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Abstract: In this paper we consider the numerical solution of projected generalized continuous-time Lyapunov
equations with low-rank right-hand sides. The interest in this problem stems from stability analysis and control
problems for descriptor systems including model reduction based on balanced truncation. Two projection methods
are proposed for calculating low-rank approximate solutions. One is based on the usual Krylov subspace, while
the other is based on the union of two different Krylov subspaces. The former is the Krylov subspace method
and the latter is the extended Krylov subspace method. For these two methods, exact expressions for the norms of
residuals are derived and results on finite termination are presented. Numerical experiments in this paper show the
effectiveness of the proposed methods.
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1 Introduction
In this paper we consider the projected generalized
continuous-time Lyapunov equation of the form{

EXAT +AXET + PlBB
TP Tl = 0,

X = PrXP
T
r ,

(1)

where A,E ∈ Rn×n, B ∈ Rn×s, and X ∈ Rn×n
is the sought-after solution. Here, Pl and Pr are the
spectral projectors onto the left and right deflating
subspaces corresponding to the finite eigenvalues of
the pencil λE − A, respectively. It has been shown
in [36] that if the pencil λE − A is c-stable, i.e.,
all its finite eigenvalues have negative real part, then
the projected generalized continuous-time Lyapunov
equation (1) has a unique, symmetric, and positive
semidefinite solution.

We assume that the pencil λE − A is regular,
i.e., det(λE − A) is not identically zero. Under this
assumption, the pencil λE − A has the Weierstrass
canonical form [12]: there exist nonsingular n × n
matrices W and T such that

E =W

[
I 0
0 N

]
T, A =W

[
J 0
0 I

]
T, (2)

where J and N are block diagonal matrices with each
diagonal block being a Jordan block. The eigenvalues
of J are the finite eigenvalues of the pencil λE − A

andN corresponds to the eigenvalue at infinity. Using
(2), Pl and Pr can be expressed as

Pl =W

[
I 0
0 0

]
W−1, Pr = T−1

[
I 0
0 0

]
T.

(3)
The projected generalized continuous-time Lya-

punov equation (1) arises in stability analysis and con-
trol design problems for descriptor systems including
the characterization of controllability and observabil-
ity properties, balanced truncation model order reduc-
tion, determining the minimal and balanced realiza-
tions as well as computing H2 and Hankel norms; see
[1, 17, 24, 27, 37] and the references therein.

If E is nonsingular, then Pl = Pr = I . In
this case, the projected equation (1) reduces to the
generalized Lyapunov equation EXAT + AXET +
BBT = 0. The generalized Lyapunov equation can
be further reduced to the standard Lyapunov equation
ÃX + XÃT + B̃B̃T = 0, where Ã = E−1A and
B̃ = E−1B.

A number of numerical solution methods have
been proposed for the standard/generalized Lyapunov
and Sylvester equations. Two classical direct meth-
ods are the Bartels-Stewart method [4, 13, 25, 34]
and the Hammarling method [16, 21]. These methods
need to compute the real Schur forms/generalized real
Schur forms of the underlying matrices/matrix pen-
cils by means of the QR/QZ algorithm [14] and re-
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quire O(n3) flops and O(n2) memory. Besides di-
rect methods, we mention, among several iterative
methods, the Smith method [32], the alternating di-
rection implicit iteration (ADI) method [6, 41, 23],
the Smith(l) method [26], the low-rank Smith method
[15, 26], the Cholesky factor-alternating direction im-
plicit method [22], and the (generalized) matrix sign
function method [5, 8, 9]. There are also several
other approaches to solve large-scale Lyapunov and
Sylvester equations using Krylov subspaces, see, for
example, [2, 3, 18, 19, 20, 31]. The ADI methods
and Krylov subspace based methods are well suited
for large-scale Lyapunov and Sylvester equations with
sparse coefficient matrices.

Several numerical methods have been proposed
in the literature for solving the projected generalized
Lyapunov equation (1). In [35], two direct methods,
the generalized Bartels-Stewart method and the gen-
eralized Hammarling method, are proposed for the
projected generalized Lyapunov equation of small or
medium size. The generalized Hammarling method is
designed to obtain the Cholesky factor of the solution.
These two methods are based on the generalized real
Schur form of the pencil λE − A, and require also
O(n3) flops and O(n2) memory.

Iterative methods to solve large sparse projected
generalized Lyapunov equations have also been pro-
posed. Stykel [40] extended the ADI method and
the Smith method to the projected equation. More-
over, low-rank versions of these methods were also
presented, which could be used to compute low-rank
approximations to the solution. Another iterative
method for the projected generalized Lyapunov equa-
tion is the modified generalized matrix sign function
method [39]. Unlike the classical generalized matrix
sign function method, the variant converges quadrati-
cally independent of the index of the underlying ma-
trix pencil, see [39] for more details.

It should be mentioned that any numerical method
for solving large sparse projected generalized Lya-
punov equations crucially depends on the availabil-
ity of expressions for the spectral projectors Pl and
Pr. If such expressions are not available, the usual
approach for computing these projectors via the gen-
eralized real Schur factorization of the pencil λE−A,
would be much too expensive for large-scale equa-
tions. In some applications such as computational
fluid dynamics and constrained structural mechanics,
some special block structure of the matrices E and A
can be exploited to construct the spectral projectors Pl
and Pr in explicit form, see, for example, [40].

