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Abstract: This paper is concerned with the spatial patterns of the Gray-Scott system which describes a general two-
variable kinetic model that represents an activator-substrate scheme, where the space is discrete in two dimensions
with the periodic boundary conditions and the time is continuous. Furthermore conditions for producing Turing
instability of a general semi-discrete system are obtained through linear stability analysis and this conclusion is
applied to the semi-discrete G-S model. Then in the Turing instability region of semi-discrete G-S model, we
perform a series of numerical simulations which shown that this system can produce some new Turing patterns
such as striped, spotted and lace-liked patterns in the Turing instability region. In particular, the observation of
Turing patterns are reported, as a control parameter is varied, from a spatially uniform state to a patterned state. It
suggests that the values of parameters make a great impact on Turing patterns.
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1 Introduction

The Turing system involves a pair of partial differen-
tial equations, and represents the time course of re-
acting and diffusing chemicals. It can evolve sponta-
neously into a spatially heterogeneous stationary pat-
tern from an initially uniform distribution [1]. With-
out diffusion, the local reaction of the two substances
is stable and converges to the equilibrium, however,
with diffusion, the uniform steady state is unstable.
This spontaneous emergence of a spatially heteroge-
neous pattern is referred to as ”the Turing instability”.
This mechanism suggests that the reaction of a small
number of chemicals and their random diffusion can
create stable non-uniform patterns in a perfectly ho-
mogeneous field [2]. It is well known that Turing pat-
terns are very important for a reaction-diffusion sys-
tem. It has been proposed as mechanisms for biologi-
cal pattern formation in embryological and ecological
context [3]. All such works are based on the pioneer-
ing work of Turing [1].

As everyone knows, the Gray-Scott model (G-S
model) [4,5] is a critical reaction-diffusion system. It
is a variant of the autocatalytic model of glycolysis
first proposed by Selkov [6]. After proper modulat-
ing and including diffusion for convenience to illus-
trate Turing instability with discrete space, the kinetic

equations for the reactions can be written as [7]:{
u′(t) = −uv2 + F (1− u) + d∇2u,

v′(t) = uv2 − (F + k)v +∇2v.
(1)

Here, u and v represent the concentrations of the
chemical materials U and V, respectively, F is the flow
rate, k is a decay constant of the activator. The ratio
of diffusivity d = Du

Dv
, Du and Dv are the diffusion

constants for the two species.
In the research of pattern formation in the G-S

model, a major development was performed by Pear-
son [08], in his paper, there were 12 categories pat-
terns described for the G-S model, but only one of
them is covered in the Turing region. Lee [7] reported
their experiments in a ferro-cyanide-iodate-sulfite re-
action which showed strong qualitative agreement
with the self-replication regimes in simulations of [8].
Moreover, those same experiments led to the discov-
ery of other new patterns, such as annular patterns
emerging from circular spots see [9]. More detailed
description about the G-S model can be found in con-
texts [10,11,12,13,14,15,16].

However, the G-S model with discrete space was
caused little attention at present. Meanwhile, in 1957
[17], the first semi-discrete approach was put for-
ward by Beverton and Holt in their construction of
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a discrete-time model analogous to the continuous-
time logistic model on the basis of a semi-discrete
model. Since then, a large body of literature has pro-
posed semi-discrete models in almost every field of
the life science: population dynamics and ecology,
plant pathology, epidemiology, medicine, etc. From
these, it can be seen that the research about semi-
discrete system is of significance. With a difference,
we care about the G-S model with discrete space.

Now, there comes a problem. Can the discrete-
space G-S system produce Turing instability? If it
can, what difference from a continuous one? In this
paper, we will study the Turing instability of a two-
dimensional semi-discrete G-S model and carry out a
series of simulations. This paper is organized as fol-
lowing: in the next section ,we demonstrate the gen-
eral theory of Turing instability for a semi-discrete
system by using linearized technique.The conditions
of Turing instability will be obtained. In Section 3
,a semi-discrete G-S model will be introduced and
the conditions of Turing instability via linear stability
analysis will be achieved. In the following Section 4,
a series of numerical simulations will be given for the
semi-discrete G-S system with different parameters.
kinds of Turing patterns can emerge in the Turing in-
stability region, such as striped, spotted and lace-liked
patterns. We can recognize that the varying of control
parameters play an important role in pattern structure.
Conclusions are drawn in Section 5.

