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Abstract: This paper is concerned with the formulae for computing the coefficients of the trivariate polynomial
interpolation (TPI) passing through (m-+1)(n+1)(r +2) distinct points in the solid rectangular region. The TPI is

formulated as a matrix equation using Kronecker product and Khatri-Rao product of the matrices and the
coefficients of the TPI are computed using the generalized inverse of a matrix. In addition, the closed formulae
of the coefficients of the bivariate and univariate polynomial interpolations are obtained by the use of the
inverse of the Vandermonde matrix. It is seen that the trivariate polynomial interpolation can be investigated as
the matrix equation and the coefficients of the TPl can be computed directly from the solution of the matrix
equation. Also, it is shown that the bivariate polynomial interpolation (BPI) is the special case of the TPI

whenr =0. Numerical examples are represented.
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1 Introduction

The polynomial interpolation plays an important
role both in mathematics and applied sciences. The
problem of interpolating is fairly common in many
engineering and scientific applications [12-14, 22].
The polynomial interpolation is investigated using
different forms and algorithms which produce the
same polynomial. Also, it is easily solvable either

numerically or by using a computer algebra package.

The most commonly used polynomial interpolations
are the Lagrange and Newton’s forms [4, 8, 10, 12-
14].

The polynomial interpolation in two or several
variables is the most commonly investigated
problem of interpolating by researchers [1, 2, 5, 9,
21, 22, 24, 26]. The results on the Hermite
interpolation of two variables are given by using the
points on different circles [1, 2]. In [2], the authors
used the techniques introduced in [1] for
considering the more general situation of Birkhoff
interpolation. Polynomial interpolation of two
variables based on points that are located on
multiple circles was studied [2]. The available
techniques for the polynomial interpolation and
some criteria for uniqueness of interpolating
polynomial were extended by generating them in
certain directions and by giving variations on the
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fundamental formula [21]. Computational aspects of
the interpolation in several variables are given by De
Boor and Ron [5]. The cubature formula and
Birkhoff interpolation of the interpolation in several
variables were investigated [24, 26]. Finally, Gasca
and Sauer gave a survey of main results on
multivariate interpolation in the last twenty-five
years [9].

In this paper, the problems of the trivariate,
bivariate and univariate polynomial interpolations
are considered. The main contribution of this paper
is to present some formulae for computing the
coefficients of the interpolating polynomials. This
paper addresses the problem of finding the
coefficients of an interpolating polynomial in one,
two and three variables. The coefficients of the
polynomial interpolations passing through given
distinct points in two and three variables are
formulated as the matrix equations. The matrix
equations are solved by using the inverse of the
Vandermonde matrix.

There is a large amount of literature on the
computation of the inverse of the Vandermonde
matrix and its applications [6, 7, 11, 19, 23]. The
inverse of the Vandermonde matrix is investigated
by using various methods and algorithms. LU
factorization of the Vandermonde matrix and the
inverse of the matrix using symmetric functions
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were investigated, and the applications were given
in [16, 17, 19]. Explicit closed form expression for
the inverse matrix and algorithms of generalized
Vandermonde matrix were given by using the
elementary symmetric functions [7]. In [18], the
inverse matrix of lower and upper triangular factors
of Vandermonde matrix using symmetric functions
was investigated.

In this study, the coefficients of the trivariate
polynomial interpolation passing  through
(m+D(n+1)(r +1) distinct points in the solid

rectangular region are investigated as the matrix
equation using Kronecker product and Khatri-Rao
product of the matrices. It is shown that the
trivariate  polynomial interpolation can be
formulated as a matrix equation and the coefficients
of the trivariate polynomial interpolation can be
computed directly from the matrix equation. In
addition, it is shown that the bivariate polynomial
interpolation is the special case of the TPl when
r=0 . Finally, the closed formulae of the
coefficients of the bivariate and univariate
polynomial interpolations which are the special
cases of TPI are obtained using the inverse of the
Vandermonde matrix.

2 Polynomial Interpolations

In this section, we give some basic definitions
associated with univariate, bivariate and trivariate
polynomial interpolations and the Vandermonde
matrix. Further details can be found elsewhere [1, 4-
10, 12-14].