The ADI method requires to select shift param-
eters. Once the shift parameters are given, the ADI
method has a well-understood convergence theory. To
obtain optimal shift parameters, we need to solve a ra-

tional min-max problem. This problem is only solved
for standard Lyapunov equations with symmetric co-
efficient matrices. For the non-symmetric case, some
heuristic shift selection procedures have been pro-
posed to compute the suboptimal ADI shift parame-
ters, see [26, 7]. However, these shift selection proce-
dures do not work well for some applications. If some
poor shift parameters are provided by the shift selec-
tion procedure, it can lead to very slow convergence
in the ADI method.

In this paper we firstly reformulate the projected
generalized Lyapunov equation (1) to the equivalent
projected standard Lyapunov equation. Then we pro-
pose a Krylov subspace method for solving projected
standard Lyapunov equations, which is the natural ex-
tension of the Krylov subspace method for standard
Lyapunov equations. Since the coefficient matrix of
the projected standard Lyapunov equation is singular,
we can not generalize the iterative method proposed
by Simoncini [31] directly to the projected standard
Lyapunov equation. To overcome this disadvantage,
we will use the {2}-inverse of the singular coefficient
matrix to derive an extended Krylov subspace method,
where the projection subspace is the union of two
Krylov subspaces. One of these two Krylov subspaces
is the usual Krylov subspace, while the other is based
on the {2}-inverse of the coefficient matrix. The ex-
pressions of residuals and the results on finite termi-
nation for these two method are presented. More-
over, the performance of the newly proposed methods
is compared to that of the generalized low-rank ADI
method [40].

Throughout this paper, we adopt the following
notations. We denote by Is the s × s identity matrix.
If the dimension of Is is apparent from the context,
we drop the index and simply use I . The zero vec-
tor or zero matrix is denoted by 0. The dimensions
of these vectors and matrices, if not specified, are de-
duced by the context. The space of m× n real matri-
ces is denoted by Rm×n. The Frobenius matrix norm
is denoted by ∥ · ∥F . The superscript ” ·T ” denotes
the transpose of a vector or a matrix. The notation
span{v1, v2, · · · , vm} denotes the space spanned by
the sequence v1, v2, · · · , vm.

The remainder of the paper is organized as fol-
lows. In Section 2, we first briefly review the defi-
nition of the Krylov subspace and the Arnoldi process
for establishing an orthonormal basis of this subspace.
Then, we present a Krylov subspace method for solv-
ing the projected Lyapunov equation. In Section 3,
we generalize the definition of the extended Krylov
subspace to the singular matrix, and propose an ex-
tended Krylov subspace method for the projected Lya-
punov equation. Section 4 is devoted to some numer-
ical tests. Finally, conclusions are given in Section 5.
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2 Krylov subspace method
In the remainder of this paper, for the sake of the sim-
plicity of presentation, we assume s = 1, that is, B
is a vector, although the whole discussion and algo-
rithms could be stated for B being a matrix by using
some extra notation and technical treatment.

2.1 Krylov subspace and the Arnoldi process
In this subsection we recall the definition of a Krylov
subspace and the Arnoldi process for constructing an
orthonormal basis of the Krylov subspace.

Let F be an n × n real matrix and v an
n−dimensional real vector. The Krylov subspace
Km(F, v) is defined by

Km(F, v) = span{v, Fv, F 2v, · · · , Fm−1v}.

The Arnoldi process [29] can be used to estab-
lish an orthonormal basis of the Krylov subspace
Km(F, v). The Arnoldi process based on the modified
Gram-Schmidt procedure is presented in the following
algorithm:

Algorithm 1 Arnoldi process

1. Let v1 = v/∥v∥.

2. For j = 1, 2, · · · ,m

3. w = Fvj .

4. For i = 1, 2, · · · , j

5. hij = vTi w.

6. w = w − vihij .

7. End For

8. hj+1,j = ∥w∥.

9. vj+1 = w/hj+1,j .

10. End For

Algorithm 1 is known as an implementation of the
Arnoldi process using the modified Gram-Schmidt or-
thogonalization [10] for generating an orthonormal
basis of Km(F, v). It is well known that in the pres-
ence of finite precision arithmetic, a loss of orthogo-
nality can occur when the orthogonalization algorithm
progresses, see [10, 14, 28]. A remedy is the so-called
reorthogonalization, where the current vectors have to
be orthogonalized against previously created vectors.
One can choose between a selective reorthogonaliza-
tion or a full reorthogonalization.

Define

Vm = [v1, v2, · · · , vm]

and the (m+ 1)×m upper Hessenberg matrix

H̃m =


h11 h12 · · · h1m
h21 h22 · · · h2m

h32
. . .

...
. . . hmm

hm+1,m

 .

The columns of the matrix Vm form an orthonormal
basis of the Krylov subspace Km(F, v). Moreover,
from the Arnoldi algorithm we can deduce the follow-
ing Arnoldi relations

FVm = Vm+1H̃m,

FVm = VmHm + hm+1,mvm+1e
T
m,

Hm = V T
mFVm,

V T
mVm = Im,

where Hm is the m×m matrix obtained from H̃m by
deleting the last row and em is the last column of the
m×m identity matrix Im.

2.2 Krylov subspace method
We always assume that the pencil λE −A is c-stable,
i.e., all its finite eigenvalues have negative real parts.
It follows that A is nonsingular. In this case, by mak-
ing use of the expressions of A, Pl, and Pr in (2) and
(3), we have A−1Pl = PrA

−1. Hence the projected
generalized Lyapunov equation (1) is equivalent to the
projected standard Lyapunov equation of the form{

(A−1E)X +X(A−1E)T = −PrA
−1BBTA−TPT

r ,
X = PrXP

T
r .

