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Abstract: In this paper, the multistability analysis of the competitive neural networks with time-delay
are investigated based on the stability theory, by selecting properly the system parameters, using solutio
matrix property and inequality technique, several novel sufficient conditions ensuring the existence
and exponential stability of equilibria are obtained when the equilibrium point located in the saturation
region. These conditions can be directly derived from the synaptic weights, the strength of the external
stimulus and the external input of the competitive neural networks, and be verified easily. In addition,
four examples are given to show the effectiveness of the results.
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1 Introduction states is the best situation. Mathematically, this

Competitive neural networks with different time
scales are proposed in [1], which model the dy-
namics of cortical cognitive maps with unsuper-
vised synaptic modifications. In this model, there
are two types of state variables, that of the short-
term memory (STM) describing the fast neu-
ral activity and that of the long-term memory
(LTM) describing the slow unsupervised synap-
tic modifications. The competitive neural net-
works with different time scales are extensions
of Grossberg’s shunting network [2] and Amari’s
model for primitive neuronal competition [3].
For neural network models without considering
the synaptic dynamics, their stability has been
extensively analyzed. Cohen and Grossberg [4]
found a Lyapunov functional for such a neural
network, and derived some sufficient conditions
ensuring absolute stability. The theory on the dy-
namics of the networks has been developed ac-
cording to the purposes of the applications. On
the one hand, in the applications to parallel com-
putation and optimization problem, the existence
of a computable solution for all possible initial

E-ISSN: 2224-2880 1048

means that an equilibrium of the networks ex-
ists and any state in the neighborhood converges
to the equilibrium, which is called “monosta-
bility” of networks. On the other hand, exis-
tence of many equilibria is a necessary feature
in the applications of neural networks to associa-
tive memory storage, pattern recognition, and de-
cision making. The notion of “multistability” of
networks describes coexistence of multiple sta-
ble patterns such as equilibria or periodic orbits.
In the past few years, the monostability analysis
of competitive neural networks with time-varying
and/or distributed delays has been developed [5-
10]. Recently, the multistability analysis of neu-
ral networks has attracted the attention of many
researchers [11-18].

In this paper, the Multistability analysis of
the competitive neural networks with time-delay
when the equilibrium point located in the satura-
tion region are investigated based on the stability
theory.

We consider the following competitive neu-
ral networks with time-delay:
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. N
STM : ¥ — —qua;(t) + 3 by f((t))
7j=1
p
3 it = )+ B o
J= ”
"‘]mi - 1 2 o N’
LTM : dm“(t = —mi;(t) +y; fi(z:i(t)),
=12 N = 1,2,

\
(1)
wherez;(t) is the neuron current activity level,
a; > 0 is the time constant of the neuron,
fi(z;(t)) is the output of neuronsm;(t) is
the synaptic efficiencyy; is the constant exter-
nal stimulus,B; is the strength of the external
stimulus, € is the time scale of STM staté,;
andc;; represent the synaptic weight of delayed
feedback,/; is the constant inputr;;(t) corre-
sponds to the transmission delay and satisfies
0 < 7;(t) < 7;;(m; is a positive constant).
After setting

— Zmij (t)y; =y ma(t),
wherey = (y1,yo, -, yp)T,
mi(t) = (mil(t)> miZ(t)v T >miP(t))T

and summing up the LTM ovef and the fast
time-scale parameteris also assumed to be unit,
the networks (1) can be rewritten in the following
form

p
dwl( )

STM 2540 = —ar(t) + 3 by 4(0)

+ Z Cijfj(l"(t
LTM dea()

—75(t))) + Bisi(t) + I,
—s;(t) + afi(zi(t)),

. (2)
N, a0 = Zy32»>0.

j=1
The initial conditions associated with system
(2) are of the form

where; = 1,2, ---

zi(t) = pi(t),t € (—00,0],i=1,2,---, N,
si(t) = i(t),t € (00,0, =1,2,---, N,

(3)
where ¢;(t) and ¢;(t)(i = 1,2,---,N) are
bounded and continuous function oh &
(_0070]'
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In the following discussion, we assume that
the output function is a piecewise linear function
filz) = — e —=1]],j = N.

1
§[|Zlf—|—1| 1727"'7

2 Preliminaries

For the convenience, we introduce some nota-
tions.

bi"‘f‘Ci»' . .
Ja : ) t 7é J
P”:{M i 4,7 =1,2,--- N,
P Py Pny
I P )
Py Py Pny
[ P P P11
Py Py P19
P(_k> — Plk P2k Pk—lk
—Pr Pein Py
—Pr2 Ptz Py
—Pii Prik Pni |’
—Piy Pryan Pyn |
P(—k;—k) =
[ Pu P11 — P
Plk—l Pk—lk—l _Pkk—l
— Py, —Pe 1 P
Plk‘f‘l Pk—1k+1 _Pkk—i-l
L PlN Pk—lN _PkN
Prin Py ]
Pryik— Pyi_1
—Pryk —Pyi |,
Pk-‘rlk—i-l PNk+1
Pryin Pyy
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Pll P21
Py Py
—P. —P
P(_k7 _lu _kv _l) = . lk . %
Py =Py
| Piv Pan
— P —Py Py ]
— P — P Pno
Py, — Py, —Pn;
— Py Py —Pny
— Py —Pin Pyn ]
wherek < [,
I = (11/a17f2/a27 c '7IN/CLN>T7
I(_k) = (Il/ah' : '7_Ik/ak7' : '7IN/CLN)T7
I(—kh —kz) = (Il/alu 12/a27 Tt
- ]kl/ak17 te '7_Ik2/ak27' : '7IN/aN)T7
and
Ex=(1,1,---, )T y.
For vectorU = (uy,ug, -+, uy)’ andV =

