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1 Introduction
In 1993, Kuang [1] proposed an open problem (Open
problem 9.2) to obtain sufficient conditions for the ex-
istence of positive periodic solutions to

x′(t) = x(t)
[
a(t)− β(t)x(t)− b(t)x(t− τ(t))

−c(t)x′(t− τ(t))
]
, (1)

where a, β, b, c, τ are nonnegative continuous period-
ic functions. Since then, different classes of neutral
functional differential equations have been extensive-
ly studied, we refer the readers to [1-5] and the refer-
ences therein.

However, in the natural world, there are many
species whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments. Therefore, there
is a need to establish correspondent dynamic models
on new time scales.

The theory of calculus on time scales (see [6] and
references cited therein) was initiated by Stefan Hilger
[7] in order to unify continuous and discrete analysis,
and it has a tremendous potential for applications and
has recently received much attention since his foun-
dational work (see, e.g., 8-14). Therefore, it is practi-
cable to study that on time scales which can unify the
continuous and discrete situations.

Motivated by above, the aim of this paper is
to establish sufficient conditions for the existence of
positive periodic solutions for a neutral delay mod-
el of single-species population growth on time scales.
However, it is known that many real world phenome-
na often behave in a piecewise continuous frame inter-

laced with abrupt changes. Thus, the choice of system
accompanied with impulsive conditions is much more
appropriate.

Consider the following impulsive neutral delay
model of single-species population growth on time s-
cales

x∆(t) = x(t)

[
r(t)− a(t)x(t)

−
n∑

j=1
aj(t)x(t− τj(t))

−
n∑

j=1
bj(t)

∫ 0
−Tj

Kj(s)x(t+ s)∆s

−
n∑

j=1
cj(t)x

∆(t− σj(t))
]
,

t ̸= tk, t ∈ T,
x(t+k ) = x(t−k ) + Ik(x(tk)), k = 1, 2, · · · ,

(2)

where T is an ω-periodic time scale, and for each in-
terval I of R, we denote by IT = I ∩ T. r, a, aj , bj , cj
∈ C(T,R+)(j = 1, 2, . . . , n) are ω-periodic func-
tions, Tj ∈ (0,∞)T, Kj ∈ C([−Tj , 0]T, (0,∞)),∫ 0
−Tj

Kj(s)∆s = 1 (j = 1, 2, . . . , n) and τj , σj ∈
C(T,T) (j = 1, 2, . . . , n) are ω-periodic function-
s with respect to their first arguments, respectively.
x(t+k ) and x(t−k ) represent the right and the left limit
of x(tk) in the sense of time scales, in addition, if tk is
right-scattered, then x(t+k ) = x(tk), whereas, if tk is
left-scattered, then x(t−k ) = x(tk); Ik ∈ C(R+,R+),
k ∈ Z. There exists a positive constant p such that
tk+p = tk + ω, Ik+p = Ik, k ∈ Z, [0, ω)T ∩ {tk, k ∈
Z} = {t1, t2, · · · , tp}. For the ecological justification
of (2), one can refer to [2-4].

WSEAS TRANSACTIONS on MATHEMATICS Meng Hu, Lili Wang

E-ISSN: 2224-2880 689 Issue 8, Volume 11, August 2012



2 Preliminaries

A time scale T is a nonempty closed subset of R. The
basic theories of calculus on time scales, one can see
[6].

Definition 1. ([15]) A time scale T is periodic if there
exists p > 0 such that if t ∈ T, then t ± p ∈ T. For
T ̸= R, the smallest positive p is called the period of
the time scale.

Definition 2. ([15]) Let T ̸= R be a periodic time
scale with period p. A function f : T→ R is periodic
with period ω if there exists a natural number n such
that ω = np, f(t + ω) = f(t) for all t ∈ T and ω is
the smallest number such that f(t+ ω) = f(t).

If T = R, f is ω-periodic if ω is the smallest
positive number such that f(t + ω) = f(t) for all
t ∈ T.

Lemma 3. ([6]) If p be a regressive function on T,
then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (I + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = e−1

p (s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r).

Lemma 4. ([6]) Let r : T→ R be right-dense contin-
uous and regressive. The unique solution of the initial
value problem

y∆ = r(t)y + f(t), y(t0) = y0

is given by

y(t) = er(t, t0)y0 +

∫ t

t0

er(t, σ(τ))f(τ)∆τ.