The simplest and best known way to construct an
mth -degree polynomial approximation p(x) to a
continuous function y=f(x) in the interval
[a,b]c % is by interpolation. If x,,x,...,X, are
m+1 distinct points in [a,b] for arbitrary m+1
real values Y, V;,..., ¥, then there exists a unique
polynomial of degree at most m
p(X) = a, + a,x+ a,x* +---+a, X" (1)
such that p(x)= f(x) for (x,y;), 0<i<m[4, 8,
10, 12, 14].

The coefficients &, i =0,1,2,...,m must satisfy
the equations
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B+ 8% +3,% oAk = Yy

B +ax+a% +otanx = Yy )

8y + 8 Xy +BXy o+ X" = Yo

We can write this (m+1)x(m+1) system as
follows:

Va=h, (3)
where
1% % %" [a] %]
1 X1 X12 le al yl
V=1 x x° x" | a=|a |, b=y,
1 Xy X X" | A | | Ym |

and the (m+1)x (m+1) matrix V is a Vandermonde

matrix. When m+1 points are distinct, the
Vandermonde matrix is nonsingular [4, 10, 12] and
consequently the system (3) has a unique solution

a=V'b, where V! is inverse of (m+1)x(m+1)
matrix V. Note that this solution depends on the
inverse of the Vandermonde matrix.

Let X ={Xp, %,.... Xy and Y ={Y,, Vi,---, Yo}

Assumed that z; = g(X,y;) data are given for the
function z=g(x,y) of two variables at the points
(%,y;) in the rectangular array, there is a unique
surface of the form

DXy

j=0

p(x,y) = (4)

m n . )
-0

of degree at most m+n, namely x™y" that passes

through each point in the XxY , where X xY is
Cartesian product of the sets X and Y . The
polynomial (4), which is called a bivariate
polynomial interpolation, satisfies for 0<i<m ,

0<j<n p(x,y))=9(%y;). Thus g(xy) at any
point (X, §) which is not in the XxY can be
estimated by g(%, §)~ p(X, §)[1, 5-7, 13].
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Also, we now consider the trivariate polynomial
interpolation. Given u=h(x,y,z) to approximate

over a solid rectangular region that is gridded by
(X.Y;,2), 0<i<m, 0<j<n, 0<k<r on ®°.
Assumed that uy =h(x,y;,z) data are given for
the function of three variables at the
(m+21)(n+1)(r +1) distinct points in the solid
rectangular region, there is a unique hyper surface
on R* of the form

p(xy.2) =33 > aXy'z

i=0 j=0k=0

m n r
®)

=0

of degree at most m+n+r , namely x"y"z" that

passes through each point in the solid rectangular
region. We say that (5) is a trivariate polynomial
interpolation which satisfies

P(%, Yz =h(x,Y;, Z)

forall 0<i<m, 0<j<nand 0<k<r.
It is clear that h(x,y,z) at any point (X, ¥,2),

which is not in solid rectangular region on %%, can
be estimated by h(X, §,2)~ p(%, ¥, 2) [9, 12, 13].

In the next section, we first formulate a matrix
equation to calculate the coefficients of the trivariate
polynomial interpolation defined in (5) using
Kronecker product and Khatri-Rao product, and
then investigate the solution of this matrix equation.

3 TheTrivariate Polynomial

I nter polation
Let
X Yo Z,
Xy 2 Z;
Vi=Ix [\ Vy=ly, |V, =|z, (6)
[ Xm_ L Yn | Zr |
and
A=[A A Al
(7)
F:[FO Fl Fm]'
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where
800 B0 -+ Gmoo Ay o1 - Aoy
Ay = 80 1o @mo |, A Q1 Sy e @ |,
o : : il . .
_aOnO aan . ar‘mO a{)nl a:I.nl amnl
"
aOOr a10r . am[)r
Ar _ ao.lr a1.1r arTllr y
_aOnr a1nr a'mnr
Ugoo  Ugox Ugor Ugo Uop -+ U,
u u u u u .u
010 011 01
FO_ : ) ‘r 'F1= 1.10 1'11 1-1r y
| Yono  Yont Ugpyr Upo Uy - Uy
"
Unoo  Umoz Unnor
g o |Ymo U Ungr |,
m = : : :
umnO urml urmr
2 m
x <[l % % X",
=N 2 n
yi=[L vy, v y; 1
2 r
2 =[1 7 2 21,

and F is an (n+1)x(r +1) matrix and A, is an
(n+1)x (Mm+1) matrix.