(v1,v9, -+, vn)T, U >V means that each pair of
corresponding elements 6f andV” satisfies the

inequalityu; > v;,i =1,2,---, N. Let
X(t) = (x1(t), 22(1), - -+ an ()" € RY,
S(t) = (s1(t), s2(t), - -, ())TeRN
X* = (af, 23, ,x}k\,) ERN,
S = (517827 vS*N)T € ]RNa
Z(t) = (XT(t), ST(1)",

A (X*T S*T)T

Definition 1 The pointZ* = (X*7, 5T ¢
R?N is called an equilibrium point of system (2),
if it satisfies the following equations

N
—a;xf 4+ > (bij + cij) fi(

j=1
—sf+afi(xf)=0, i=1,2,---,N.

x}) + Bisj + 1; = 0,
(4)
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From (4), we can obtain

N
T = i[Z(bw + ng)fy( ) + aB; fi(z}) + 1],

st =af;( ;-*), i=1,2,---,N.
(5)
Definition 2 Let
Q= {H( —1)% x (1, 4+00)' 7,
51_1or0l_12 N},

then(2 x ) are said to be saturation regions of

systen{2) where
(o0, —1) = (— ~1)"x (1, +00)",
(1, +oo) = (—o0 ) X (1, 400)".

Hence ) is made up o2 elements.
In the following, denote

Q1 = {[T(=00, ~1)" x (L +00)1,

=1

51_ 1,0=1,2,---,N} = (=00, —1)",

{H( —1)% x (1, 400)' 7,

51_0 1=1,2,---,N} = (1, +o0)",

_(_OO> _1) = (1700)7 _(1700) = (—OO, _1)7
(=00, —1)"" = { (_(Tc’x?)%)’ iiij
fori,k=1,2,---, N.
(kD (_OO> _1)> i 7& k‘,’l 7& l>

(=00, ~1)° { (1,00), 1=k ori=I,

fori,k,l=1,2,--- N.

Definition 3 Define ®Y as the set of V-
dimensional bipolar vectors, i.e.,
= {U | U= (u17u2>”'>uN)T € RNv
uy=1lor—1,7=1,2,--- N}

Hence,®" is made up o2V elements. For any

(dl, dg, RN dN)T € %N, let
_ (1700)7 dl
D(d;) = { Com 1) d= 1 LE{LZ N
Consequently,d,, ds, - - -, dy)T and
N
[] D(d;) = D(dy) x D(ds) x - - x D(dy)
=1

1=
represent a one-to-one correspondence.
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Definition 4 The point Z* is said to be an iso-
lated equilibrium point of systeif2) if there ex-
istsd > 0 such thatZ* is the only equilibrium
point of systen(2) in

{Z|||1Z — z*|| < 6,2 € R*}

whereZ = ([L’l, Xo, +*,TN,S1,82, ", SN)T.
Obviously, the equilibrium point in the satu-
ration regiont) x €, then it is always an isolated

equilibrium point.

Definition 5 For vector function U(t) =
(ur(t), ua(t), -, un(t))” andn x n order ma-

trix G = (gij)nxn, We define norm as following,
respectively

l 1
1U(t) E]m N2 G = g2

,7=1

Definition 6 The equilibrium pointZ* of system
(2) is said to be locally exponentially stable in
region D, if there exists constants> 0,3 > 0
such that
1Z(t:to, ¢) — Z*|| < Bllllige™*)

whereZ(t; to, ¢) is a solution of systert2) with
the initial conditiong(9) € C((—o0, to], D).

,t > g,

3 Main results

In this section, we will derive some sufficient

conditions to ensure the isolated and locally ex-
ponentially stable equilibrium points located in

the saturation region. Without loss of generality,
in the following discussion, we always assume
bij > O,Cij > O,BZ > O,IZ > 0 anda > 1.

Theorem 7 For system(2), if there exists equi-
librium point located in the saturation region,
then the equilibrium pointis locally exponentially
stable.

Proof. For V(dy,ds,---,dy)T € RY, denote
N

[1D(d:) € Q.

=1
librium point located in the saturation region
Qp x Qp, let one of its equilibrium point is

If there exists equi-
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Z* = (X7, s*NT X* € Qp, then we have
f(z}) = d; and

—a;x} —i—Z(ijLcZ])d + B;si+ 1, =0,

—$Z+a0;_ 0, 2=1,2,---,N.
6
I X(0,X( — () € D then f(ai(t) =

d;, f(x;(t — 7)) = d;, from (2),

N
%ﬁ:—%ﬁﬂ+2@ﬁmm@+&ﬂﬂ+%
J:

= —si(t)+ad, i=1,2 -,

dSi (t)
dt

N.

