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Abstract:In this article we have elaborated the numerical schemes of reduction methods for approximate
solution of system of singular integro-differential equations when the kernel has a weak singularity. The
equations are defined on the arbitrary smooth closed contour of complex plane. We suggest the numerical
schemes of the reduction method over the system of Faber-Laurent polynomials for the approximate
solution of weakly singular integro- differential equations defined on smooth closed contours in the
complex plane. We use the cut-off technique kernel to reduce the weakly singular integro- differential
equation to the continuous one. Our approach is based on the Krykunov theory and Zolotarevski results.
We have obtained the theoretical background for these methods in classical Lebesgue spaces.
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1 Introduction

Singular integro-differential equations (SIDE)
model many problems in physics, elasticity the-
ory, aerodynamics, mechanics, etc. [1]-[9].

The problem of approximate solution of sys-
tems of SIDE was studied in many scientific arti-
cles [10]-[18].

At the same time the reduction method ap-
plied to the approximative solution of systems of
SIDE is not studied enough, particularly the case
when the equations are defined on a close contour
of the complex plain different from the standard
one(unit circle:Γ0).

It is known that the exact solution for SIDE
can only be found in particular cases and even
in these cases the exact solution is expressed
by multiple singular integrals, their calculation
presents many theoretical and practical difficul-

ties. That is why the necessity exists to elaborate
approximate methods for solving SIDE with the
corresponding theoretical background. The first
results in this direction have been obtained for
SIDE on a standard contour: segment or unity cir-
cle. [10]-[18] Transition to another contour, dif-
ferent from the standard one, implies many dif-
ficulties. It should be noted that the conformal
mapping of SIDE from the arbitrary contour to
the standard one using some reflection function
does not solve the problem, but only it makes
more difficult: a nucleus with a weak singular-
ity appears, so the method of mechanical quadra-
tures cannot be applied.

We would like to mention only the scien-
tific articles [24]-[25] which study the reduction
method applied to the Singular Integral Equa-
tions(SIE), defined on the smooth closed con-
tour (different from a standard one), where the
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theoretical background of reduction method has
been obtained in Hölder spaces. In case when
the SIE are defined on the unit circle the re-
duction method was studied in monograph [26]
and scientific papers [27]-[28] where the the-
oretical background of SIE has been obtained
in Lebesgue spacesLp(Γ0) and Holder spaces
Hβ(Γ0)(Γ0 is unit circle). The case of SIDE of
reduction methods has been studied in [29]. The-
oretical background has been obtained in Holder
spaces.

Theoretical background of the collocation
for approximate solution of SIDE in Höder
spaces and Lebesgue spaces was proved in [22]-
[23]. The equations are given on a closed contour
satisfying some conditions of smoothness. The
stability of collocation methods was obtained in
[20]. The numerical results can be found in [21].

In the present work the numerical schemes
of reduction methods for approximative solution
of systems of weakly SIDE have been obtained
on the Faber-Laurent polynomial system, gen-
erated by an arbitrary smooth closed contour.
The theoretical background has been obtained in
Lebesgue spaces.

2 Definitions of Function
Spaces and Notations

Let Γ be a smooth closed contour bounding a
simply connected domainD+ that contains the
pointz = 0, and letD− = C \D+

∪ Γ.

Let functionw = Φ(z) apply conformably
D− in the domain|w| > 1 so that
Φ(∞) = ∞, lim

z→∞
z−1Φ(z) = α > 0, andz =

φ(w) is the inverse function of functionΦ(z).

And letw = F (z) apply conformablyD+ in
the domain|w| > 1, so that
F (0) = ∞, lim

z→0
zF (z) = β > 0, andz = ϕ(w)

is the inverse function.

In the area of the infinite point the function

Φ(z) will have the decomposition:

Φ(z) = αz + α0 +
α1

z
+
α2

z2
+ ...,

and the inverse functionz = φ(w) = γw + γ0 +
γ1
w
+ γ2

w2 + ..., |w| > 1, whereγ = 1
α
> 0.