Note that a; and h(x,y,;,z)=u are the
elements of the (n+1)x(m+1)(r +1) matrices A and
F defined in (7) respectively, where 0<i<m,
0<j<nand 0<k<r.

Using (6) and (7), we can formulate the

coefficients of the trivariate polynomial interpolation
(5) as follows:

VyAXy ® 11 %] ®1 .. X, ®1 1, ®1,,)=F  (8)
where |, is the (r +1)x (r +1) identity matrix and

® 1is the Kronecker product.
Also, we can express (8), which is the matrix
equation of (5), as follows:

Vy A(VXT #(1,® 1-rrm1)XVzT ® Im+1): F, ©)
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where = is the Khatri-Rao product and 1, is the
(m+1)x1 vector whose entries are 1.

Corollary 1 Let (\/XT #(1,, ®1, l)) be the matrix
defined in (9). Then its inverse is

(Vx * (I r+l ® 1W1)((VJVX)71 ® I r+1)'
(10)

VAR

Proof. Observing the rank of the matrix defined in
(20) is (m+1)(r+1), and using the generalized

inverse of the matrix of full rank and Khatri-Rao
product of the matrices [15, 25], (10) is easily
obtained as

T T T 1
[XO®Ir+1 Xl ®Ir+1 . Xm®|r+lT

—1
(VXT #(ha ®l-rrn+1)) =
XO ® Ir+1

_ X1®:|r+l ((VJVX)_l@)lm}

X &I

m r+1

Thus the proof is completed.

We use the following Lemma to solve the matrix
equation (9).

Lemma 1. A necessary and sufficient condition for
the equation BXC = D to have a solution is that

BB'DC'C=D
in this case, the general solution is
X =B'DC*+Y-B'BYCC",

where Y is an arbitrary matrix and B* is the
generalized inverse of the matrix B[3, 20].

Theorem 1 The equation (9) has a unique solution
as follows:

sz):l F (VZT ® I Wl)ﬁl(vx-r * (I r+l ®11r;1+1))71 (11)
or equivalently
SVt (A RTINS ) (VYA RETR )
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Proof. Since

oL

m+1

oL

m+1

IR

:|n+lF6/Z ®Im+1) I(m+l)(r+1)(VZ ®IrTH-l)

X\/ ®|m+1)

VRV ® 1 T s

r+l r+1

=l Fl (M+1)(r +1)

=F,

the equation (9) has a solution. Also using Lemma 1,
we obtain the general solution as

A=A+ A,

where

Ap V_lF(V ®Im-v—l) (Vx r+l®1T+1)T

A, :W_VyilvyW(VxT *(l r+1 ®l-r|;1+1))

(VARCYINY VAR-YIN B VARS(RIE-S140 ) b

1
=W- |n+1 ( *(|r+l®lm+1)) (r+1)(m+l)6/ *(|r+l®l-|£1+1))

=W =W (.1)(r42) =0

W is an arbitrary matrix, and Apand A, are the

particular and homogenous solutions, respectively. If
A, =A, then (9) has a unique solution. Thus the

proof is completed.

Theorem 2 Let A and F, be submatrices defined
in (7). Then, the solution of the equation (9) is

A=V Y RV vV e, @)

or "

A=V RV vV teen] @4
i=0

where

eLl =[0---0 1 O0--
——
(k+1)th entry
fori=0,12,....mand k=0,1,2,...,r
Proof. To prove the theorem, we can use Theorem 1
and the matrices defined in (7). Putting (7) in (12)
and using Kronecker product and Khatri-Rao

Up
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product, the equation (13) is obtained. Taking the
identity matrix as in (13), we get the equation (14).

We show that whether the bivariate polynomial
interpolation (4) is the special case of the trivariate
polynomial interpolation (5) or not.

Let us assume that r=0 in (9) and a;, =4,
Ujo=2; for 0<i<m, 0<j<n in (7). Taking
r =0 and using the equations (7) and (9) we obtain

VAV =Z, (15)
where
3o Ay Ao Zoo Zo - Zmo
ac|B B A g B
&, A, am Zon Zn o Zm

A and Z are the (n+1)x(m+1) matrices. In this
case, itisclearthat 1., =1, V, =1 and

NXT #(1,, ® 1-r|;1+1)):VxT :