(4)
We now apply the framework of a projection tech-

nique to derive a method for solving the projected
equation (4). The projection subspace used here is

Km(A
−1E,Br)

= span{Br, A−1EBr, · · · , (A−1E)m−1Br},

where Br = PrA
−1B.

By applying the Arnoldi process to the Krylov
subspace Km(A

−1E,Br), we generate the matrix
Vm, whose columns form an orthonormal basis of
Km(A

−1E,Br). With Hm defined by the Arnoldi
process, we obtain the following Arnoldi relation

A−1EVm = VmHm + hm+1,mvm+1e
T
m = Vm+1H̃m.

(5)
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The approximate solution to X is constructed as

Xm = VmYmV
T
m .

Let β = ∥Br∥F . Since Br = βv1 = βVme1 with e1
being the first column of the identity Im, the residual
matrix Rm can be then expressed as

Rm = A−1EXm +Xm(A
−1E)T

+PrA
−1BBTA−TP Tr

= A−1EVmYmV
T
m

+VmYmV
T
m (A−1E)T

+β2Vme1e
T
1 V

T
m . (6)

According to the Galerkin condition, we want to find
an approximate solution Xm = VmYmV

T
m such that

V T
mRmVm = 0. (7)

Since V T
mA

−1EVm = Hm, it follows from (7) and (6)
that Ym satisfies

HmYm + YmH
T
m + β2e1e

T
1 = 0. (8)

The following theorem is one main result of this
section.

Theorem 2 Suppose that m steps of the Arnoldi pro-
cess have been taken for Km(A

−1E,Br). Let Xm =
VmYmV

T
m with Ym satisfying (8) be the approxi-

mate solution of the projected Lyapunov equation (4).
Then,

(a) the approximate solution Xm = VmYmV
T
m satis-

fies the second equation of (4) exactly, i.e.,

Xm = PrXmP
T
r ;

(b) the norm of the residual matrix Rm can be com-
puted by

∥Rm∥F =
√
2∥hm+1,me

T
mYm∥F . (9)

Proof: By exploiting (2) and (3), we can easily obtain

(A−1E)iBr = Pr(A
−1E)iBr, i = 1, 2, · · · .

Thus we have

Km(A
−1E,Br)

= span{PrBr, PrA−1EBr, · · · , Pr(A−1E)m−1Br},

which together with Km(A
−1E,Br) = span{Vm}

shows that
PrVm = Vm.

The result Xm = PrXmP
T
r follows immediately.

By substituting (5) into (6), we have

Rm = (VmHm + hm+1,mvm+1e
T
m)YmV

T
m

+VmYm(VmHm + hm+1,mvm+1e
T
m)

T

+β2Vme1e
T
1 V

T
m

= Vm(HmYm + YmH
T
m + β2e1e

T
1 )V

T
m

+hm+1,mvm+1e
T
mYmV

T
m

+hm+1,mVmYmemv
T
m+1

= Vm+1

[
0 hm+1,mYmem

hm+1,me
T
mYm 0

]
V T
m+1.

From the above expression for Rm, we obtain (9). ⊓⊔
The expression for the norm of the residual Rm

given by (9) can be used to stop the iterations in the
Krylov subspace method. The approximate solution
Xm is computed only when convergence is achieved.
This reduces the cost of this method.

The following result shows that Xm is an exact
solution of a perturbed projected Lyapunov equation.

Theorem 3 Suppose that m steps of the Arnoldi pro-
cess have been taken for Km(A

−1E,Br). Let Xm =
VmYmV

T
m be the low-rank approximate solution of

(4), where Ym satisfies (8). Then
(A−1E −∆m)Xm +Xm(A

−1E −∆m)
T

+PrA
−1BBTA−TP Tr = 0,

Xm = PrXmP
T
r ,

(10)
where ∆m = hm+1,mvm+1v

T
m and ∥∆m∥F =

|hm+1,m|.

Proof: We have

A−1EXm +Xm(A
−1E)T

+PrA
−1BBTA−TP Tr

= A−1EVmYmV
T
m + VmYmV

T
m (A−1E)T

+β2Vme1e
T
1 V

T
m

= hm+1,mvm+1e
T
mYmV

T
m

+hm+1,mVmYmemv
T
m+1. (11)

The first equation of (10) follows by rearranging
(11) and noting that eTm = vTmVm. The expression for
∥∆m∥F follows from the fact that vm and vm+1 are
vectors with unit length. The second equation of (10)
follows from Theorem 2. ⊓⊔

The Krylov subspace method for solving the pro-
jected generalized Lyapunov equation (1) is summa-
rized as follows.

Algorithm 4 Krylov subspace method
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1. Choose a tolerance ϵ > 0 and a positive integer
k1. Set m = k1.

2. Construct an orthonormal basis v1, v2 · · · , vm of
the subspace Km(A

−1E,Br) by Algorithm 1.

3. Solve the low-dimensional problem HmYm +
YmH

T
m+β2e1e

T
1 = 0 with β = ∥Br∥F by a direct

method.

4. Compute the residual norm: ∥Rm∥F =√
2∥hm+1,me

T
mYm∥. If ∥Rm∥F < ϵ, form the

approximate solution Xm = VmYmV
T
m , and then

stop.