(7)
From (6) and (7),

d(zi(t)—x}) % %
gD = malwi(t) — ) + Bi(si(t) - s0)
N = (55— 8)), i=1,2,--

Let

It follows from (8) that

dt
From (9), we obtain
Yi(t) = eM'Y;(0). (10)

By calculation, we can obtain the eigenvalue of
Ai
)\1 = —daj;, >\2 = —1.

Corresponding eigenvector of the and \,, re-
spectively

‘/1 = (17 O)T> ‘/2 = (17 (a'i - 1)/BZ)T

Thus, we obtain the fundamental solution matrix
of system(9) is
e—(lit 6—t
[ 0 ale—t } :

B;

¢i(t) =

By calculation, we can obtain
a;—1
B |
0 1
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Sincee?it = ¢(t)¢~1(0), we can obtain
eAit _ e—ait aiB_il (e—t _ e—aﬂf)
0 et

Thus, we have

HeAit — [6_2ait—|—6_2t+ (%)2(64

< [%] [ —2ait_'_e—2t]%
C|Ll-_—11 +Bi]6—5t < Me—ét’
a;—1|

. e_ait)z] i

(11)
whered = min {1, q;}, and
1<i<N

Volloi— 17+ ]
a; — 1|

> 1

M = max {
1<i<N |

From (10) and (11), we obtain
IY:(Oll < M[Y;(0)[le™*",t > 0.
Thus, we have

2i(t) — 232 + |si(t) — 572
< M2(|i(0) — 2 + [4:(0) —

fort>0,i=1,2,---,N.
Then we have

sife

1Z — Z*|| < M||¢(0)||e™,t >0,Z € R*,

where
N
19(0) Z [li(0) — 27 + [4:(0) — s7[°])2

from Definition 4 and Definition 6, the equilib-

Yunquan Ke, Chunfang Miao

Proof. We choose

* * * * k% * \T 2N
Z —(1’1,1'2,"',I'N,Sl,Sz,"',SN) ER

such that

—a;x; + Z(bzJ +¢ij) +aB;+ 1, =0,
i=1
—sf+a=0, 1=12,---,N.
(12)
Sincea,- > 0,a > 17bij > O,Cij > O,B, >
0,I; >0(z,5 =1,2,---,N), then from (12), we
obtain

1 N
:—E (bij +cij) +aB; + L], s =a,
a;
J=1

ie.,
X*:PEN+IZPEN—I>EN, (13)
S* = (o, «x a)l > ey.
From (13), we have:; > 1,57 = a > 1,1 =

1,2,---, N, and

N
—a;ry + Z(bz‘j + cij) fi (7

j=1

= —a;x; + (b,]+c”)+aB +1; =0,
j:
_Si +afz( ):_Si +a—0’
(14)
fori=1,2,---,N.
Hence,Z* = (xf, a5, -+, aky, S}, 85, -, sy) L IS

an equilibrium point of system (2) located in the
saturation region

rium point Z* is isolated and locally exponen- O x Q) = (1, +00)N x (1, +00)".
tially stable located in the saturation region.O We choose
Theorem 8 For system (2), if Z* = (zh, a5, T, 85,85, -, sh) T € R
1) PEN —I> Ey;
2) there exists € {1,2,---, N} such that such that
Vk e {1,2,--- N}, k #1,
N
N —a,-x;-k — Z(b” + b”) — OéBi + ]Z = 0,
by ) — (b B +1I < =1
»:12#( 5t ay) = (et aw) Bl < a —sf—a=0, i=12- N
7 _ (15)
then system (2) has neither more nor less than 2 From (15), we obtain
isolated and locally exponentially stable equilib-
rium points located inf2; x ;, andQ_; x Q_y, X*=—-PEx+1< —Ey, 16
respectively. S* = (—a,—a,---,—a)T < —Ey. (16)
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From (16), we haver; < —1,sf = —a <
-1, i=1,2,---,N,and
—Wz+zx%+ﬁMﬂ()+Bs+J

Jj=
Z (a” —|— b”) OzBZ‘ + [z = 0,

J:
—s;k—l—ozfz( =—sr—a=0,

= —a;T

(17)

fori=1,2,---,N.
Hence,Z* = (3,5, -, 2}, 51,85, -+, 8y)" IS
an equilibrium point of system (2) Iocated |n the
saturation regionf2_; x Q_; = (—oo, —1)¥
(—o0, 1)V,

On the other hand, according to conditijrof
Theorem 8, there exisfse {1,2,---, N}, such

thatVk € {1,2,--- N}k £ 1,

N

Z (bij + cij) — (big + ) + aB + ) < ay.
J=T ik

Assume that there exists another equilibrium

point X = (Zy,Z9,--,Zy) € Q, S =
(51,52,"',5]\7) € Q, and X € Qq, X € Q_q,
without loss of generality, assume

X e Q(l) = D(dl) X D(dg) X - X D(dl_l)

X D(1) x D(dj41) x -+ D(dy),
thus we haver; > 1,5 = a(l < N). Then
there exists: € {1,2,---,N},k # [, such that

d, = —1(otherwise, we hav& € ;) and
N
T = 30 (b + biy) f5(Z5) + Bis + 1))
=1
NJ
= [Z(blj —+ Cl])d -+ Blsl —+ Il]
j=1
1 N
< a—[ Z (bij+cij) — (b +cw)+aB+1)] < 1,
bj=Lizk
(18)
fori =1,2,--- N,i.e.,z; <1, thisisin contra-

diction withz; > 1.
Then the system (2) has no another equilibrium
point. Hence, Theorem 8 holds. O