Lemma 5. The function x(t) is an ω-periodic solution
of (2), if and only if x(t) is an ω-periodic solution of

x(t) =

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+

n∑
j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ (3)

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk)),

where

G(t, s) =
er(t, σ(s))

1− er(0, ω)
. (4)

Proof: If x(t) is an ω-periodic solution of (2). For
any t ∈ T, there exists k ∈ Z such that tk is the first
impulsive point after t. By using Lemma 4, for s ∈
[t, tk]T, we have

x(s) = er(s, t)x(t)−
∫ s

t
er(s, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+
n∑

j=1

cj(u)x
∆(u− σj(u))

]
∆u,

then

x(tk) = er(tk, t)x(t)−
∫ tk

t
er(tk, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+

n∑
j=1

cj(u)x
∆(u− σj(u))

]
∆u. (5)

Again using Lemma 4 and the equality (5), for s ∈
(tk, tk+1]T, then

x(s) = er(s, tk)x(t
+
k )−

∫ s

tk

er(s, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+

n∑
j=1

cj(u)x
∆(u− σj(u))

]
∆u

= er(s, tk)x(tk)−
∫ s

tk

er(s, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+
n∑

j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+
n∑

j=1

cj(u)x
∆(u− σj(u))

]
∆u
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+er(s, tk)Ik(x(tk))

= er(s, t)x(t)−
∫ s

t
er(s, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+

n∑
j=1

cj(u)x
∆(u− σj(u))

]
∆u

+er(s, tk)Ik(x(tk)).

Repeating the above process for s ∈ [t, t + ω]T, we
have

x(s) = er(s, t)x(t)−
∫ s

t
er(s, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+
n∑

j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+
n∑

j=1

cj(u)x
∆(u− σj(u))

]
∆u

+
∑

k:tk∈[t,s)T

er(s, tk)Ik(x(tk)).

Let s = t+ ω in the above equality, we have

x(t+ ω) = er(t+ ω, t)x(t)

−
∫ t+ω

t
er(t+ ω, σ(u))x(u)

×
[
a(u)x(u) +

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+

n∑
j=1

cj(u)x
∆(u− σj(u))

]
∆u

+
∑

k:tk∈[t,t+ω)T

er(t+ ω, tk)Ik(x(tk)).

Noticing that x(t+ ω) = x(t) and er(t, t+ ω) =
er(0, ω), we find that x(t) satisfies (3).

Let x(t) be an ω-periodic solution of (3). If t ̸=

ti, i ∈ Z, from (3) we get

x∆(t)

= G(σ(t), t+ ω)x(t+ ω)

[
a(t+ ω)x(t+ ω)

+

n∑
j=1

aj(t+ ω)x(t+ ω − τj(t+ ω))

+

n∑
j=1

bj(t+ ω)

∫ 0

−Tj

Kj(θ)x(θ + t+ ω)∆θ

+
n∑

j=1

cj(t+ ω)x∆(t+ ω − σj(t+ ω))

]

−G(σ(t), t)x(t)
[
a(t)x(t)

+
n∑

j=1

aj(t)x(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

]
+ r(t)x(t)

= r(t)x(t)− x(t)
[
a(t)x(t)

+
n∑

j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

]
.

If t = ti, i ∈ Z, then by (3) we have

x(t+i )− x(t
−
i )

=
∑

k:tk∈[t+i ,t+i +ω)T

G(ti, tk)er(σ(tk), tk)Ik(x(tk))

−
∑

k:tk∈[t−i ,t−i +ω)T

G(ti, tk)er(σ(tk), tk)Ik(x(tk))

= G(ti, ti + ω)er(σ(ti + ω), ti + ω)Ii(x(ti + ω))

−G(ti, ti)er(σ(ti), ti)Ii(x(ti))
= Ii(x(ti)).

So, x(t) is also an ω-periodic solution of (2). This
completes the proof.

In order to obtain the existence of a periodic solu-
tion of system (2), we first make the following prepa-
rations:
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Let E be a Banach space and K be a cone in E.
The semi-order induced by the cone K is denoted by
”≤”, that is, x ≤ y if and only if y − x ∈ K. In
addition, for a bounded subset A ⊂ E, let αE(A)
denote the (Kuratowski) measure of non-compactness
defined by

αE(A) = inf
{
δ > 0 : there is a finite number of

subsets Ai ⊂ A such that A =
∪
i

Ai,

diam(Ai) ≤ δ
}
,

where diam(Ai) denotes the diameter of the set Ai.
Let E,F be two Banach spaces and D ⊂ E, a

continuous and bounded map Φ : Ω̄ → F is called
k-set contractive if for any bounded set S ⊂ D we
have

αF (Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-
contractive for some 0 ≤ k < 1.