5. Augment the orthonormal basis v1, v2 · · · , vm
of the subspace Km(A

−1E,Br) into an or-
thonormal basis v1, v2 · · · , vm+k1 of the subspace
Km+k1(A

−1E,Br).

6. Set m = m+ k1 and go to step 3.

In exact arithmetic, the Arnoldi process applied to
the Krylov subspace Km(A

−1E,Br) will break down
as hm+1,m = 0. In this case, as shown in the follow-
ing theorem, the exact solution of (4) is obtained.

Theorem 5 Suppose that the Arnoldi process applied
to Km(A

−1E,Br) breaks down at step m. Then we
find the exact solution of (4).

Proof: The result follows directly from the expression
(9) for the norm of the residual matrix Rm. ⊓⊔

3 Extended Krylov subspace method
In this section, we will introduce a class of new sub-
spaces, which will be employed to construct the pro-
jecting subspaces for solving the projected Lyapunov
equation (4).

Suppose that the matrix F ∈ Rn×n is invert-
ible and v ∈ Rn. The extended Krylov subspace
Km(F, v) is defined by

Km(F, v)
= span{v, F−1v, Fv, F−2v, · · · , Fm−1v, F−mv}.

Note that the extended subspace Km(F, v) contains
information on both F and F−1. Clearly, the extended
Krylov subspace Km(F, v) is the union of the Krylov
subspace Km(F, v) and Km(F

−1, F−1v), that is,

Km(F, v) = Km(F, v) ∪ Km(F
−1, F−1v).

Simoncini [31] proposed a project method based
on the extended Krylov subspace Km(A,B) for solv-
ing the standard Lyapunov equation

AX +XAT = BBT

with A being dissipative. This class of subspaces was
also used by Druskin and Knizhnerman [11] for ap-
proximating matrix functions.

Due to the singularity of E, the inverse of A−1E
does not exist. Therefore we can not apply the ex-
tended Krylov subspace method directly to the pro-
jected Lyapunov equation (4).

To overcome this disadvantage, we will use the
{2}-inverse P of E to establish a class of new pro-
jection subspaces, which are also named as extended
Krylov subspaces in this paper. Note that the {2}-
inverse P of E can be formulated as

P = Pr(EPr +A(I − Pr))
−1

= (PlE + (I − Pl)A)
−1Pl

= T−1

[
I 0
0 0

]
W−1,

see, for example, [33]. For the {2}-inverse of a singu-
lar matrix, the interesting reader is referred to [42].

With this preparation, we now define the extended
Krylov subspace based on A−1E and Br by

Km(A
−1E,Br) = Km(A

−1E,Br)∪Km(PA,PABr).

In the following algorithm, an Arnoldi-like pro-
cess is presented for establishing an orthonormal ba-
sis of the subspace Km(A

−1E,Br). We point out that
this algorithm is a direct extension of the one proposed
in [31] for constructing an orthonormal basis of an ex-
tended Krylov subspace based on an invertible matrix.

Algorithm 6 Arnoldi-like process

1. Let V̂1 = [Br, PABr].

2. Compute V1 by the QR decomposition: V1R = V̂1.

3. For j = 1, 2, · · · ,m

4. Set V (1)
j = Vj(:, 1) and V (2)

j = Vj(:, 2).

5. V̂j+1 = [A−1EV
(1)
j , PAV

(2)
j ].

6. For i = 1, 2, · · · , j

7. Hij = V T
i V̂j+1.

8. V̂j+1 = V̂j+1 − ViHij .

9. End For

10. Compute theQR decomposition Vj+1Hj+1,j =

V̂j+1.

11. End For
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The columns of the matrix Vm =
[V1, V2, · · · , Vm] with Vj ∈ Rn×2 are an orthonormal
basis of the subspace Km(A

−1E,Br).
Let Hn ∈ R2m×2m be the block upper Hessen-

berg matrix with each block 2 by 2, whose nonzero
blocks are generated by Algorithm 6. It is easy to ver-
ify that for j = 1, 2, · · · ,m,

V̂j+1 = [A−1EV
(1)
j , PAV

(2)
j ]− VjHjEj , (12)

Vj+1Hj+1,j = V̂j+1, (13)

where ETj = [0, 0, · · · , I2] ∈ R2×2j .
The following theorem shows the relation be-

tween the subspace A−1EKm(A
−1E,Br) and the

extended Krylov subspace Km+1(A
−1E,Br).

Theorem 7 For any m ≥ 1, the space
Km(A

−1E,Br) satisfies

A−1EKm(A
−1E,Br) ⊆ Km+1(A

−1E,Br).

Proof: Define B̂ = TA−1B, and partition B̂ appro-
priately as

B̂ =

[
B̂1

B̂2

]
.

By using (2) and (3), it is easy to obtain

Br = T−1

[
I 0
0 0

]
TA−1B = T−1

[
B̂1

0

]
,

(A−1E)iBr = T−1

[
J−iB̂1

0

]
, i = 1, 2, · · · ,

(PA)iBr = T−1

[
J iB̂1

0

]
, i = 1, 2, · · · .

Therefore, for i = 1, 2, · · · , we have

Ki(A
−1E,Br) = T−1span

{[
B̂1

0

]
,[

J−1B̂1

0

]
, · · · ,

[
J−(i−1)B̂1

0

]}
,

Ki(PA,PABr) = T−1span

{[
JB̂1

0

]
,[

J2B̂1

0

]
, · · · ,

[
J iB̂1

0

]}
,

A−1EKi(A
−1E,Br) = T−1span

{[
J−1B̂1

0

]
,[

J−2B̂1

0

]
, · · · ,

[
J−iB̂1

0

]}
,

A−1EKi(PA,PABr) = T−1span

{[
B̂1

0

]
,[

JB̂1

0

]
, · · · ,

[
J i−1B̂1

0

]}
.