The functionF (z) in the area of the point
zero will have the decomposing:

F (z) = βz−1 + β0 + β1z + β2z
2 + ...,

and the inverse function will have a decomposing
that is obtained in the same way.

Suppose in the future thatα = 1, β = 1. As
is proved in the monograph [30], this supposition
doesn’t limit the general case.

With Φk(z)(k = 0, 1, 2, ...) mark the poly-
nomial that represents the totality of members
with non-negative power ofz in the Laurent de-
composition of the function[Φ(z)]k, and with
Fk(1/z)(k = 1, 2, ...)− the polynomial that rep-
resents the totality of members with negative
power ofz in Laurent expansion of the function
[F (z)]k. PolynomialsΦk(z)(k = 0, 1, 2, . . . , )

and Fk(1/z)(k = 1, 2, . . . , ) are called Faber
polynomials for the contourΓ for the powers of
z and 1/z, z ∈ Γ , respectively. LetSn be the
operator that takes each continuous functiong(t)

on Γ to thenth partial sum of its Faber-Laurent
polynomials (see [30]):

g(t) =
∞
∑

k=0

gkΦk(t) +
∞
∑

k=1

g−kFk(1/t), (1)

wheregk(k = 0,±1, . . .) is calculated from:

gk =
1

2πi

∫

|τ |=ρ

g(φ(τ))τ−k−1dτ, (k = 0, 1, 2, . . .), (2)

g−k =
1

2πi

∫

|τ |=ρ

g(ϕ(τ))τ−k−1dτ, (k = 1, 2, . . .). (3)

Mark with Sn the operator that puts in cor-
respondence to each functiong(t) defined onΓ
partial sum of ordern of Faber-Laurent series:

(Sng)(t) =
n
∑

k=0

gkΦk(t) +
n
∑

k=1

g−kFk(1/t). (4)
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We assume that the functionz = ψ(w) has
a second derivative, satisfying on unit circle the
Hölder condition with some parameterq (0 <

ν < 1); the class of such contours is denoted by
C(2; ν). [19]

In the complex space[Lp(Γ)]m(1 < p < ∞)

of vector functions (v.f.)

g(t) = (g1(t), . . . , gm(t));

gj(t) ∈ Lp(Γ), j = 1, m summarized onΓ on
powerp, 1 < p <∞ and with the norm

||g|| =
m
∑

k=1

||gk||p; ||gk||p =





1

l

∫

Γ

|gk|
p(τ)|dτ |





1

p

,

wherel is the length ofΓ,

We denote by[H(q)
β ]m, 0 < β ≤ 1, the Ba-

nach space ofm−dimensional vector functions,
satisfying onΓ the Holder condition with degree
β.

The norm is defined as∀g(t) =

{g1(t), . . . , gm(t)}

||g||β =
m
∑

1

(||g||C +H(gk, β)),

||g||C = max
C

|g(t)|,

H(g, β) = sup
t′ 6=t′′

{|t
′

−t
′′

|
−β

|g(t
′

−g(t
′′

|}, t
′

, t
′′

∈ Γ.

Definition 1 A factorization of non-singular ma-
trix G(t) relative to the contourΓ is a represen-
tation ofG(t) in the form

G(t) = G+∆(t)G−

where G± are matrix functions analytic and
non-singular inD±, satisfying detG±

6= 0,

respectively,∆(t) = diag{tκ1, tκ2, . . . , tκm
},

and κ1, κ2, . . . , κm are integer. The numbers
κ1, κ2, . . . , κm are called left partial indexes
[36]

3 Problem formulation
In the complex space[Lp(Γ)]m we consider the
singular integro-differential equations (SIDE)

(Mx ≡)
q

∑

r=0

[Ãr(t)x
(r)(t)+B̃r(t)

1

πi

∫

Γ

x(r)(τ)