Theorem 9 For system (2), if there exists
q,k€{1,2,3,---,n}, k # q, such that
1) P(—]{?; —/{Z)EN — 1 > Ey;
2)Vie{1,2,3,--- N}, l#k,l#q

N

Z (bgj + cq5) —

j=1,j#1

(by + cq) +aB, + 1, < a,,
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then system (2) has neither more nor less than 4
isolated and locally exponentially stable equilib-
rium points located in the saturation region.
Proof. If the conditions of Theorem 3. hold,
then

From Theorem 8, we know system (2) has 2 iso-
lated and locally exponentially stable equilibrium
points located in the saturation region x €y,
andQ_; x Q_, respectlvely

Fork € {1,2,3,---,n},k # ¢, we choose
7% = (xf,x§,~-~,x7v,s’{,s§,-~-,57V)T c RN,
such that
N
—aix; + 3o (b +cy)
j=1.j#k
_(bzk + Cik) + BZS;'< + ]i = O,
sf=a,i=1,2,--- N,i#k,s; = —a,
(19)
we have
(z3,25,---,2)" = P(=k)ex + 1. (20)
From (20), we can obtain
(x’{,xé,---,—xz,---,x}kv)T
= P(—k;—k)Eyx + I(—k) (22)
> P(—]{?; —/{Z)EN — 1> FEy.
From (19) and (21), we obtain
. >1, i#k .
%—{<_Li:k,2—LZ~3N
B R L I S
! —a< -1, 1=k

Thus, we have

;

N
—a;xf 4+ > (bij + cij) fi(

=1
N
> (b +cij)

:—azx;W—
J=1j#k
(Zk—l—clk)%-Bs +1; =0,
| —si+afi(z;) =0, i=12--- N.
(22)
Then,
Z* = (at,ah, - w85, 85, sh) € RPN
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is an equilibrium point of systems (2), and

N (ik)
Z* € Qe = [1[—(=00,—1)"""]
=1
m (=00, ~1)""] e @ x Q.
It is similar to prove that-Z* is also an equilib-
rium point of systems (2), and
N (ik)
—Z* € Quy = [][(—o0, —1)""]
=1
x H (=00, —1)"M] e Q@ x Q.

If the conditions2) of h eorem 9 hold, i.e., for

vie{1,2,3,---, N} 1 #k,1# qsuch that

N

> by + cgg) = (b + cq) + @By + 1, < ag,
i=LiAl

assume that there exists another equilibrium
point X = (z1,Z2,---,Zny) € Q and S =
(81,89, +-,8y) € €, without loss of general-
ity, assumeX € Qg = D(di) x D(dg) X

- X D(dg—1) x D(1) x D(dg+1) % ---D(dn),
e, z, > 1,5 = «. Then, there eX|st$ e
{1, 2,,3 N}l;ék;l;éq,suchthatll
(otherwise,r € orz € ). Since

[%(bqj + ¢i) [i(%5) + By + 1]

.Q
,_.

Jj=
[ (bq + ¢gj)dj + BySq + 1]

N
[ Z#(bqj + cgj) = (bg + cq) + aBy + 1]
1 j=1

?Mz

< 1.
(23)

From (23), we obtairx, < 1, this is in contra-
diction withz, > 1. Then the system (2) has no
another equilibrium point.

Hence, systems (2) has neither more nor less
than 4 isolated and locally exponentially stable
equilibrium points located in the saturation re-

gion

(—OO, _1)N X (—OO, _1)N7

(1, +00)" x (1, 4+00)¥,
[ [=(=o0, =) x TT[=(=00, =1)"*"],
and -
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N 5Gi) n
Q[(—m,—l) ] % [[1[(
res_pectively. -

~1)"]

Y

Theorem 10 For system (2), if there exists €

{1727"'7N}7 Vh € T = {T17T27"'7TM} -
{172737"'7N}7Tk 7é Q(k’ - 1727"'7M)7 and
Ty <Ty <---<Ty,M < N — 1, such that

1)P(—h;—h)EN—I>EN;

AWl e{1,2,3, - N} — T — {q}.

N

Z (bgj + cq5) = (bg + cqr) + By + Iy < ag,
J=Lj#l

orvVm,r € T,m #r,
N
(bqj""cqj) -

>
j=Lj#m,r

— (bgr + ¢qr) + @B, + 1, < ay,
then system (2) has neither more nor less than
2 + 2M isolated and locally exponentially sta-
ble equilibrium points located in the saturation
region.

(qu + Cqm)

Proof. If the conditions of Theorem 10 hold,
then forvh € T = {11,y ---,Tu} C
{172737"'7N}7Tk ;é Q(k = 1,2,"',M),We
have

P(—h; —h)EN — 1> FEy.