From the definition of Km(A
−1E,Br) and the above

equalities, it follows that

A−1EKm(A
−1E,Br) ⊆ Km+1(A

−1E,Br).

⊓⊔
Define T̃m = VTm+1A

−1EVm and let Tm be the
2m × 2m matrix obtained from T̃m by deleting the
last 2 rows. We observe that the results of Theorem
7 ensure that T̃m is a block upper Hessenberg matrix,
since Tij = V T

i A
−1EVj = 0 for i > j + 1, j =

1, 2, · · · ,m, i.e., T̃m has the form

T̃m =


T11 T12 · · · T1m
T21 T22 · · · T2m

T32
. . .

...
. . . Tmm

Tm+1,m

 ,

where Tij = V T
i A

−1EVj ∈ R2×2. So, we obtain the
following relation

A−1EVm = Vm+1T̃m = VmTm + Vm+1Tm+1,mE
T
m,

(14)
where ETm = [0, 0, · · · , I2] ∈ R2×2m.

Similar to the result in [31], there is a relation
between T̃m and H̃m, by which we can compute T̃m
without additional matrix-vector products with A−1E
and extra inner products of long vectors. This impor-
tant relation is given in the following theorem, which
is the same as Proposition 3.2 in [31].

Theorem 8 Let l(j) = (lik) be the 2 × 2 matrix such
that Vj = V̂jl

(j), j = 1, 2, · · · ,m. Let

T̃m = (tik)i=1,···,2m+2,k=1,···,2m,

Hm = (hik)i=1,···,2m,j=1,···,2m.

Then (odd columns)

t:,2j−1 = h:,2j−1, j = 1, · · · ,m,

while (even columns)

(j = 1) t:,2 = l
(1)
11 (h:,1l

(1)
12 + e1l

(1)
22 ),

t:,4 = (e2 − T̃1h1:2,2)l(2)22 ,

ρ(2) = l
(2)
12 l

(2)
11 ,

(1 < j ≤ n) t:,2j = t:,2j + t:,2j−1ρ
(j),

t:,2j+2 = (e2j − T̃jh1:2j,2j)l(j+1)
22 ,

ρ(j+1) = l
(j+1)
12 l

(j+1)
11 .
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Proof: For the odd columns of T̃m, the proof is the
same as that of Proposition 3.2 in [31].

We now consider the even columns of T̃m. For
j ≥ 1, it follows from (12) and (13) that

PAV
(2)
j = V̂

(2)
j+1+VjHje2j = Vj+1Hj+1,je2+VjHje2j .

(15)
By using

PA = T−1

[
J 0
0 0

]
T,A−1E = T−1

[
J−1 0
0 N

]
T,

(16)
the relation (15) can be written as

T−1

[
J 0
0 0

]
TV

(2)
j = V̂

(2)
j+1 + VjHje2j ,

which is equivalent to[
J 0
0 0

]
TV

(2)
j = T V̂

(2)
j+1 + TVjHje2j . (17)

By using (2) and (3), it is easy to verify that for
j = 1, 2, · · · ,m,

PrVj = Vj ,

i.e.,

T−1

[
I 0
0 0

]
TVj = Vj . (18)

Let the order of J be n1. From (18), it follows that
all the last n− n1 elements of TV (1)

j+1, T V̂
(2)
j+1, T V̂ (1)

j+1

and T V̂ (2)
j+1 are zeros for j = 1, 2, · · · ,m. Thus, (17)

can be reformulated as[
J 0
0 I

]
TV

(2)
j = T V̂

(2)
j+1 + TVjHje2j ,

i.e.,[
J 0
0 I

]−1

T V̂
(2)
j+1 = TV

(2)
j −

[
J 0
0 I

]−1

TVjHje2j .

(19)
It follows from PrVj = Vj that PrV̂

(2)
j = V̂

(2)
j .

Hence, by making use of (19), we have

VTm+1A
−1EV̂

(2)
j+1

= VTm+1A
−1EPrV̂

(2)
j+1

= VTm+1T
−1

[
J−1 0
0 0

]
T V̂

(2)
j+1

= VTm+1T
−1

[
J 0
0 I

]−1

T V̂
(2)
j+1

= VTm+1T
−1

(
TV

(2)
j −

[
J 0
0 I

]−1

TVjHje2j

)

= VTm+1T
−1

(
TV

(2)
j −

[
J−1 0
0 0

]
TVjHje2j

)
= VTm+1V

(2)
j − VTm+1T

−1

[
J−1 0
0 0

]
TVjHje2j

= e2j − VTm+1A
−1EVjHje2j

= e2j −
[
T̃j
0

]
Hje2j .

Then, the result for the even columns of T̃m can
be proved by the same argument as used for proving
the even column case in [31, Proposition 3.2]. ⊓⊔

To solve the projected Lyapunov equation (4), we
first apply Algorithm 6 to the extended Krylov sub-
space Km+1(A

−1E,Br) to obtain an orthonormal ba-
sis Vm. Then, by solving the reduced equation

TmYm + YmT T
m +E1B1B

T
1 E

T
1 = 0, (20)

we obtain an approximate solution Xm = VmYmVTm.
Here, B1 = V T

1 Br and E1 being the first 2 columns
of the identity I2m.

Concerning the approximate solution Xm and the
residual matrix Rm generated by applying the ex-
tended Krylov subspace method to the projected Lya-
punov equation (4), we have the following theorem,
whose proof is similar to that of Theorem 2.

