the small
loops in Figs. 3, 6 correspond to delays and advances
of the post-Newtonian motion of S2 with respect to
the Newtonian prediction. Finally, it can be deduced
from Figs. 4, 7 and Figs. 5, 8 the following fact: the
integrals in (21) manifest themselves in the oscillatory
motion, i.e. in the tidal motion, of the post-Newtonian
ECI orbit of S2 about its Newtonian orbit.
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5 Conclusion
The calculations to integrate (20) are certainly man-
ageable, and so, feasible to increment the accuracy of
the APT laser systems, provided that, to keep consis-
tency, the initial data are obtained by means of post-
Newtonian Geolocation formulae or by close track-
ing. In fact, the main characteristic of (20) is that
they include the Earth tidal effects and reduce to the
equations in (26), (25), (24), and (23) successively
when S2 is respectively closer and closer, up to be,
finally, nearby S1. This is the reason we can expected
that the differences between the Newtonian and post-
Newtonian predictions for S1 may be very large ac-
cording to (20), even up to tens of meters, as Figs. 5,
8 suggest; therefore, numerical integration of (20) and
error analysis are required to provide accurate quanti-
tative predictions.
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