From Theorem 9, fowh € T, we know system
(2) has 4 isolated and locally exponentially sta-
ble equilibrium points located in the saturation
region. Sincel’ = {11, Ts,---, Ty} is made up
of M elements, thus, system (2) has- 2M iso-
lated and locally exponentially stable equilibrium
points located in the saturation region

(1,400)™ x (1, +<>O)

(—OO, _1)N (

o0, 1) x [T[- (o

=1

o0, ~1)P™] ﬁ[( s0, —1)"),

forh =T, Ty, Tos.
If the conditionsQ) of Theorem 10 hold, i.e., for
Vi e {172737"'>N} _T_{Q}a

N

Z (bgj + cq5) —

J=Lj#l

)N

Y

~1)""]

Y

(by + cq) +aB, + 1, < a,,

orvm,r € T,m #r,
N
> (bgy +cq) —

j=Lj#m,r

(bgm + Cqm)
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— (bgr + Cqr) + By + 1, < ay.
Assume that there exists another equilib-
rium point X = (Z1,%9,---,Zy) € €, and
S = (5,8, -,5y) € €, without loss of
generality, assumg& € Q) = D(d) x D(ds) x
<o X D(dg—1) X D(1) x D(dg41) x -+ D(dy),
e, z, > 1,5, = «, then, there exists
I e {1,2,3,---,m} — T — {q}, such that
d; = —1, or there existn,r € T,m # r, such
thatd,, = —1,d, = —1 (otherwise,X is only
one among@ + 2M equilibrium points above).
Since

Iy = %[ﬁ:(bqj + ¢4j) [(Z5) + BySq + 1]

Q
[y

=z

j
= a_lq[ l(bqj + Cq5)dj + BySq + 1]
j

N
< a_lq[ > (b + cq) = (b + cq) + By + 1]
J=Lj#l
< 1.
(24)
or

(bqj + qu>fj(jj> + Bysq + 1]

j
N
= a_lq[Z(bqj + cqj)dj + By5g + 1]

s

(bgj + cq5) — (bgm + Cqm)
J=Lj#m,r
—(bgr +cqr) + By + 1] < 1.

<.
Il
,_.

ag|

(25)
From (24) or (25), we obtair, < 1, this is in
contradiction withz, > 1.

Hence, systems (2) has neither more nor less

Yunquan Ke, Chunfang Miao

then system (2) has neither more nor less than
24+2(N—1)+(N—-1)(N—2) isolated and locally
exponentially stable equilibrium points located in
the saturation region.

Proof. If the conditions of (26) hold, then for
VI, T € {1,2,3,---,N},T # T,andT, T # q,
we have

P(~T;~T)Ey — I .
> P(-T,-T;-T,—~T)Ey — I > Ey.

Thus, the conditions) of Theorem 10 hold.
From Theorem 10, we know system (2) las
2(N — 1) isolated and locally exponentially sta-
ble equilibrium points located in the saturation
region

(1, +00)™ x (1, +00)",
(_007 _1)N X (_007 _1)N7
N

[T (~o00, —1)"""] x

=1 7
and
N

[—(—OO, _1)5(iT)]v

—

Il
—_

=1 =1
T e{1,2,---,N},T # q, respectively.
For Vk,l € {1,2,3,---, N}, k # [, andk,l #
g, we choose

Z" = (.CL’T,.T;, o '7:(:7\/7 81{7 837 Ty S*N)T7
such that

[(—o00, — 1] x [[[(~o0, ~1)*™,

N
—aixi + Y (b +cij) — (bin + cir)
J=1j#k,l
—(by +cy) + Bis; + 1, =0,
:a7i: 1727"'7N7i7£k7l7

(28)

stable equilibrium points located in the saturation from (28), we can obtain

region.

Theorem 11 For systems (2), if there exisgse
{1,2,---,n}, such that

1) Vk,l € {1,2,3,--- N}k # [, and k #
4,1 # q,

P(—k, -1, (26)

2)v97h7m € {172737"'7N}7g7h7m 7& q,
andg, h, m are not equal one another

—k‘, —Z)EN —I> EN;

N
> (agi +bg) — > (ag +by;)
Jj=Lj#g,h,m Jj=g,h,m
+aBg + 1, < aq,
(27)
E-ISSN: 2224-2880 1055

(xj,x§,~-~,—mz,~-~,—m7,-~-,zj‘v)T
= P(—k,—l;—k,—l)Exy + I(—k,=1) (29)
> P(—k,—l;—k,—)Exy — I > Ey.
From (28) and (29), we have
. > 1, 1 £kl
Ti = <-1, i=kori=1"
. a>1, 1 #£k,l
% = —a<—1, i=kori=]I,

fori=1,2,---,N.