τ − t
dτ+

+
1

2πi

∫

Γ

Kr(t, τ)

|t− τ |γr
· x(r)(τ)dτ ]

= f(t), t ∈ Γ, (5)

where0 < γr < 1, Ãr(t), B̃r(t) are given ma-
trix functions(m.f.), f(t) is given v.f. which
belong to[Hβ(Γ)]m;andKr(t, τ) (r = 0, q) is
m.f. which belong to[Hβ(Γ)]m by both variables.
x(0)(t) = x(t) is the required v.f.;x(r)(t) = drx(t)

dtr

(r = 1, q); (q is a natural number) which belong
to [Hβ(Γ)]m.

Using the Riesz operatorsP = 1
2
(I + S),

Q = I −P , (whereI is the identity operator, and
S is the singular operator (with Cauchy kernel)),
we rewrite the system of Eq. (5) in the following
form convenient for consideration:

(Mx ≡)
q

∑

r=0

[Ar(t)(Px
(r))(t)+Br(t)(Qx

(r))(t)+

+
1

2πi

∫

Γ

Kr(t, τ)

|t− τ |γ
· x(r)(τ)dτ ]

= f(t), t ∈ Γ, (6)

whereAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −

B̃r(t), r = 0, . . . , q.

We need that the functionx(q)(t) belongs to
[Hβ(Γ)]m. From this condition follows that

x(k) ∈ [Hβ(Γ)]m, k = 0, . . . , q − 1.

We search for the solution of equation (5) in the
class of functions, satisfying the condition

1

2πi

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, q − 1. (7)
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We introduce the denotation ”the problem
(5)-(7)” for the SIDE (5) together with the con-
ditions (7).

In order to reduce the schemes of reduction
methods we introduce a new integro- differential
equation from the initial equation. The kernel
with the weak singular peculiarities is substituted
by continue kernel. Consequently we solve the
approximative equation:

(Mρx) ≡)(M0x)(t)+
1

2πi

q
∑

r=0

∫

Γ
Kr,ρ(t, τ)x

(r)(τ)dτ

= f(t), t ∈ Γ. (8)

whereKr,ρ(t, τ) =



















Kr(t, τ)

|t− τ |γr
when |t− τ | ≥ ρ;

Kr(t, τ)

ργr
when |t− τ | < ρ;

(9)
ρ is a arbitrary positive number,M0 is a charac-
teristic part of S which corresponds system (5).
And so the equation (5) is changed on the new
equation (8).

4 Auxiliary results

We formulate one result from [31],[32] establish-
ing the equivalence (in sense of solvability) of
problem (5)-(7) and system of SIE. We use this

result for proving Theorem 7. V.F.
dq(Px)(t)

dtq

and
dq(Qx)(t)

dtq
can be represented by integrals of

Cauchy type with the same densityv(t) :

dq(Px)(t)

dtq
=

1

2πi

∫

Γ

v(τ)

τ − t
dτ, t ∈ F+,

dq(Qx)(t)

dtq
=
t−q

2πi

∫

Γ

v(τ)

τ − t
dτ, t ∈ F−.



























(10)
Using the integral representation (10) we reduce
the problem (5)-(7) to the equivalent (in sense of
solvability) system of SIE

(Υv ≡)C(t)v(t) +
D(t)

πi

∫

Γ

v(τ)

τ − t
dτ+

1

2πi

∫

Γ

h(t, τ)

|τ − t|γ
v(τ)dτ = f(t), t ∈ Γ, (11)

for unknown v.f.v(t) where

C(t) =
1

2
[Aq(t) + t−qBq(t)],

D(t) =
1

2
[Aq(t)− t−qBq(t)], (12)

h(t, τ) =
1

2
[Kq(t, τ) +

F
Kq(t, τ)τ

−n
]