The following lemma comes from [16] which is
useful for the proof of our main results.

Lemma 6. ([16]) Let K be a cone of the real Ba-
nach space X and Kr,R = {x ∈ K|r ≤ x ≤ R}
with R > r > 0. Suppose that Φ : Kr,R → K is
strict-set-contractive such that one of the following t-
wo conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈
K, ||x|| = R.

(ii) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈
K, ||x|| = R.

Then Φ has at least one fixed point in Kr,R.

In order to apply Lemma 6 to system (2), we set

C0
ω = {x : x ∈ C0(T,R), x(t+ ω) = x(t)}

with the norm defined by |x|0 = maxt∈[0,ω]T{|x(t)|},
and

C1
ω = {x : x ∈ C1(T,R), x(t+ ω) = x(t)}

with the norm defined by |x|1 = max{|x|0, |x∆|0}.
Then C0

ω and C1
ω are all Banach spaces.

Since T is ω-periodic, µ(t) is an ω-periodic func-
tion, then σ(t+ω) = σ(t)+ω. From (4), it is easy to
see that G(t+ ω, s+ ω) = G(t, s) and

A0 =
Υ

1−Υ
≤ G(t, s) ≤ 1

1−Υ
= B0, s ∈ [t, t+ω]T,

where Υ = er(0, ω) < 1.

For convenience, we introduce the following no-
tations

A1 = min
t,tk∈[0,ω]T

{G(t, tk)er(σ(tk), tk)},

B1 = max
t,tk∈[0,ω]T

{G(t, tk)er(σ(tk), tk)},

A = min{A0, A1}, B = max{B0, B1},

Θ =
A

B
(0 < Θ < 1),

Γ =

∫ ω

0

[
Θa(s) +

n∑
j=1

Θaj(s)

+
n∑

j=1

Θbj(s)−
n∑

j=1

cj(s)

]
∆s,

Π =

∫ ω

0

[
a(s) +

n∑
j=1

aj(s) +
n∑

j=1

bj(s)

+

n∑
j=1

cj(s)

]
∆s,

fM = max
t∈[0,ω]T

{f(t)}, fm = min
t∈[0,ω]T

{f(t)},

where f is a continuous ω-periodic function.
Throughout this paper, we assume that

(H1) Θa(t) +
n∑

j=1
Θaj(t) +

n∑
j=1

Θbj(t)

−
n∑

j=1
cj(t) ≥ 0.

(H2) (1 + rm)A0ΘΓ ≥ max
t∈[0,ω]T

{
a(t) +

n∑
j=1

aij(t)

+
n∑

j=1
bij(t) +

n∑
j=1

cij(t)

}
.

(H3)
Π(rM−1)B0

Θ ≤ min
t∈[0,ω]T

{
Θa(t) +

n∑
j=1

Θaij(t)

+
n∑

j=1
Θbij(t)−

n∑
j=1

cij(t)

}
.

(H4) max
{ p∑

k=1

Ik(v)
}
≤ M |v|0, where M > 0 is a

sufficient large number.

Define the cone K in C1
ω by

K = {x :∈ C1
ω, x(t) ≥ Θ|x|1, t ∈ [0, ω]T}. (6)
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Let Φ be a map defined by

(Φx)(t) =

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

aj(s)x(s− τj(s)) (7)

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+

n∑
j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk)),

where x ∈ K, t ∈ R, and G(t, s) is given by (4).
In the following, we will give some lemmas con-

cerning K and Φ defined by (6) and (7), respectively.

Lemma 7. Assume that (H1)− (H2) hold.

(i) If rM ≤ 1, then Φ : K → K is well defined.

(ii) If (H3) holds and rM > 1, then Φ : K → K is
well defined.