Theorem 9 Suppose that m steps of the Arnoldi-like
process have been taken for Km(A

−1E,Br). Let
Xm = VmYmVTm with Ym satisfying (20) be the ap-
proximate solution of the projected Lyapunov equa-
tion (4). Then,

(a) the approximate solution Xm = VmYmVTm satis-
fies the second equation of (4) exactly, i.e.,

Xm = PrXmP
T
r ;

(b) the norm of the residual matrixRm can be formu-
lated as

∥Rm∥F =
√
2∥Tm+1,nE

T
mYm∥F , (21)

whereEm is the last 2 columns of the identity I2m.

The following result shows that the approximate
solution Xm generated by the extended Krylov sub-
space method is also an exact solution of a perturbed
projected Lyapunov equation.
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Theorem 10 Suppose thatm steps of the Arnoldi-like
process have been taken for the extended Krylov sub-
space Km(A

−1E,Br). Let Xm = VmYmV
T
m be the

low-rank approximate solution of (4), where Ym sat-
isfies (20). Then

(A−1E −∆m)Xm +Xm(A
−1E −∆m)

T

+PrA
−1BBTA−TP Tr = 0,

Xm = PrXmP
T
r ,

(22)
where ∆m = Vm+1Tm+1,mV

T
m and ∥∆m∥F =

∥Tm+1,m∥F .

Proof: We have

A−1EXm +Xm(A
−1E)T

+PrA
−1BBTA−TP Tr

= A−1EVmYmVTm + VmYmVTm(A−1E)T

+VmE1B1B
T
1 E

T
1 VTm

= Vm+1Tm+1,mE
T
mYmVTm

+VmYmEmT Tm+1,mV
T
m+1. (23)

The first equation of (22) follows by rearranging
(23) and noting that ET

m = V T
mVm. The expression

for ∥∆m∥F follows from the fact that Vm and Vm+1

are matrices with orthonormal columns. The second
equation of (22) follows from Theorem 9. ⊓⊔

The extended Krylov subspace method for
solving the projected generalized Lyapunov equation
(1) is summarized in the following algorithm.

Algorithm 11 Extended Krylov subspace method

1. Choose a tolerance ϵ > 0 and a positive integer
k1. Set m = k1.

2. Construct an orthonormal basis V1, V2 · · · , Vm of
the subspace Km(A

−1E,Br) by Algorithm 6.

3. Compute T̃m according to Theorem 8.

4. Solve the low-dimensional problem TmYm +
YmT T

m + E1B1B
T
1 E

T
1 = 0 by a direct method.

5. Compute the residual norm: ∥Rm∥F =√
2∥Tm+1,nE

T
mYm∥F . If ∥Rm∥F < ϵ, form the

approximate solution Xm = VmYmVTm, and then
stop.

6. Augment the orthonormal basis V1, V2 · · · , Vm
of the subspace Km(A

−1E,Br) into an or-
thonormal basis V1, V2 · · · , Vm+k1 of the subspace
Km+k1(A

−1E,Br).

7. Set m = m+ k1 and go to step 3.

The following result is useful for proving the
property of finite termination of Algorithm 11 for
solving the projected Lyapunov equation (4).

Lemma 12 Suppose that m− 1 steps of the Arnoldi-
like process have been taken for Km(A

−1E,Br). At
the mth step, assume that V̂m+1 has rank less than
two. Then we have

A−1EVm = VmTm,

or
A−1E[Vm, V (1)

m+1] = [Vm, V (1)
m+1]T̂m,

where T̂m is the restriction of Tm+1 to the first (2m+
1) columns and rows.

Proof: By using the expressions for Pr and PA,
A−1E in (3) and (16), and following the proof of
Proposition 3.4 in [31], we can prove this lemma. ⊓⊔

The following theorem provides the result con-
cerning the finite termination of Algorithm 11 for
solving the projected Lyapunov equation (4).

Theorem 13 Suppose thatm−1 steps of the Arnoldi-
like process have been taken for Km(A

−1E,Br). At
the mth step, assume that V̂m+1 has rank less than
two. Then we can find the exact solution of (4).

Proof: From Lemma 12, we have

A−1EVm = VmTm,

or
A−1E[Vm, V (1)

m+1] = [Vm, V (1)
m+1]T̂m,

where the columns of Vm and [Vm, V (1)
m+1] are or-

thonormal.
For the first case A−1EVm = VmTm, let

Xm = VmYmVTm,

where Ym is the solution of TmYm + YmT T
m +

E1B1B
T
1 E

T
1 = 0. Then, we obtain

A−1EXm +Xm(A
−1E)T +BrB

TA−TP Tr

= A−1EVmYmVTm + VmYmVTm(A−1E)T

+VmE1B1B
T
1 E

T
1 VTm

= Vm(TmYm + YmT T
m + E1B1B

T
1 E

T
1 )VTm

= 0.

For the case A−1E[Vm, V (1)
m+1] = [Vm, V (1)

m+1]T̂m, the
proof is similar to the first case. This completes the
proof. ⊓⊔
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4 Numerical experiments
In this section, we present three numerical examples
to illustrate the performance of the Krylov subspace
method (Algorithm 4) and the extended Krylov sub-
space method (Algorithm 11) for the projected gener-
alized Lyapunov equation (1). Algorithm 4 and Al-
gorithm 11 are denoted by KS and EKS, respectively.
For the purpose of comparison, we also present the
test results obtained by the generalized low-rank al-
ternating direction implicit method (denoted by LR-
ADI) proposed in [40].