−
1

2πi

∫

Γ

[

Kq(t, t1)−Kq(t, t1)t
−n
1

] dt1

t1 − τ

+
q−1
∑

j=0

[

Aj(t)M̃j(t, τ) +

∫

Γ

Kj(t, t1)M̃j(t1, τ)dt1





−

q−1
∑

j=0

[

Bj(t)Ñj(t, τ) +

∫

Γ

Kj(t, t1)Ñj(t1, τ)dt1



 , (13)

whereM̃j(t, τ), Ñj(t, τ) j = 0, . . . , are Hölder
m.f. An obvious form for these functions is given
in [32]. By virtue of the proprieties of the M.F.
M̃j(t, τ), Ñj(t, τ), Kj(t, τ), Aj(t), Bj(t), j =

0, . . . , q the functionh(t, τ) is a continuous func-
tion in both variables.

Lemma 2 The system of SIE (11) and problem
(5)-(7) are equivalent in the sense of solvability.
That is, for each solution v.f.v(t) of system of
SIE (11) there is a solution of problem (5)-(7),
determined by formulae

(Px)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)[(τ − t)q−1
×

log
(

1−
t

τ

)

+
q−1
∑

k=1

α̃kτ
q−k−1tk]dτ,
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(Qx)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)τ−q[(τ − t)q−1
×

log
(

1−
τ

t

)

+
q−2
∑

k=1

β̃kτ
q−k−1tk]dτ, (14)

where(̃αk =
k−1
∑

j=0

(−1)jCj
q−1

k − j
, k = 1, . . . , q − 1,

β̃k =
q−1
∑

j=k+1

(−1)jCj
q−1

j − k
, k = 1, . . . , q − 2 and

C
j
q−1 are the binomial coefficients.) On the other

hand, for each solution v.f.x(t) of the problem
(5)-(7) there is a solution v.f.v(t)

v(t) =
dq(Px)(t)

dtq
+ tq

dq(Qx)(t)

dtq
,

to the system of SIE (11). Furthermore, for
linearly-independent solutions of (11), there are
corresponding linearly-independent solutions of
the problem (5)-(7) from (14) and vice versa.

In formulas (14) bylog (1− t/τ) we understand
the branch which vanishes ast = 0 and by
log (1− τ/t) the branch which vanishes ast =

∞.

Define[
◦

W
(q)

p ]m as

[
◦

W
(q)

p ]m =
{

g ∈ [Lp(Γ)]m : g(q) ∈ [Lp(Γ)]m ,

1

2πi

∫

Γ

g(τ)τ−k−1dτ = 0,

k = 0, . . . , q − 1} .

The norm in[
◦

W
(q)

p ]m is determined by the equal-
ity

[||g||p,q]m = [||g(q)||Lp
]m.

We denote by[Lp,q]m the image of the space
[Lp]m with respect to the mapP +t−qQ equipped
with the norm of[Lp]m. We formulate Lemma 3
and Lemma 4 from [33]. We use these lemmas to
prove the convergence theorems.

Lemma 3 The differential operatorDq : [
◦

W
(q)

p

]m → [Lp,q]m, (Dqg)(t) = g(q)(t) is continu-
ously invertible and its inverse operatorD−q :

[Lp,q]m → [
◦

W
(q)

p ]m is determined by the equality

(D−qg)(t) = (N+g)(t) + (N−g)(t),

(N+g)(t) =
(−1)q

2πi(q − 1)!
×

∫

Γ

(Pg)(τ)(τ − t)q−1 log(1−
t

τ
)dτ,

(N−g)(t) =
(−1)q−1

2πi(q − 1)!
×

∫

Γ

(Qg)(τ)(τ − t)q−1 log(1−
τ

t
)dτ.

From Lemma 3 it follows

Lemma 4 The operator B : [
◦

W
(q)

p ]m →

[Lp]m, B = (P + tqQ)Dq is invertible and

B−1 = D−q(P + t−qQ).