Proof: For any x ∈ K, it is clear that Φx ∈
C1(T,R). In view of (7), for t ∈ T, we obtain

(Φx)(t+ ω) =

∫ t+2ω

t+ω
G(t+ ω, s)x(s)

×
[
a(s)x(s) +

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t+ω,t+2ω)T

G(t+ ω, tk)er(σ(tk), tk)

×Ik(x(tk))

=

∫ t+ω

t
G(t+ ω, u+ ω)x(u+ ω)

×
[
a(u+ ω)x(u+ ω)

+

n∑
j=1

aj(u+ ω)x(u+ ω − τj(u+ ω))

+

n∑
j=1

bj(u+ ω)

∫ 0

−Tj

Kj(θ)x(θ + u+ ω)∆θ

+

n∑
j=1

cj(u+ ω)x∆(u+ ω − σj(u+ ω))

]
∆u

+
∑

k:tk∈[t,t+ω)T

G(t+ ω, tk + ω)

×er(σ(tk + ω), tk + ω)Ik(x(tk + ω))

=

∫ t+ω

t
G(t, u)x(u)

[
a(u)x(u)

+

n∑
j=1

aj(u)x(u− τj(u))

+

n∑
j=1

bj(u)

∫ 0

−Tj

Kj(θ)x(θ + u)∆θ

+
n∑

j=1

cj(u)x
∆(u− σj(u))

]
∆u

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk))

= (Φx)(t).

That is, (Φx)(t+ ω) = (Φx)(t), t ∈ R. So Φx ∈ C1
ω.

In view of (H1), for x ∈ K, t ∈ [0, ω]T, we have

a(t)x(t) +

n∑
j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

≥ a(t)x(t) +
n∑

j=1

aj(t)x(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

−
n∑

j=1

cj(t)|x∆(t− σj(t))|

≥ Θa(t)|x∆|1 +
n∑

j=1

Θaj(t)|x∆|1

+

n∑
j=1

Θbj(t)|x∆|1 −
n∑

j=1

cj(t)|x∆|1

=

[
Θa(t) +

n∑
j=1

Θaj(t) +
n∑

j=1

Θbj(t)

−
n∑

j=1

cj(t)

]
|x∆|1 ≥ 0. (8)
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Therefore, for x ∈ K, t ∈ [0, ω]T, we can get

|Φx|0 ≤ B

∫ ω

0
x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+B

p∑
k=1

Ik(x(tk))

and

(Φx)(t) ≥ A

∫ t+ω

t
x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+

n∑
j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+A

p∑
k=1

Ik(x(tk))

≥ Θ|Φx|0. (9)

Now, we show that

(Φx)∆(t) ≥ Θ|(Φx)∆|0, t ∈ [0, ω]T.

In fact, from (7) we have

(Φx)∆(t) = r(t)(Φx)(t)− x(t)
[
a(t)x(t)

+

n∑
j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

]
. (10)

It follows from (8) and (10) that if (Φx)∆(t) ≥ 0, then

(Φx)∆(t) ≤ r(t)(Φx)(t) ≤ rM (Φx)(t)

≤ (Φx)(t). (11)

On the other hand, from (9), (10) and (H2), if
(Φx)∆(t) < 0, then

−(Φx)∆(t)

= x(t)

[
a(t)x(t) +

n∑
j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+
n∑

j=1

cj(t)x
∆(t− σj(t))

]
− r(t)(Φx)(t)

≤ |x|21
[
a(t) +

n∑
j=1

aj(t) +
n∑

j=1

bj(t) +
n∑

j=1

cj(t)

]
−rm(Φx)(t)

≤ (1 + rm)A0Θ|x|21
∫ ω

0

[
Θa(s) +

n∑
j=1

Θaj(s)

+
n∑

j=1

Θbj(s)−
n∑

j=1

cj(s)

]
∆s− rm(Φx)(t)

= (1 + rm)

∫ ω

0
A0Θ|x|1

[
Θ|x|1a(s)

+

n∑
j=1

Θ|x|1aj(s) +
n∑

j=1

Θ|x|1bj(s)

−
n∑

j=1

|x|1cj(s)
]
∆s− rm(Φx)(t)

≤ (1 + rm)

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

−
n∑

j=1

cj(s)|x∆(s− σj(s))|
]
∆s− rm(Φx)(t)

≤ (1 + rm)

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s− rm(Φx)(t)
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= (1 + rm)(Φx)(t)− rm(Φx)(t)

= (Φx)(t). (12)

It follows from (11) and (12) that |(Φx)∆|0 ≤ |Φx|0.
So |Φx|1 = |Φx|0. By (9) we have (Φx)(t) ≥
Θ|Φx|1. Hence, Φx ∈ K. The proof of (i) is com-
pleted.