ThUS,Z* c Q(—k,—l) — [_(_007_1)5(1'“)] y

—

=1
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lj—V[ [~ (=00 _1)5<ju)] and equilibrium points above). Since
j=1
L N
Ty = E[Z(bqj + ¢g) fi(%5) + By + 1]
( N j=1
* * * N
i+ by ) f(a) + Bsi + L = &[5 (b + o) + By + 1
N J=
= —a;x; + bij + ¢ij) — (bir + ¢ 1 3 , .
jZI%M( j i) — (bir k) < []_1 gé:ghm(bqj + ¢gi)
—(ail—Fbil)—'—BiS?—FIi:O, _ . b + e +aB ‘|‘I
\ —sj—kafz(gj‘:‘):(]’ 7;:1727"'7]\[7 ]:gz (‘U q]) ! q]
(30)
i.e., Z* is an equilibrium points of systems (2)
Igcz)(catec)i n the saturation region 6k x we obtainz, < 1, this is in contradiction with
—k=): z, > 1.
. _— . . q
_Itis similar to prove that-Z* is also an equi- Hence, systems (2) has neither more nor less
librium point of systems (2), and than2+2(N—1)+(N—1)(N—2)isolated and lo-
—Z" € Quy cally exponentially stable equilibrium points lo-
N i N ted in the saturation region
= —00, —1)8"*"] x —00, —1)3Y*7. ca
Hltoe = oo =07 (1,+00)" x (1, +00)",
on he other hand, sincé(k,l)|k,l € (;OO’_l) % (_OO’_lj)V ’
{1,2,3,---,N},k # [, andk,l # ¢} is made [T[—(=o00, =1)*“"] x [[[~(—o00, =1)"""],
up of(N — 1) (N — 2) elements and take note i=1 i=1
(o0, =17 = (=00, —=1)""*" | thus, system R 112 TR ORI
(2) has(N — 1) x (N — 2) isolated and locally il;[l[( 00, —=1)" ] X }31[( o0, =1)"],
exponentially stable equilibrium points locatedin for7 =1,2,3,---, N,T # ¢, and
the saturation region N N N J
U U {H[—(—oo,—l) ]
k=1k#q l=k+1l#q i=1
N 7
U 0 s I oo =0 U o0, 1))
k=1k#q l=k+1l#q i= Z]=Vl " i=1
N ; N o tively.
 TT (=00, —1 §GkD o —1 SCkD X ]:[[( —1)° "]}, respec
ooy U e -0
x TI[(=o00, =1)*""]},
- 4 Numerical Simulation
respectively. In this section, we give four examples to show our

. . results validity. Consider the following competi-
If the conditions 2) of Theorem 11 hold, i.e., it _

for Vg.hom € {1.2.8. Nb.g.hom # g tive neural networks with time delayS(= 4)

which are not equal one another, such that (27) ) A

holds. Assume that there exists another equi- day(t)

librium point X = (71, 7a,---,2y) € 2, and = o (t) + 2 by fi(e;(1))

S = (51, 5, -+,5n) € €, without loss of gener- 4

ality, we assumeX € Q) = D(d;) x D(ds) x + ;cljfj(fcj(t —71;(t)) + Bisi(t) + I,

-+ X D(dg—1) x D(1) X D(dg41) x --- D(dy), = 4

i.e.,z, > 1,5, = a. Then, there exisy, h,m € W2) — oy (1) + 3 boj fi(4(t))

{1,2,3,---,N},g,h,m # g, such thatd, = =1

—1,d, = —1, andd,, = —1 (otherwise,Z is N (e
only one amon@ +2(N — 1) + (N — 1)(N —2) +g§1 3032yt =7y (0)) + Basa(£) + Lo
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40 — gy (0) + 3 by fy o (0)
43 a8yt = my(0)) + Buss(0) + s,
40 — —agzift) + 32 b (05(0)
=3 cufis (0 = () + Busa(t) + o
B0 — s (1) + afi(w (1),
20 — sy (1) + afo(wa(t)),
50 — sy (t) + afs(ws(t)),
| 0 = sy () + afulaa(t)),
(31)

wheref;(z) = 3|z + 1| — [z —1]],j = 1,2,3,4.
Example 1. If we set

a =2, a; =8, as = 2, as =3,
1 _
ag =5, bn=1, biz =35, biz=3,
1 _ 1 1 _ 3
by = 1 bo1 = 2 bay = 1 baz = 1’
1 _ 1 1 _ 1
boy = §> b3 = 1 bgy = 2 bsz = ?
b — 7 b - ]_ b = l b = =
34 4 41 ) 42 2’ 43 7
by = 3, =1, €12 =35, C13= 3,
c 7 Cop = L c 3 c 1
14 — 7> 21 — 9> 22 — 23 — o
7 -3 1 7
024—§, C31 = 7> C32 =35, (33 =3,
_ _1 _ 5
Ca4 =74, Ca1 =3, cip =1 cg3=7,
_ _1
Cyy = ]-7 Bl _17 BZ 29 B3_27
B4—3, 11:1, 12: 5 13:3,
I4 == 4, T = 03, Toj = 02, T35 = 04,
T4j:0.1, j:1,2,3,4.
We have
r 1 1 1 1
4 4 4 8
i 1 L 1 1
— 2 2 2 _
P=11 1 3 1|, I=]
3 3 3 3
3 3 3 3 4
10 10 10 2 5

Then the equilibrium point of systems (31) satis-

fies the following equation

( —8!13'1 + 4f1(l’1) + 2f2(£13’2)
+2f3(l’3) + 2f4(l’4) + 1= 0,
—23)2 + fl(l’l) + 2f2(l’2)
‘|—f3(l’3) + f4(l’4) +2= 0,
—3x3 + fi(x1) + fa(z2)
+5f3(1’3) + f4(1’4) +3= 0,
=524 4 3 fi(21) + 3 fo(2)
+%f3($3) + %f4(l’4) +4 = 0,

\

E-ISSN: 2224-2880
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(32)

Let! = 1, we have the following results by sim-
ple calculation

Pey—1 > €4,

4

Z (blj + Clj) — (blk + Clk) +aB;+ 1, < aq,
J=1,j#k

for k € {2,3,4}. Then, the conditions of Theo-
rem 8 hold. And we can obtain only two equilib-
rium points of systems (32), i.e.,

1203
(_%7 %7_37_27_27_27_27_2)‘

Evidently, this consequence is coincident
with the results of Theorem 8. Figs. 1-2
depict the time responses of state variables of
21 (1), 22(t), 23(t), 24(t), 51(2), s2(1), s3(1), $4(2)
of system in example 1, respectively.