2 Turing Instability for the semi-
discrete System

Similar to [19], in this section, we firstly consider
Turing instability for a general semi-discrete reaction-
diffusion system{

u′ij(t) = γf(uij(t), vij(t)) +∇2uij(t),

v′ij(t) = γg(uij(t), vij(t)) + d∇2vijn (t)
(2)

with the periodic boundary conditions
ui,0(t) = ui,m(t),

ui,1(t) = ui,m+1(t),

u0,j(t) = um,j(t),

u1,j(t) = um+1,j(t)

(3)

and 
vi,0(t) = vi,m(t),

vi,1(t) = vi,m+1(t),

v0,j(t) = vm,j(t),

v1,j(t) = vm+1,j(t)

(4)

for i, j ∈ {1, 2, · · ·,m} = [1,m] and t ∈ R+ =
[0,∞), where m is a positive integer,

∇2uij(t) = ui+1,j(t) + ui,j+1(t)

+ ui−1,j(t) + ui,j−1(t)− 4uij(t)
(5)

and

∇2vij(t) = vi+1,j(t) + vi,j+1(t)

+ vi−1,j(t) + vi,j−1(t)− 4vij(t).
(6)

With no spatial variation u and v satisfy{
u′ij(t) = γf(uij(t), vij(t)),

v′ij(t) = γg(uij(t), vij(t)).
(7)

Suppose that (u∗, v∗) is the steady state of ( 7) and let

wij(t) =

(
uij(t)− u∗

vij(t)− v∗

)
=

(
xij(t)
yij(t)

)
.

The linearized form of (7) is then

w′
ij (t) = γAwij (t) ,

A =

[
fu fv
gu gv

]
(u∗,v∗)

(8)

which has the eigenvalue equation

λ2 − γ (fu + gu)λ+ γ2 (fugv − fvgu) = 0. (9)

Linear stability, that is Reλ < 0, is guaranteed if

trA = fu + gv < 0,

|A| = fugv − fvgu > 0.
(10)

Now consider the system (2) and again linearize
about the stead state, to get

w′
ij(t) = γAwij(t) +D∇2wij(t),

D =

(
1 0
0 d

) (11)

with the periodic boundary conditions
wi,0(t) = wi,m(t),

wi,1(t) = wi,m+1(t),

w0,j(t) = wm,j(t),

w1,j(t) = wm+1,j(t).

(12)

In order to study instability of (11), we firstly con-
sider eigenvalues of the following equation

∇2Xij + µXij = 0, (13)
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with the periodic boundary conditions
Xi,0 = Xi,m,

Xi,1 = Xi,m+1,

X0,j = Xm,j ,

X1,j = Xm+1,j .

(14)

In view of [18], the eigenvalue problem (13)-(14)
has the eigenvalues

µl,s = 4

(
sin2

(l − 1)π

m
+ sin2

(s− 1)π

m

)
= k2ls for l, s ∈ [1,m] .

Then respectively taking the inner product of (2) with
the corresponding eigenfunction Xij

ts of the eigen-
value λt,s, we see that

m∑
i,j=1

Xij
lsx

′
ij = fu

m∑
i,j=1

Xij
lsxij

+ fv

m∑
i,j=1

Xij
lsyij +

m∑
i,j=1

Xij
ls∇

2xij ,

m∑
i,j=1

Xij
tsy

′
ij = gu

m∑
i,j=1

Xij
lsxij

+ gv

m∑
i,j=1

Xij
lsyij +D2

m∑
i,j=1

Xij
ls∇

2yij .