4.1 Estimates for weakly singular in-
tegral operators

Lemma 5 Let h(t, τ) ∈ C(Γ × Γ), andψ(t) ∈

Lp(Γ), 1 < p < ∞. Then the functionH(t) =
1

2πi

∫

Γ

h(t, τ)

|τ − t|γ
ψ(τ)dτ, satisfies the inequality

||H||p ≤ d1
1
||ψ||p,

1

p
+

1

q
= 1,

||(·)||p =

∣

∣

∣

∣

∣

∣

1

l

∫

Γ

|(·)(τ)|pdτ

∣

∣

∣

∣

∣

∣

1/p

. (15)

The proof can be found in [34].

Lemma 6 Let the assumptions of Lemma 5 be
satisfied; then||χρ||p ≤ d2ρ

(1−γ)/q
||ψ||p, where

χρ =
1

2πi

∫

Γ

[

h(t, τ)

|τ − t|γ
− hρ(t, τ)

]

ψ(τ)dτ,
1

p
+

1

q
= 1.

The proof of this lemma can be found in [34].
1By d1, d2, . . . , we denote the constants.
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5 Convergence Theorem

Weseek an approximate solution of problem (5)-
(7) in the form of a polynomial

xn,ρ(t) = tq
n
∑

k=0

αk,ρΦk(t)+

n
∑

k=1

α−k,ρFk(
1

t
), t ∈ Γ, (16)

with unknown numerical v.f. αk,ρ = k =

−n, . . . , n. The numerical v.f. αk,ρ are found
from the condition:

Sn[Mxn,ρ − f ] = 0,

Sn[Mxn,ρ] = Snf, (17)

for the unknown v.f. xn,ρ(t) of the form (16).
Note that Eq. (17) is a system ofm(2n + 1) lin-
ear algebraic equations(SLAE) withm(2n + 1)

unknownsαk,ρ k = −n, . . . , n.

Note that the functions of this system is de-
termined by the Faber- Laurent coefficients of the
M.f Ar(t) andBr(t) :

1

2πi

∫

Γ

Kr,ρ(t, τ)Φk(τ)dτ, k = 0, . . . , n,

1

2πi

∫

Γ

Kr,ρ(t, τ)Fk(
1

τ
)dτ,

k = 1, . . . , n, r = 0, . . . , q

In what follows, we give a theoretical back-
ground of the reduction method, i.e., derive con-
ditions providing the solvability (starting from
some indicesn) of (5) and the convergence of the
approximate solutions (‘16) to the exact solution

Theorem 7 Let the following conditions be sat-
isfied:

1. m.f. Ar(t), Br(t) and Kr, (t, τ), r =
0, . . . , q, belong to the space[H(α)]m;

2. det[Aq(t)]det[Bq(t)] 6= 0;

3. the left partial indexesAq(t)t
qBq(t) of m.f.

are equal to zero;

5) m.f. [Kr(t, τ)] (r = 0, . . . , q) ∈ [Hβ]m(Γ×

Γ), 0 < β ≤ 1, functionf(t) ∈ [C(Γ)]m,

Γ ∈ C(2; ν);

6) the operatorM : [
◦

W
(q)

p ]m → [Lp(Γ)]m is
linear and invertible;

Then starting from indicesn ≥ n1 and ρ small
enough the SLAE (17) of reduction method is
uniquely solvable. The approximate solutions
xn,ρ(t) given by formula (16) converge in the

norm of space[
◦

W
(q)

p ]m to the exact solution
(x(t)) of problem (5)-(7) in sense of:

lim
n→∞ ρto0

||x− xn,ρ||
m
p,q = 0. (18)

Proof Using the conditions of Theorem 7 we

have that the operatorM : [
o

W p,q] → [Lp(Γ)]m
is invertible. We estimate the perturbation ofM
depending onρ. Using Lemma 6 and the relation
Mρ =M0 +Kρ we obtain

||M −Mρ|| = O(ρ(1−γ)/q), (19)

Let us show that the operatorMρ is invertible for
sufficiently small valuesρ. Using the representa-
tionMρ = M [I −M−1(M −Mρ)] and (19), we
obtain from Banach Theorem that the inverse op-
eratorM−1

ρ = [I−M−1(M−Mρ)]
−1M−1 exists.