Example 2. If we seta = 2,a; = 6, a; =
1, a3 = %, ay = 3, and
by, =2 by =1 b3 =1 by = 2
11 2 12 4 13 ) 14 9
521:%7 by =1,  byg =1, b24:§>
b31:§7 b32:i7 b33:%7 b34217
b41 = %7 b42 = i7 b43 = %7 b44 = 17
C11 = %, C12 = %7 c13 = 2, c1y =1,
Co1 = %, C22 = 1, Co3 = % Coy = i>
1 _ 3 _ 1 1
C31 —?7 032—§> 033—g> C34 = 7
C41 = 3, Cp =74, Ci3=135, Cu=1
Blzlu B2:27 B3:%7 B4_27
Il—l, 12:1, 13: 5 14:4,
T = 03, Toj = 02, T35 = 04, T4j 01,
1=1,2,34.
We have
11 1 1 1
1611 i
P=lg9 94| 7]y
11 2 9 4
3 3 3 3

Then the equilibrium point of systems (31) satis-
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Fig.1. Transient response of state variables x (t).x,(1).x5(1),x,(t) of Example 4.1
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=2, o ]

—-20
o

5 10 15

5 10 15

t t
Fig.2. Transient response of state variables sl(t),sz(t),sa(t),s“(t) of Example 4.1
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B : ><
—Si
[e] 5 10 15 5 10 15
t t
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Fig.3. Transient response of state variables )&(l),xz(l),XS(t),XA(t) of Example 4.2
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Fig.4. Transient response of state variables si(t),sz(t).ss(t),s4(t) of Example 4.2
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fies the following equation

( —61’1 + Bfl(l’l) + fQ(JIg)
+3f3(l’3) + 3f4(l’4) +1= 0,
—Ty + fi(21) + 6 fa(2)
‘l'fg(llfg) + f4(1’4) +1= 0,
—%373 + fi(x1) + fa(w2)
+2f3($3) + f4($4) +2 = 0,
=34 + fi1(21) + fo(22) + 2f3(23)
+6f4($4) +4 = 0,

(33)

—81 + Qfl(l’l) 0,
—S89 + Qfg(l’g) 0,
—S3 -+ 2f3(.753) = 0,

—S4 -+ 2f4(.7}4) = 0

Letg = 1,k = 2, we have the following results
by simple calculation

\

P(—2; —2)64 —I> €4,
4
Yo (b +eciy) — (bu+cu)+aBr+ I < a,
J=14#l
for [ € {3,4}. Then, the conditions of Theorem

9 hold. And we can obtain only four equilibrium
points of systems (33), i.e.,

11 14
(4,10, 14, 3,2 2,2,2),
(-3, - —2,-2,-2,-2,-2),
(3,-2,10,4,2,-2,2,2)
7
(-1,4,-2,-4,-2,2,-2,-2).
Evidently, this consequence is coincident

with the results of Theorem 9. Figs. 3-4

depict the time responses of state variables of

xy (t>7 H) (t>7 $3(t)7 Jf4(t), Sl(t)7 S92 (t)7 83(t)7 84(t>
of system in example 2, respectively.

Example 3. If we seta = 2, a1 = 4, ay, =
1 a3—2 CL4—3
1 _ 1 _
bn——, bip =13, biz=174, bu=2,
4 2 4
_ 1 _ 1 _ 1
boy =7, b =1, bz =735, by =g,
4 2 8
_ 1 _ 1 _ 3 _ 1
531—57 532—57 b33—17 534—17
_ 1 _ 1 _ 1 _ 1
541—57 542—57 b43—17 b44—17
1 1 _ 3
Ci1 = 3, C12 =3, C13 = 7, c1q = 1,
_ 1 _ 3 _ 1
Co1 = 7, C2 = 1, €23 = 35, Co4 = 3,
_ 1 1 1 _ 1
C31 = g, C32 =735, C33= 3, C34 = 7,
_ 3 1 _ _
C41 = gy Ca2 = 5731—1, By =2,
Bs=3, By=4, =1, I, =2,
13:3, ]4 5 7'1j—03 ’7'2]—02

73; = 0.4, 7'43—01j_1234
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We have
5 1 1 3 1
P d 5
P=1% 17 1| I=1|3
O S g
6 3 3 6 3

Then the equilibrium point of systems (31) satis-
fies the following equation

( —4xy + %fl(xl) + fo(w2)
+fa(z3) + 3fa(zs) +1 =0,
—To + %fl(l’l) + 6f2(.752)+
2fs(x3) + § falxa) +2 =0,
—2x3 + Lfi(z1) + fo(a)+
7fs(xs) + 5 fa(za) +3 =0,
—31’4 + %fl(l’l) + fg(.TQ)"‘
fs(xs) + 5 fa(zs) +5 =0,
—851 + Qfl(l’l) = O,
—S89 + Qfg(llfg) = O,
—S83 + Qfg(llfg) = O,
[ =S4+ 2fa(x4) =