(15)

Let

U (t) =
m∑

i,j=1

Xij
lsxij ,

V (t) =

m∑
i,j=1

Xij
tsyij

and use the periodic boundary conditions (12) and
(14), then we have{

U ′(t) = γfuU(t) + γfvV (t)− k2lsU(t),

V ′(t) = γguU(t) + γgvV (t)− dk2lsV (t)

or {
U ′ (t) =

(
γfu − k2ls

)
U (t) + γfvV (t) ,

V ′ (t) = γguUn +
(
γgv − dk2ls

)
V (t) .

Which has the eigenvalue equation

λ2 +
[
k2ls (1 + d)− γ (fu + gu)

]
λ+ h

(
k2ls
)
, (16)

where

h
(
k2ls
)
= dk4ls − γ (dfu + gv) k

2
ls + γ2 |A| . (17)

To guarantee the instability of (2), the instability can
happen either if the coefficient of λ in (16) is nega-
tive,or if h(k2ls) < 0 for k2ls ∈ [0, 8]. Since fu+gv < 0
and k2ls > 0 and d ≫ 1, the coefficient of λ is posi-
tive. Thus, the only way Re(λ) > 0 can be positive if
k2ls < 0 for some k2ls, which is necessary but not suf-
ficient for Re(λ) > 0 . So the condition of instability
of (2) is h(k2ls) < 0.

So the conditions of Turing instability
trA = fu + gv < 0,

|A| = fugv − fvgu > 0,

h
(
k2ls
)
< 0.

are attained.

3 The semi-discrete Gray-Scott
model

Now, we consider the G-S model with discrete space:
u′ij(t) =− uij(t)v

2
ij(t) + F (1− uij(t))

+ d∇2uij(t),

v′ij(t) =uij(t)v
2
ij(t)− (F + k)vij(t)

+∇2vij(t),

(18)

with the periodic boundary conditions of
ui,0(t) = ui,m(t),

ui,1(t) = ui,m+1(t),

u0,j(t) = um,j(t),

u1,j(t) = um+1,j(t)

and 
vi,0(t) = vi,m(t),

vi,1(t) = vi,m+1(t),

v0,j(t) = vm,j(t),

v1,j(t) = vm+1,j(t)

for i, j ∈ {1, 2, · · ·,m} = [1,m] and t ∈ R+ =
[0,∞), where m is a positive integer. Laplace’s oper-
ators are

∇2uij(t) = ui+1,j(t) + ui,j+1(t)

+ ui−1,j(t) + ui,j−1(t)− 4uij(t)

and

∇2vij(t) = vi+1,j(t) + vi,j+1(t)

+ vi−1,j(t) + vi,j−1(t)− 4vij(t).
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In order to find the Turing instability region of the
G-S model, we first analysis the model with no spatial
variation, u and v satisfy:{

u′ij(t) = −uij(t)v2ij(t) + F (1− uij(t)),

v′ij(t) = uij(t)v
2
ij(t)− (F + k)vij (t) .

(19)

Clearly, the above system exhibits three possible
steady states with P0 = (uR, vR) = (1, 0), P1 =
(uB, vB), and P2 = (uI , vI) , where

uB =
1

2

[
1−

√
1− 4(F + k)2

F

]
,

vB =
F

2(F + k)

[
1 +

√
1− 4(F + k)2

F

]
,

uI =
1

2

[
1 +

√
1− 4(F + k)2

F

]
,

vI =
F

2(F + k)

[
1−

√
1− 4(F + k)2

F

]

and

1− 4(F + k)2

F
≥ 0.

The state P0 is always linearly stable, for the other
two states, we calculate the eigenvalues of the Jaco-
bian matrix A to examine the stability, where

A =

[
−v2∗ − F −2u∗v∗

v2∗ 2u∗v∗ − (F +K)

]
(with index * representing B or I), obtaining

trA = −v2∗ + k

and
|A| = (F + k)(v2∗ − F ).