The following inequalities hold:

||M−1
ρ || ≤

||M−1
||

1− q
,

||M−1
−M−1

ρ || ≤ d11ρ
(1−γ)/q

||M−1
||. (20)

The SLAE (17) of the reduction method for SIDE
(5) for γ ∈ (0; 1) is equivalent to the operator
equation

SnMρSnxn,ρ ≡ SnM0Snxn,ρ+

Sn

q
∑

r=0







1

2πi

∫

Γ

Kr,ρ(t, τ)x
(r)
n,ρ(τ)dτ






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= Snf, (21)

whereKr,ρ(t, τ), (r = 0, . . . , q) is defined by for-
mula(9).Using the integral presentation (10), the
equation (21) is equivalent to the operator equa-
tion

UnΥρUnvn,ρ = Unf, (22)

where operatorΥρ is defined in (11), substituting

Υ byΥρ and
h(t, τ)

|τ − t|γ
by hρ(t, τ) (wherehρ(t, τ)

is calculated by formula (13)). The equation (22),
represents the reduction method for the system of
SIE

Υρvρ = f, vρ(t) ∈ Lp(Γ). (23)

We should show that ifn (≥ n1) is large enough
andρ small enough the operatorUnMρUn is in-
vertible. The operator acts from the subspace

[
◦

Xn]m =
{

tq
n
∑

k=0
ξk,ρt

k+
−1
∑

k=−n
ξk,ρt

k
}

(the norm

as in[
◦

W
(q)

p ]m) to the subspace

[Xn]m =
n
∑

k=−n

rkt
k, t ∈ Γ.

(the norm as in[Lp(Γ)]m.)

Using formulas (10) the
dq(Pxn,ρ)(t)

dtq
and

dq(Qxn,ρ)(t)

dtq
can be represented by Cauchy type

integrals with the same densityvn,ρ(t) :

dq(Pxn,ρ)(t)

dtq
=

1

2πi

∫

Γ

vn,ρ(τ)

τ − t
dτ, t ∈ F+

dq(Qxn,ρ)(t)

dtq
=
t−q

2πi

∫

Γ

vn,ρ(τ)

τ − t
dτ, t ∈ F−.



























(24)
Using the formulas

(Px)(r)(t) = P (x(r))(t), (Qx)(r)(t) = Q(x(r))(t),

and relations (10) we obtain from (24)

vn,ρ(t) =
n
∑

k=0

(k + q)!

k!
tkξk,ρ+

(−1)q
n
∑

k=1

(k + q − 1)!

(k − 1)!
t−kξ−k,ρ.

We obtain from previous relation thatvn,ρ(t) ∈

Xn, t ∈ Γ. The reduction method for system
of SIE was considered in [35] where sufficient
conditions for solvability and convergence of this
method were obtained. From (24), Lemma 2 and
vn,ρ(t) ∈ Xn we conclude that if functionvn,ρ(t)
is the solution of the equation (22) then the func-
tion xn,ρ(t) is the discrete solution for the system
UnMUnxn,ρ = Unf and vice versa. We can de-
termine the functionvn,ρ(t) from relations (14):

(Pxn,ρ)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

vn,ρ(τ)[(τ − t)q−1
×

log(1−
t

τ
) +

q−1
∑

k=1

α̃kτ
q−k−1tk]dτ ;

(Qxn,ρ)(t) =
(−1)q

2πi(q − 1)!
×

∫

Γ

vn,ρ(τ)τ
−q[(τ − t)q−1 log(1−

τ

t
)+

q−1
∑

k=1

β̃kτ
q−k−1tk]dτ ; (25)