(34)

Letq = 1,h = 2,3, we have the following
results by simple calculation

P(—2; —2)64 —I> €4, P(—S; —3)64 -1 > €4,

4

Z (blj + Clj) — (bll + Cll) + OéBl + Il < aq,
J=13#l
for [ = 4. Then, the conditions of Theorem 10

hold. And we can obtain only six equilibrium
points of systems (34), i.e.,

(7,43 4716 9 9 9.9),
(~18, -2 B 9 9 92 2 9)
(18_3’_%’%’134’2’ 2,2,2),
R N )
(8,21, -2 492 -22),
(538 52222

Evidently, this consequence is coincident with
the results of Theorem 10. Figs. 5-6 de-
pict the time responses of state variables of
21 (1), 32(t), 23(t), 24(1), s1(1), 52(t), 3(8), s4(¢)

of system in example 3, respectively.

Example 4. If we set
a=2, a1 =1, as =2, a3 =
511—2 b12—1 513—%

3 a4—1

3
bl4 — 92

Issue 11, Volume 11, November 2012



WSEAS TRANSACTIONS on MATHEMATICS

(o} 5 10 15

t

Yunquan Ke, Chunfang Miao

Fig.5. Transient response of state variables x (1),x,(1),x;(1).x,(t) of Example 4.3
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Fig.6. Transient response of state variables ﬁ(t),sz(t),ss(t),s‘](t) of Example 4.3

Fig.7. Transient response of state variables >&(t),x2(t),x3(t),x4(t) of Example 4.4
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Fig.8. Transient response of state variables ﬁ(t),sz(t).sa(t).s"(t) of Example 4.4
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byt =3, bap =2, byz =1, oy =3,
bsy =1, bgy =3, bsz =4, bgy =3,
by =%, bip =73, bz =12, bay =1,
cn=1, co=1, ci3=3, ey =1,
Gl =73, C2=2, C3=3, C =1,
e =1, c3=3, c33=3, cu =13,
041_i, 042:%, 043:%, Cag = 1,
Bi—1 By=9 Bs=3 By—1,
L=1 I,=2 I,=3 I,=1
’7'1]—03 7'2j—02 ’7'3]—04 7'4j—01
JE1,2,3,4.
We have
5 2 2 2 1
1 11
P18 b 3| 1=,
b1l :

Then the equilibrium point of systems (31) satis-
fies the following equation

( - + 5f1(113'1) + 2f2( 2)
+2f3($3) + 2f4(l‘4) +1
—21’2 + fl(l’l) + 8f2( 2)
"—fg(l’g) + f4(l’4) + 2= 0
—31’3 + 2f1($1) + 2f2( 2)
+13f3(l‘3) + 2f4(l’4) +3 = 0,
—x4 + %fl(xl) + %f2($2)
+%f3(l‘3) + 4f4(1’4) + % = 0,
—S1 + 2f1($1) = 0,
—$9 + 2fo(z2) =0,
—S3 + Qfg(l‘g) ,
L —84 + 2f4(l‘4)

(35)

Letq = 1,k,1 € {2,3,4},k # [, we have the
following results by simple calculation

P(—2, —3; -2, —3)64 — 1 > ey,
P(=2,—4;-2,—4)ey — I > ey,
P(=3,—4;-3,—4)es — I > ey,

4

> (ay+by)— X (ayy+by)
Jj=Lj#g,h,m Jj=g,hm

+aB;+1; < ay,

Vg, h,m € {2,3,4} andg, h, m are not equal one
another.

Then, the conditions of Theorem 11 hold.
And we can obtain only fourteen equilibrium
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points of systems (35), i.e.,

12,8 26222 2),

(12, 5. 5,
(—10,-5, -2, —5,-2, -2, -2, -2),
(8,-2,6,5,2,-2,2,2),
(—6,1,—4,-4,-2,2,-2,-2),
(8,4,-%,5,2,2,-2,2),
(—6,—1,2, —4,-2,-2,2,-2),
(8,1,6,-2,2,2,2,-2),
(—6,—1,-4,3,-2,-2,-2,2)
(8,—-2,-8,5,2,-2,-2,2),
(-2,2,4,-3,-2,2,2,-2),
(4,-5,4,-3,2,-2,2,-2),
(-2,5,-%,4,—- ,m,
(4,5,-%,-3,2,2,-2,-2),
(=2,-5,4 4 -2, zzm

Evidently, this consequence is coincident with
the results of Theorem 11. Figs. 7-8 de-
pict the time responses of state variables of
l‘l(t) l’g(t) l’g(t) l’4(t> Sl(t) Sg(t) Sg(t),84(t)

of system in example 4, respectively.

5 Conclusions

In this paper, based on the stability theory, we
investigate the Multistability of a class of com-
petitive neural networks with time delays, and
obtain some sufficient conditions to ensure the
existence and locally exponential stability of the
equilibrium points of the systems in the satura-
tion region. And according to the peculiarity of
the saturation regions, these sufficient conditions,
which only depend on the synaptic weights ma-
trices P and the external input vectdr are very
easy to be verified. Moreover, four examples
show our results are effective.
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