We find that the state P2 is always unstable because
trA > 0 and |A| ≤ 0 , moreover, when

1− 4(F + k)2

F
= 0,

vI =
√
F

and |A| = 0, the system occurs the saddle-node bifur-
cation, that is

FSN =
1

8

[
1− 8k ±

√
1− 16k

]
.

The state P1, on the other hand, may be stable. Next,
we shall refer to this state. One finds that this state

exhibits a Hopf bifurcation curve from the condition
trA = 0. Inserting P2(uB, vB) we find

FH =
1

2

[√
k − 2k −

√
k(1− 4

√
k)

]
.

Below the Hopf bifurcation curve trA = k − v2B >
0, and the state P1 is unstable. More details about
computation refer to [15].

Let

wij(t) =

[
uij(t)− uB
vij(t)− vB

]
=

[
xij(t)
yij(t)

]

The linearized form of (19) is then

w′
ij(t) = Awij(t),

A =

[
−v2B − F −2uBvB

v2B 2uBvB − (F +K)

]

Then consider the full reaction diffusion system
of (19) and again linearize about the steady state, to
get

w′
ij(t) = Awij(t) +D∇2wij(t)

and

D =

[
d 0
0 1

]

with the periodic boundary conditions (12).
In order to study instability of (18),we firstly con-

sider eigenvalues of the following equation

∇2Xij + µXij = 0,

with the periodic boundary conditions


Xi,0 = Xi,m,

Xi,1 = Xi,m+1,

X0,j = Xm,j ,

X1,j = Xm+1,j .

Then we respectively take the inner product of (18)
with the corresponding eigenfunction Xij

ls of the
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eigenvalue λl,s , then

m∑
i,j=1

Xij
lsu

′
ij = −(F + v2B)

m∑
i,j=1

Xij
lsuij

− 2uBvB

m∑
i,j=1

Xij
ls vij

+ d

m∑
i,j=1

Xij
ls∇

2uij ,

m∑
i,j=1

Xij
ls v

′
ij = v2B

m∑
i,j=1

Xij
lsuij

+ (F + k)
m∑

i,j=1

Xij
ls vij

+

m∑
i,j=1

Xij
ls∇

2vij .

Let

U(t) =
m∑

i,j=1

Xij
lsu

ij
t

and

V (t) =

m∑
i,j=1

Xij
ls v

ij
t .

Then use the periodic boundary conditions (3) , (4)
and Abel transform, thus it follows that

U
′
(t) =− (F + v2B)U(t)− 2uBvBV (t)

− dk2lsU(t),

V
′
(t) =v2BU(t) + (F + k)V (t)

− k2lsV (t),

which has the eigenvalue equation

λ2 + [(d+ 1)k2ls − (k − v2B)]λ+ h(k2ls) = 0,

where

h(k2ls) =dk
4
ls − [(d− 1)F + dk − v2B]k

2
ls

+ 2uBv
3
B − (F + k)(F + v2B).

(20)

The necessary condition of system unstable is
h(k2ls) < 0, for k2ls ∈ [0, 8].

4 Numerical simulation

In this section, a series of numerical simulations will
be performed so that we can explore the dynamical
behavior of the semi-discrete Gray-Scott model.

In all of the following simulations, the initial con-
dition is always a small amplitude random perturba-
tion 1 around the steady state. the size of the lattice is
chosen to be 128× 128, with periodic boundary con-
ditions and the each of the 300000 times of iteration
after v patterns .Secondly, the color selection of shaft
as shown in figure 1 shows, the boundary of the right
of a red, left, and the border blue for 0

Figure 1: color shaft samples.

(a)

(a)F = 0.0403, k = 0.0496, d = 10;

(b)

(b)F = 0.0586, k = 0.0496, d = 10;
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(c)

(c)F = 0.0272, k = 0.0431, d = 10;

(d)

(d)F = 0.0141, k = 0.0366, d = 11;

(e)

(e)F = 0.0348, k = 0.0496, d = 10;

(f)

(f)F = 0.0534, k = 0.056, d = 10;

(g)

(g)F = 0.0141, k = 0.0301, d = 10;

(h)

(h)F = 0.0141, k = 0.0366, d = 8;
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(i)

(i)F = 0.0534, k = 0.056, d = 5.2.