The equation (15) can be defined as the matrix
equation which is used to find the coefficients a; of
the BPI (4) satisfying p(x,Yy;)=9(x,y;) for all
(%,Y;) in the rectangular array. In addition, we can

state the BPI (4) as a matrix equation in the
following form:

p(x y) = yAX", (16)

where A is defined above. This equation can be
easily obtained from

p(x.y.2)=yA(x" ®1,,)7", (17)

which is the matrix equation of (5), when r =0,
where z=1.
Note that the solution of the matrix equation (15),

A=V, z{v,T )’ (18)

can be found from Theorem.1 or Theorem.2, and the
BPI can be investigated as a special case of the TPI.
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Since Vandermonde matrices V, and V, are

nonsingular  [7, 12, 23], the system of matrix
equation (15) has a unique solution [3, 20]. So there
is one and only one solution set of coefficients for
polynomial (4). It is well known that the equation
(15) is solvable either numerically or using a
computer algebra packages.

In this study, the coefficients of the polynomial
interpolation are to be computed directly by
generating special formulae, which can be applied
easily to the polynomial interpolations satisfying the
given distinct points.

We now consider the Vandermonde matrix V, .

We can rewrite the closed form of the inverse of V,
as

Vit=lve v vl (19)
where the columns vectors v, vy, ..., v, are
[Tx
2 3 I:1m
IDIED RIS
=1 i,=2 i g=m-l
1 :
Vo=—f ( 1) sz Zm: '
[106-%) & 255,
)™,
i=1
I (-2)" |
(20)
[1x
i=0,i#l
2 3 n
— z z... inoxiz...)(im71
ig#Lig=0 ;=2  ip4=m-1
1 :
V) = m ( 1)m—2 Ell m )
E(Xi - Xl) ig#Lig=0 i,=2 Mo
i#l m
D™ X%,
i9=0,ig#1
I (-1)" |
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lm_[Xi
1 2 Izr?kl
_Z Z... inoxil.“)(imiz
=0 iy=l iy ,=m-2
1
T (o) ””22 3
p— X|
g(xi Xn) i,=0 i1 °X'1
m-1
()™ > %,
ip=0
i (-1)" ]

All the formulae for the entries of the matrices
L* and U™, being L and U the triangular
matrices in the LU factorization of V, can be
found by replacing values of the elementary
symmetric functions in [19]. The inverses of
matrices L and U are formulated in an closed form
as

U=
[ m-1 —‘
V=% %% [1x, )"[Tx,
ig=0 ip=0
0 1 %o +X1) 21: ixlnxu )" 1[21: 22: nHXIUXu lezj
i9=0i;=1 i9=0 =1 i _,=m-2
0 0 1 —ix,g (—1)'“[?1 i m_lx‘axll X 3)
iofl ip=0 i;=1 i.m,szm 3
: n—:l
00 0 0 X,
0 0 0 0 ‘0:10 j
and
L=
! 0 0 0 |
1 1 0
X =% X~ %
(_1) m-1 (_1)rrk1 (_1) m-1
m-1 m-1 m-1 0
[T =%) Tk -x%) H(& %)
i=1 i=0,i#l 0,i#2
(9" (-3" ( n" ()™
m m ttoomd
[T6-%) TT6-%) TT6c-x)  [[6x-x)
| i<l i=0,i#1 i=0,i%2 i=0 i
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where 0<i,<i;<..<i,<m and I =i_;+1,
| =1,2,...,m. The inverse of the Vandermonde matrix

defined as (19) can be used for computing the
coefficients of the bivariate polynomial interpolation.

If (19) is applied to the inverses of the
Vandermonde matrices V, and V, defined as (20),

we obtain the closed formulae of the coefficients of
the BPI.
This leads to the following results.

Corollary 2 LetBj; be the product of (] +1)™ row
-1

of V,

ThenB;'s are

with (i +1)™ column of the matrix Z .