(ii) In view of the proof of (i), we only need to
prove that (Φx)∆(t) ≥ 0 implies

(Φx)∆(t) ≤ (Φx)(t).

From (8), (10), (H1) and (H3), we obtain

(Φix)
∆(t)

≤ r(t)(Φx)(t)−Θ|x|1
[
a(t)x(t)

+
n∑

j=1

aj(t)x(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

−
n∑

j=1

cj(t)|x∆(t− σj(t))|
]

≤ r(t)(Φx)(t)−Θ|x|21
[
a(t) +

n∑
j=1

aj(t)

+

n∑
j=1

bj(t)−
n∑

j=1

cj(t)

]

≤ rM (Φx)(t)−Θ|x|21
rM − 1

Θ
B0

×
∫ ω

0

[
a(s) +

n∑
j=1

aj(s) +

n∑
j=1

bj(s)

+

n∑
j=1

cj(s)

]
∆s

≤ rM (Φx)(t)− (rM − 1)

∫ t+ω

t
B0|x|1

×
[
a(s)|x|1 +

n∑
j=1

aj(s)|x|1

+
n∑

j=1

bj(s)|x|1 +
n∑

j=1

cj(s)|x|1
]
∆s

≤ rM (Φx)(t)− (rM − 1)

∫ t+ω

t
G(t, s)x(s)

×
[
a(s)x(s) +

n∑
j=1

aj(s)x(s− τj(s))

+

n∑
j=1

bj(s)

∫ 0

−Tk

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)|x∆(s− σj(s))|
]
∆s

≤ rM (Φx)(t)− (rM − 1)

∫ t+ω

t
G(t, s)x(s)

×
[
a(s)x(s) +

n∑
j=1

aj(s)x(s− τj(s))

+

n∑
j=1

bj(s)

∫ 0

−Tk

Kj(θ)x(θ + s)∆θ

+

n∑
j=1

cj(s)x
∆(s− σj(s))

]
∆s

= rM (Φx)(t)− (rM − 1)(Φx)(t)

= (Φx)(t).

The proof of (ii) is completed. ⊓⊔

Lemma 8. Assume that (H1)− (H2), (H4) hold and
R
∑n

j=1 c
M
j < 1.

(i) If rM ≤ 1, then Φ : K
∩

Ω̄R → K is strict-set-
contractive;

(ii) If (H3) holds and rM > 1, then Φ : K
∩

Ω̄R →
K is strict-set-contractive;

where ΩR = {x ∈ C1
ω : |x|1 < R}.

Proof: We only need to prove (i), since the proof
of (ii) is similar. It is easy to see that Φ is continu-
ous and bounded. Now we prove that αC1

ω
(Φ(S)) ≤(

R
∑n

j=1 c
M
j

)
αC1

ω
(S) for any bounded set S ⊂ Ω̄R.

Let η = αC1
ω
(S). Then, for any positive number

ε <

(
R
∑n

j=1 c
M
j

)
η, there is a finite family of sub-

sets {Si} satisfying S =
∪

i Si with diam(Si) ≤ η+ε.
Therefore

|x− y|1 ≤ η + ε for any x, y ∈ Si. (13)

As S and Si are precompact in C0
ω, it follows that

there is a finite family of subsets {Sij} of Si such that
Si =

∪
j Sij and

|x− y|0 ≤ ε for any x, y ∈ Sij . (14)

In addition, for any x ∈ S and t ∈ [0, ω]T, we have

|(Φx)(t)| =

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)
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+

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk))

≤ BR2

∫ t+ω

t

[
a(s) +

n∑
j=1

aj(s) +
n∑

j=1

bj(s)

+
n∑

j=1

cj(s)

]
∆s+BM |x|0 := H

and

|(Φx)∆(t)| =
∣∣∣∣r(t)(Φx)(t)− x(t)[a(t)x(t)
+

n∑
j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

]∣∣∣∣
≤ rMH +R2

n∑
j=1

(aM + aMj + bMj + cMj ).