Figure 2: Striped, spotted and lace-liked Turing pat-
terns of spatially discrete GS model(2).

Fig.2 shows all kinds of patterns with different pa-
rameter values which satisfy the conditions of Turing
instability are obtained. Briefly, we only display sev-
eral patterns of the substrate, v. The Turing patterns
in first row are considered as striped patterns. Spot-
ted and lace-liked Turing patterns are arraying on the
second and third row respectively.

The G-S model (2) involves three parameters:
d, k, F , in order to study the effects that parameters
work on pattern formation, we assume that only one
parameter is changing, others are remaining fixed,
then Fig.2, Fig.3, Fig.4 are obtained.

(a)

(a)F = 0.0141, k = 0.0366, d = 6;

(b)

(b)F = 0.0141, k = 0.0366, d = 7.5;

(c)

(c)F = 0.0141, k = 0.0366, d = 11;

Figure 3: Turing patterns of spatially discrete GS
model (2)

(a)

(a)F = 0.0272, d = 10, k = 0.0431;
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(b)

(b)F = 0.0272, d = 10, k = 0.0452;

(c)

(c)F = 0.0272, d = 10.k = 0.0511.

Figure 4: Turing patterns of spatially discrete GS
model(2).

(a)

(a)k = 0.0496, d = 10, F = 0.0348

(b)

(b)k = 0.0496, d = 10, F = 0.0372

(c)

(c)k = 0.0496, d = 10, F = 0.0403

Figure 5: Turing patterns of spatially discrete GS
model (2).

Firstly, in Fig.3, we choose parameters F =
0.0141, k = 0.036, d are chosen from the following
set: d = 6, 7.5, 11. Via comparing the pattern struc-
ture, the transition from a striped to a spotted Turing
pattern is received. Primitively, the system approaches
a nearly stationary state with domains of clear stripes.
With the gradually increase of d, lace-liked Turing
pattern is found. Finally, isolated spots distribute in
the whole space.

Secondly, we choose parameters F =
0.0272, d = 10. In fact, there exists only three
main orientations for the arrangement of the pattern.
Examples for these three configurations are shown in
Fig.4. A phenomenon that stripes transit to spots is
found. When k is relatively smaller, there are regular
stripes in the space. With an increasing of k, a mixed
Turing pattern that stripes break up, presenting a
coexistence of spots and stripes, illustrated in Fig.(b).
In Fig.(c), when k increases to 0.0511, stripes are no
longer observed, substituted by a kind of absolutely
isolated, anomalous spots.
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Finally, in Fig.5, we fix k = 0.0496, d = 10. Dif-
ferent from Figure 3, 4, the transition from spots to
stripes can be seen. When F = 0.0348, the space is
full of orderly spots, see Fig.(a). As the increase of F,
for example, F = 0.0372, see Fig.(b), specialty spots
begin to connect, which comporting the near spots
produce connecting by degrees and a tendency from
orderly spots to regular stripes is observed. Continue
to increasing F to 0.0403, see Fig.(c), clear and regu-
lar stripes are exposed.

5 Conclusions

In summary, in this paper, we have presented a the-
oretical analysis of Turing instability for a general
semi-discrete system with the periodic boundary con-
dition and the conditions of Turing instability for a
semi-discrete G-S system follows immediately which
describes a general two-variable kinetic model that
represents an activator-substrate scheme.

Secondly , a large variety of new Turing pattern
are obtained by number simulation in Turing instabil-
ity region of semi-discrete G-S model. These Turing
patterns are different from the patterns in the paper
by Pearson [7], and we study that the dynamical be-
havior of this system depends on the parameters as-
suming that only one parameters changing, others are
remaining fixed. When d (or k) varies and other pa-
rameters hold fixed, the pattern structure are changing
from stripes to spots. In the contrast, when F varies
and d, k are fixed, the transition from spots to stripes
is observed.
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