In the following examples, we compare the nu-
merical behavior of these three methods with respect
to the dimension of computed subspace (DIM), CPU
time (in seconds) and the relative residual (RES). Here
the relative residual is defined by

RES =
∥EXmA

T +AXmE
T + PlBB

TP Tl ∥F
∥PlBBTP Tl ∥F

,

where Xm denotes the approximate solution obtained
by KS, EKS, or LR-ADI.

We express the approximate solution Xm in the
low-rank form, i.e.,

Xm = ZmZ
T
m.

For the KS method, Zm = VmLm, where Lm ∈
Rm×m is the Cholesky factor of the solution of the
reduced Lyapunov equation (8), while for the EKS
method, Zm = VmLm, where Lm ∈ R2m×2m is the
Cholesky factor of the solution of the reduced Lya-
punov equation (20). The existence of the Cholesky
factors for the solutions of (8) and (20) requires Hm

in (8) and Tm in (20) to be stable, respectively. Note
that this does not hold for general cases. However, the
following numerical experiments shows that it holds
true for our examples. For the LR-ADI method, Zm is
the low-rank factor generated by m steps of LR-ADI.

For the KS method and the EKS method, we need
to solve linear systems with the coefficient matrix A,
while for the LR-ADI method, we require to solve
linear systems with E − µA, where µ is one of the
ADI shift parameters. Note that for different iteration
steps, the ADI shift parameter may be different. In
our tests, we employ the restarted GMRES [29, 30] to
solve the corresponding linear systems. The precon-
ditioner for GMRES is constructed by the incomplete
LU factorization of the coefficient matrix with thresh-
old 0.01. In all the tests, we use GMRES(20) with
tolerance 10−12.

We use the heuristic algorithm proposed by Penzl
[26] to compute the suboptimal shift parameters for
the LR-ADI method. This algorithm is based on the
Arnoldi iterations [29] applied to the matrices A−1E

and PA, see [40] for the details. In the following tests,
we use 15 shift parameters for the LR-ADI method.
If the number of shift parameters is smaller than the
number of iterations required to obtain a prescribed
tolerance, then we reuse these parameters in a cyclic
manner.

We will use

∥Rm∥F =
√
2∥hm+1,me

T
mYm∥F < 10−10

as the stopping criterion for the KS method, and

∥Rm∥F =
√
2∥Tm+1,mE

T
mYm∥F < 10−10

as the stopping criterion for the EKS method. Since
the residual for the LR-ADI method does not admit
such a simple expression as the KS method or the EKS
method, we use

∥zm∥
∥Zm−1∥F

< 10−5

as the stopping criterion for the LR-ADI method.
Here, zm is the update generated at step m in the LR-
ADI method. For the details of the LR-ADI method,
the interesting reader is referred to [40].

For these three methods, the low-rank expression
Xm = ZmZ

T
m can be employed to calculate the rela-

tive residual RES, see, for example, [26].
All numerical experiments are performed on an

Intel Pentium Dual E2160 with CPU 1.80GHz and
RAM 2GB under the Window XP operating system
and the usual double precision, where the floating
point relative accuracy is 2.22× 10−16.

4.1 Example 1

For the first experiment, we consider the 2D instation-
ary Stokes equation that describes the flow of an in-
compressible fluid

∂x

∂t
= ∆x−∇ρ+ f, (ξ, t) ∈ Ω× (0, te),

divx = 0, (ξ, t) ∈ Ω× (0, te)

with appropriate initial and boundary conditions.
Here x(ξ, t) ∈ R2 is the velocity vector, ρ(ξ, t) ∈ R
is the pressure, f(ξ, t) ∈ R2 is the vector of external
forces, Ω ⊂ R2 is a bounded open domain, and te > 0
is the endpoint of the considered time interval.

The spatial discretization of this equation by the
finite difference method on a uniform staggered grid
leads to the descriptor system

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

(24)
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This example for the projected generalized Lyapunov
equation was presented by Stykel, see [38, 39, 40] and
the references therein. The coefficient matrices in (24)
are given by

E =

[
I 0
0 0

]
∈ Rn×n, A =

[
A11 A12

A21 0

]
∈ Rn×n,

where A11 = AT11 and A12 = AT21. Since A is sym-
metric and E is positive semidefinite, the finite eigen-
values of λE − A are real. These matrices are sparse
and have special block structure. Using this structure,
the projectors Pl and Pr onto the left and right deflat-
ing subspaces of the pencil λE − A can be expressed
as

Pl =

[
Π −ΠA11A12(A21A12)

−1

0 0

]
,

Pr =

[
Π 0

−(A21A12)
−1A21A11Π 0

]
,

where Π = I−A12(A21A12)
−1A21 is a projector onto

the kernel ofA21 along the image ofA12. The product
PA in this case is given by

PA =

[
ΠA11Π 0

−(A21A12)
−1A21A11ΠA11Π 0

]
.

We use the spatial discretization of the Stokes
equation on the square domain [0, 1] × [0, 1] to lead
to problems of order n = 7700, 14559, 30400. The
matrix B ∈ Rn is chosen at random.