Iy X
By =—— 9%, Yo) +—————9(%, Yp) +---
H(yj - yo) ( Y1)
j=1 j=0, j#1
n-1
Yj
=0
+ n_ll g(XiVyn)v
(yj - yn
j=0
2 3 n 2 3 n
X2 XYY Vi XX MY,
B, = =1 jp=2 n|n1:n’l g(x'y0)+ Jo#Ljo=0 j2=2 . Jna=n-1 g()ﬂy)ﬁ)
T10,-) T10-v)
j=1 j=0,j#1
1 2
PR vayh Vi,
N g%y |
(yl_yﬂ)
j=0
P 1 1
y = (1" — 9% Yo) t——— 9%, Y+ + 47 9(%.Yn)
H(YJ yO) H<y\ _Y1) (yj yn)
j=1 j=0, j#1 j=0

where i =0,1,2,..,mand j=0,1,2,..,n

Proof. To prove the corollary, we can apply (20) to
the matrix Vy’1 defined in (6). Multiplying (j +1)"

row of V, “ with (i +1)™ column of the matrix Z

we obtain B as V,"Z = [B ] Thus the proof is
completed.
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Corollary 3 Let a; be the coefficients of the
polynomial interpolation (4) satisfying (m+1)(n+1)
distinct points in the rectangular array. Then the
coefficients a; of the BPI are

ﬁxi lm[Xi ﬁxi
&) =4 = BJO + mi=0ri¢l Bll+ "t = Bjm
(% %) H(Xi -%) H(Xi —%n)
i=1 i=0,i#l i=0

2 3

$5 Sue S5

m
X X X,
0 2 m-1
1=m-1

aij _ =1 ip=2 miml m BJ n ig#Lig=0 i,=2 . im_q=m-" Bil
(% -x%) [T6-%)
i=1 i=0,i1
1 2 m-1
Z Z Xlu X'1 Im-2
ip=0 =1 ipp=m-2
o Bim |
(X\ - Xm)
i=0
n 1 1 1
ay = ()" 3 Bio+— Byt +mr—Bm
[T6=x) (% —x) (% = %)

fori=0,1,2, ., mandj=0,12, ..., n.

Proof Using (20), the coefficients a; are easily
computed from the product of (j+1)" row of

V,*Z with (i +1)" column of (\/X‘l)T.

For example for m=2 and n=2 , the
coefficients of the polynomial interpolation in two
variables are computed easily from the above
formulae as follows:

B - V1Yo
I —
(Y1 = Yo) (Y2 = ¥o)
Yo¥i
(Yo = Y2)(¥1 = Y2)

YoY»

=yl —y 2 W

9% Yo) +

9(X,Y,)

Vit Yot Y,
By= ——— 0% Yo) +————————09(X. Y1)
! (Y1 = Yo)(¥2 = Yo) ’ (Yo = YD)V - Y1) '
Yot %1

(Yo = Y2) (Y1 = ¥2) 0.3z
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1
B, = X, Y) + ————————g(X;,
: (Y1 = Yo)(¥2 = Yo) 9% %) (Yo = YI)(¥2 = Y1) 9x. %)
+;9(X- ¥2)
Vo= ¥)%—¥o) "
X X
aoj — Xl A Bj0+ Xﬂ 2 B]1+ XOX1 sz
(=% -%) 7 (g=X)-%) T (%=X)(X %)
_ X X% X % Xt X%
a; = ot il i2
(X=X =%) T (=x)0=%) T (%= X)(X — %)
1 1 1

(Xl ‘Xo)(xz ‘Xo) (Xo _X1)(Xz _Xl) (Xo _Xz)(xl_xz)

where 1 =0,1,2 and j=0,1,2.

Example 1. Assume the following values for a
function g(x,y)in two variables of twelve distinct

points: g(-1,0)=3, g(-11)=2, g(-12)=-1
9(0,0=1 9(O0n=2 9(02)=7 gL0)=-1
g(l’l) = 01 9(112) = 7’ 9(210) = _3! g(zvl) = 21
0(2,2)=23.

The coefficients of the polynomial interpolation in
two variables are easily obtained by writing
m=3and n=2 in above formulae. Using these
coefficients, the polynomial interpolation in two
variables satisfying twelve points is written

asP(x,y) =1- y+2y? — 2x+ xy? — x2y? + x°y?.

Finally, taking n=0, a,=4a and z, =y, from
(15), we obtain (3) as follows:

aVv,' =b", (21)
where Vy =1,

a' =[a a a,]

and

b" =[Y, Wi Yin -

It is clear that (21) has the same solution with (3)
and consequently it is seen that the univariate
polynomial interpolation is the special case of the
BPI. Now, we can obtain the coefficients of the
univariate polynomial defined in (1) or (21) from the
closed form of the inverse of V,. The following

result is concerned with the coefficients of (1).
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Corollary 4 Let g for i=0,12,., m be the

coefficients of the polynomial interpolation (1).
Then

m m m-1
[1x 11 [1x
8 = Yot Vit oY,
(% =) H(Xi -x,) H()ﬂ -X,)
i= i=0,i#1 i=0
a1:

3 2 3 m
S Yk ex, D Y Yk e,

=l 1p=2  img=m-l i0#Lig=0 i=2  imq=m-1

- p Yo t+ o Y1

[106c-x%)

i1 i=0,ix1

4ot Yoo oo
H(Xw - Xm)
i=0
z T m-1
ZXH ino ZXiD
a,, = (_1)m—1 . =1 Y + niqg:O,\oﬁ T _ 1‘0:0 Y.
H(Xi_XO) H(Xi_xl) (% —x )
i=1 i=0,iL i
a, :(—1)m _ 1 Yo +—0 Yot ym
H(Xi_xo) H(XI_Xi) H X — X

i=1 i=0,i1 i=0

Proof. Using (20) and applying the product of the
matrix V " and the vector b, it is easily proved.

Using Corollary 4, the following examples are
presented.

Example 2 The linear equation satisfying (x,,Y,)
and (x,,y;) two distinct points is computed as

yz(xlyo Xole ( yoJ
X — % X =%

and the quadratic equation passing through (Xo, yO)'
(%.y,) and (x,,y,) three distinct points is written
as

E-ISSN: 2224-2880

729

Suleyman Safak

%X ) XX
P(X)=( Yot Y+ yj
%) g xx—) T (g =Xl - x)
X tX

_[ Kt L Xtk . ij
(Xl‘xo)(Xz‘Xo)O (XO_Xl)(XZ_Xl)l (XO—XZ)(XI—XZ)Z

+

1 1 1 )
+ Y Y+ Yy X7,
[(XFXO)(XZ‘XO) ’ (XO—X1)(X2—X1) ' (XO_szxl_XZ) 2]

Example 3 Consider a set

s={-12) (0.1) (L4) (3-2)}

of four distinct points. The coefficients of third
degree polynomial interpolation passing through
four distinct points are obtained by writing n=3 as

X XX XoXo X3
Yot Y1
(Xl - Xo)(xz - Xo)(xs - Xo) (Xo - X1)(X2 - X1)(X3 - X1)
Xo X X3 Xo X X

+ Y, +
(Xo - Xz)(X1 - Xz)(xs - Xz) (Xo - XS)(Xl - Xs)(xz

a0:

- Xg) s

a ( X Xg + Xy X3 + X Xg XoXg +XoXg + XoXg
g = 0 1
(% —X0) (X2 = %) (%3 — Xo) (X0 = X)(% =% )(X3 — %)

Xo¥q + XgXg + X, X3 Xo¥q + XgXp + Xq Xo j
2 3
(X0 = %2)(X = %2 )(X3 = X7) (X0 = %3)(Xy = Xg) (%, = X3)

X1+ Xy + X3 Xg+ Xy + X3

a, = +
? (% = X0)(X2 = X9 )(Xg — %) n (X0 = %)(X2 = X1)(Xg — %) V2
Xo+ X + X3 Xg+ X + X%
+ +
(X0 = X)X = X2)(X3 = X7) Y2 (X0 = Xg)(X4 = X3) (%2 = X3) Vs
( 1 Vot 1 y
ag=- 04 = %) = %) (X = %) *° " (%o = X)X = X)X = %g)
1 1
i (X = %) (X1 = %2 )(Xg = X7) Yot (X0 = X3)(% = X3)(X2 = X3) ysj
and a=1 a=2 a=2and a;=-1 are

calculated by using these formulae and so the

polynomial interpolation satisfying four distinct

points in the set S is p3(X) =1+ 2x+2x> — x°.

4 Conclusions

We consider the trivariate polynomial interpolation
(TPI) passing through (m+1)n+1)r +1) distinct
points in the solid rectangular region. We conclude
that the coefficients of TPI can be computed directly
from the matrix equation by the use of generalized
inverses, Kronecker product and Khatri-Rao product.
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It is seen that the trivariate polynomial interpolation
can be investigated as the matrix equation and its
coefficients can be computed directly from this
matrix equation. In addition, it is shown that the
bivariate  polynomial interpolation (BPI) is
expressed as the special case of the TPl when r =0
and the special formulae of the coefficients of the
BPI are obtained using the inverse of the
Vandermonde matrix. Also, the coefficients of the
polynomial p(x) are computed using the closed

formulae.
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