From the conditions 3),4),6) of Theorem 7,
Lemma 3 and Lemma 4, the invertibility of
operatorΥ : [Lp(Γ)]m → [Lp(Γ)]m follows.
From Banach Theorem and Lemma 6 for small
numbersρ, we have that the operatorΥρ :

[Lp(Γ)]m → [Lp(Γ)]m is invertible. We should
show that for (22) all conditions of the Theorem
1 are satisfied from [35]. Theorem 1[35] gives
the convergence of the reduction method for sys-
tem of SIE in spaces[Lp(Γ)]m. From condition
3 of Theorem 1[35] and from (12) we obtain the
condition 3 of Theorem 7. From the equality

[C(t)−D(t)]−1[C(t) +D(t)] = tqB−1
q Aq(t),

we conclude that the index of the function[C(t)−
D(t)]−1[C(t)+D(t)] are equal to zero, which co-
incides with condition 4 of Theorem 7. Other
conditions of Theorem 7 coincide with condi-
tions of Theorem 1[35]. Conditions 1)- 6) in The-
orem 7 provide the validity of all conditions of
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Theorem 1[35]. Therefore beginning with num-
bers n ≥ n1 (22) is uniquely solvable and for
numbersρ small enough. The approximate so-
lutions vn,ρ(t) of (22) converge to the exact so-
lution of equation (11) in the norm of the space
[Lp(Γ)]m as n → ∞. Therefore the equations
(21) and the SLAE (17) have the unique solutions
for (n ≥ n1). From Theorem 1[35] the following
estimation holds:

||vρ − vn,ρ||
m
p ≤ O

(

1

nα

)

+

O(ω(f ;
1

n
)) +O(ωt(h;

1

n
)), (26)

whereO(ωt(h; 1
n
) andO(ω(f ; 1

n
) are modulus of

continuity. From (10) and (25) we obtain

(Pxρ)
(q)(t) = (Pvρ)(t), (Qxρ)

(q)(t) = t−q(Qvρ)(t).

Therefore we have

(Pxn,ρ)
(q)(t) = (Pvn,ρ)(t),

(Qxn,ρ)
(q)(t) = t−q(Qvn,ρ)(t).

We proceed to get an error estimate

||xρ − xn,ρ||p,q = ||x(q)ρ − x(q)n,ρ||[Lp] ≤

||P (vρ − vn,ρ)||[Lp] + ||t−qQ(vρ − vn,ρ)||[Lp] ≤

||P ||·||vρ−vn,ρ||[Lp]+||t−q
||||Q||·||vρ−vn,ρ||[Lp] ≤

(||P ||+ ||t−q
||||Q||)||vρ − vn,ρ||[Lp]. (27)

Using the inequality

||t−q
||Lp

=





1

l

∫

Γ

|t−q
|
pdt





1

p

=





1

l

∫

Γ

|t−qp
|dt





1

p

≤





1

l

1

min
t∈Γ

|t|pq
l





1

p

=





1

min
t∈Γ

|t|pq





1

p

= c1,

From (26),(27), (20) and from the inequality

||x− xn,ρ||
m
p,q ≤ ||M−1f −M−1

ρ ||
m
p,q

+||xρ − xn,ρ||
m
p,q. (28)

we obtain the relation (18). Thus Theorem 7 is
proved.

6 Conclusion
In this article we studied more general case when
the kernel in SIDE (5) contains a weak singularity
(γ 6= 0.) Theoretical background was proved in
classical Lebesgue spaces. In future we are going
to prove theoretical background in for the others
functional spaces.
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in Classical Hölder Spaces, 90 STUD-
IES in MECHANICS, ENVIRONMENT
and GEOSCIENCE Proceedings of the 2nd
IASME/WSEAS International Conference
on CONTINUUM MECHANICS (CM ’07)
2nd IASME/WSEAS International Con-
ference on WATER RESOURCES, HY-
DRAULICS and HYDROLOGY (WHH