In the case n = 14559,A21 = AT12 ∈ R4899×9660,
A11 ∈ R9660×9660, the matrix A has 67336 nonzero
elements, and A21A12 has 24215 nonzero elements.
Figure 1 and 2 shows the sparsity structures of the ma-
trices A and A21A12, respectively.

The numerical results for Example 1 are reported
in Table 1. Table 1 shows that for this example, the
LR-ADI method needs the least dimensional subspace
for reaching the the stopping criterion while in terms
of the CPU time, the EKS method with the inner itera-
tive method GMRES(20) has the best performance. It
clearly indicates that the EKS method is more efficient
than the LR-ADI method for this example. The EKS
method requires less subspace dimension than the KS
method for this example.

4.2 Example 2

For the second experiment, we consider a holonomi-
cally constrained damped mass-spring system with g
masses as in [39]. The ith massmi is connected to the

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

A, nz = 67336

Figure 1: Example 5.1. Sparsity structures of the matrices A.

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
21

A
12

, nz = 24215

Figure 2: Example 5.1. Sparsity structures of the matrices A21A12.

(i + 1)th mass mi+1 by a spring and a damper with
constants ki and di, and also to the ground by another
spring and damper with constants κi and δi. More-
over, the first mass is connected to the last one by a
rigid bar and it can be influenced by a control. The
vibration of this system is described by the descriptor
system (24) with the matrices

E =

 I 0 0
0 M 0
0 0 0

 , A =

 0 I 0
K D −NT

N 0 0

 ,
where M = diag(m1,m2, · · · ,mg) is the symmetric
positive definite mass matrix, K ∈ Rg×g is the tridi-
agonal stiffness matrix, D ∈ Rg×g is the tridiagonal
damping matrix, and N is the matrix of constraints.

The spectral projectors Pl, Pr and the {2}-inverse
P of E can be expressed by the blocks of E and A,
see [40].
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Table 1: Example 1. Performance comparison of KS,
EKS and LR-ADI. Linear systems with A or E − µA
were solved by GMRES(20). Incomplete LU factor-
ization with threshold 0.01 was used to construct pre-
conditioners for GMRES(20) with tolerance 10−12.

n Method DIM CPU RES

7700
KS 76 26.32 6.5582e-10

EKS 50 11.59 6.6069e-11
LR-ADI 20 19.07 1.6664e-10

14559
KS 86 79.46 5.8458e-10

EKS 56 27.76 1.0602e-10
LR-ADI 23 54.60 3.0183e-10

30400
KS 106 361.74 2.3407e-10

EKS 64 125.31 3.1694e-10
LR-ADI 32 243.23 4.1225e-10

In this experiment we take

m1 = m2 = · · · = mg = 100,

k1 = k2 = · · · = kg−1 = 2,

κ2 = κ3 = · · · = κg−1 = 2, κ1 = κg = 4,

d1 = d2 = · · · = dg−1 = 5,

δ2 = δ3 = · · · = δg−1 = 5, δ1 = δg = 10.

For g = 2000, 6000, 10000, we obtain three descrip-
tor systems of order n = 4001, 12001, 200001 with
B ∈ Rn.

The numerical results for Example 2 are re-
ported in Table 2. Table 2 shows that for this ex-
ample, in terms of the subspace dimension, the LR-
ADI method is the best one while in terms of the
CPU time, the EKS method has the best perfor-
mance. Moreover, EKS+LU needs less CPU time than
EKS+GMRES(20) for n = 4001, 12001. We also
note that the EKS method requires the same subspace
dimension as the KS method for this example.

4.3 Example 3

We now do the same experiment as in Example 2 ex-
cept that

m1 = m2 = · · · = mg = 100,

k1 = k2 = · · · = kg−1 = 2,

κ1 = κ2 = · · · = κg = 4,

d1 = d2 = · · · = dg−1 = 3,

δ1 = δ2 = · · · = δg = 7.

Table 2: Example 2. Performance of comparison
of KS, EKS and LR-ADI. Linear systems with A or
E − µA were solved by GMRES(20). Incomplete
LU factorization with threshold 0.01 was used to con-
struct preconditioners for GMRES(20) with tolerance
10−12.

n Method DIM CPU RES

4001
KS 40 2.03 1.0090e-09

EKS 40 1.67 8.5209e-10
LR-ADI 23 44.56 1.1226e-10

12001
KS 40 4.17 1.0090e-09

EKS 40 3.82 8.5209e-10
LR-ADI 23 252.95 1.1226e-10

20001
KS 40 7.68 1.0090e-09

EKS 40 7.35 8.5209e-10
LR-ADI 23 597.12 1.1226e-10

The numerical results for Example 3 are pre-
sented in Table 3. Table 3 shows that for this example,
the EKS method with the inner iterative method GM-
RES(20) has the best performance in terms of the CPU
time.

5 Conclusions
In this paper, we have proposed two iterative methods,
the Krylov subspace method and the extended Krylov
subspace method, to solve the projected continuous-
time generalized Lyapunov equation. It has been
shown that every one of the iterates generated by these
methods satisfies the projection condition. Moreover,
the residuals for each of these methods have simple
expressions. Numerical experiments are presented for
the performance comparison between the newly pro-
posed iterative methods and the LR-ADI method. It
is shown that in terms of the CPU time, the extended
Krylov subspace outperforms the LR-ADI method.
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Table 3: Example 3. Performance of comparison
of KS, EKS and LR-ADI. Linear systems with A or
E − µA were solved by GMRES(20). Incomplete
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struct preconditioners for GMRES(20) with tolerance
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LR-ADI 22 513.22 7.7008e-12
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