WSEAS TRANSACTIONS on MATHEMATICS Feras M. Al Faqih, Iurie Caraus, Nikos E. Mastorakis

E-ISSN: 2224-2880 393 Volume 13, 2014



’07), Portorose, Slovenia, May 15-17, 2007
ISBN: 978-960-8457-70-6 pp. 90-95

[22] Iurie Caraus and Nikos E. Mastorakis,
Convergence of collocation methods for
singular integro- differential equations in
Lebesgue spaces, Issue 11, Volume 6, 2007,
pp. 859-864 WSEAS TRANSACTIONS on
MATHEMATICS

[23] Iurie Caraus and Nikos E. Mastorakis,
The Numerical Solution for Singular
Integro- Differential Equations in General-
ized Holder Spaces Journal title WSEAS
TRANSACTIONS ON MATHEMATICS
2006, VOL 5; ISSUE 5, pp. 439-444

[24] L. Tabara, V.Zolotarevskii, Function ap-
proximation by Faber-Laurent Polynomials
in classical Holder spaces// Anale stiintifice
ale USM. Seria ”Sciences of Physics and
Mathematics”. Chisinau: USM, 1997, pp.
11-15

[25] Igor Tarata and Vladimir Zolotarevskii, The
reduction method in Approximative Solv-
ing of Sidngular Integral Equations in Gen-
eralized Holder spaces, Studii in Analiza
Numerica si Optimizare, vol. 3, nr.1(5),
2001,pp.102-118.

[26] Gohberg I, I. A. Feldman, Equations in con-
volutions and projection methods of their
solution.- M.: Nauka, 1971,(in Russian).

[27] V. Zolotarevski, About the approximate so-
lution of systems of singular integral equa-
tions inLp spaces// Izv. AN SSRM. Mathe-
matics, 1990, N3. pp.22-26

[28] V. Seichuk, Direct methods of the solution
of singular equations on Lyapunov’s con-
tour. PhD thesis in mathematics, Chisinau:
Moldova, 1987(in Russian)

[29] Al-Faqih Feras, Iurie Caraus and Nikos
E. Mastorakis, Approximate Solution of
Singular Integro-differential Equations by

Reduction Methods in Generalized Holder
Spaces Journal title WSEAS TRANSAC-
TIONS ON MATHEMATICS 2007, VOL
6; ISSU 4, pp. 595-600 ISSN 1109-2769

[30] Suetin, P.K., Ryady po mnogochlenam
Fabera (Series in Faber Polynomials),
Moscow, 1984.

[31] Yu. Krikunov, Solution of the general-
ized Riemann boundary problem and linear
singular integrodifferential equation.The
scientific notes of the Kazani university,
Kazani, 116(4), (1956) pp.3-29.

[32] Yu. Krikunov, The general boundary Rie-
mann problem and linear singular integro-
differential equation,The scientific notes
of the Kazani university,112(10), 1952,
pp.191-199.

[33] Saks, R.: Boundary- value problems for el-
liptic systems of differential equations. Uni-
versity of Novosibirsk. Novosibirsk,(1975).
(in Russian)

[34] Seichuk, V. Estimates for weakly singular
integral operators defined on closed inte-
gration contours and their applications to
the approximate solution of singular inte-
gral equations. Differ. Equ. 41 (2005), no.
9, pp. 1311-1322.

[35] V. Zolotarevskii, The reduction method for
the solution of singular integral equations
on the Lyapunove contours.- Differential
Equations, v.23, N8.-1987.- pp.1416-1422.

[36] G. Litvinciuk, Solvability of Boundary
Value Problem and Singular Integral Equa-
tions with Shift, in: Mathematics and its
Applications, Kluwer Academic Publisher,
2000.

WSEAS TRANSACTIONS on MATHEMATICS Feras M. Al Faqih, Iurie Caraus, Nikos E. Mastorakis

E-ISSN: 2224-2880 394 Volume 13, 2014