Applying the Arzela-Ascoli Theorem, we know that
Φ(S) is precompact in C0

ω. Then, there is a finite fam-
ily of subsets {Sijk} of Sij such that Sij =

∪
k Sijk

and
|Φx− Φy|0 ≤ ε, ∀x, y ∈ Sijk. (15)

From (8), (10), (13)-(15) and (H1), for any x, y ∈
Sijk, we obtain

|(Φx)∆ − (Φy)∆|0

= max
t∈[0,ω]T

{∣∣∣∣r(t)(Φx)(t)− r(t)(Φy)(t)
−x(t)

[
a(t)x(t) +

n∑
j=1

aj(t)x(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+
n∑

j=1

cj(t)x
∆(t− σj(t))

]

+y(t)

[
a(t)y(t) +

n∑
j=1

aj(t)y(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)y(θ + t)∆θ

+
n∑

j=1

cj(t)y
∆(t− σj(t))

]∣∣∣∣}
≤ max

t∈[0,ω]T
{|r(t)[(Φx)(t)− (Φy)(t)]|}

+ max
t∈[0,ω]T

{∣∣∣∣x(t)[a(t)x(t)
+

n∑
j=1

aj(t)x(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+

n∑
j=1

cj(t)x
∆(t− σj(t))

]

−y(t)
[
a(t)y(t) +

n∑
j=1

aj(t)y(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)y(θ + t)∆θ

+
n∑

j=1

cj(t)y
∆(t− σj(t))

]∣∣∣∣}
≤ rM |(Φx)− (Φy)|0

+ max
t∈[0,ω]T

{∣∣∣∣x(t)[(a(t)x(t)
+

n∑
j=1

aj(t)x(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)x(θ + t)∆θ

+
n∑

j=1

cj(t)x
∆(t− σj(t))

)

−
(
a(t)y(t) +

n∑
j=1

aj(t)y(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)y(θ + t)∆θ

+

n∑
j=1

cj(t)y
∆(t− σj(t))

)]∣∣∣∣}

+ max
t∈[0,ω]T

{∣∣∣∣y(t)[a(t)y(t)
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+

n∑
j=1

aj(t)y(t− τj(t))

+
n∑

j=1

bj(t)

∫ 0

−Tj

Kj(θ)y(θ + t)∆θ

+
n∑

j=1

cj(t)y
∆(t− σj(t))

]
[x(t)− y(t)]

∣∣∣∣}

≤ rMε+R max
t∈[0,ω]T

{
a(t)|x(t)− y(t)|

+

n∑
j=1

aj(t)|x(t− τj(t))− y(t− τj(t))|

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)|x(θ + t)

−y(θ + t)|∆θ

+

n∑
j=1

cj(t)|x∆(t− σj(t))− y∆(t− σj(t))|
}

+ε max
t∈[0,ω]T

{
a(t)y(t) +

n∑
j=1

aj(t)y(t− τj(t))

+

n∑
j=1

bj(t)

∫ 0

−Tj

Kj(θ)y(θ + t)∆θ

+
n∑

j=1

cj(t)|y∆(t− σj(t))|
}

≤ rMε+Rε
(
aM +

n∑
j=1

aMj +
n∑

j=1

bMj
)

+R(η + ε)
( n∑
j=1

cMj
)

+Rε
(
aM +

n∑
j=1

aMj +

n∑
j=1

bMj +

n∑
j=1

cMj
)

=
(
Rη

n∑
j=1

cMj
)
+ Ĥε, (16)

where Ĥ = rM+2R[aM+
n∑

j=1
aMj +

n∑
j=1

bMj +
n∑

j=1
cMj ].

From (15) and (16) we have

|Φx− Φy|1 ≤
(
R

n∑
j=1

cMj
)
η + Ĥε, ∀x, y ∈ Sijk.

As ε is arbitrary small, it follows that

αC1
ω
(Φ(S)) ≤

(
R

n∑
j=1

cMj
)
αC1

ω
(S).

Therefore, Φ is strict-set-contractive. This completes
the proof. ⊓⊔

3 Main Result

Our main result of this paper is as follows:

Theorem 9. Assume that (H1)− (H2), (H4) hold.

(i) If rM ≤ 1, then system (2) has at least one posi-
tive ω-periodic solutions.

(ii) If (H3) holds and rM > 1, then system (2) has
at least one positive ω-periodic solutions.

Proof: We only need to prove (i), since the proof of
(ii) is similar. Let R = 1

AΘΓ and 0 < r < Θ−BM
BΠ .

Then we have 0 < r < R. From Lemma 7 and Lem-
ma 8, we know that Φ is strict-set-contractive onKr,R.
In view of (10), we see that if there exists x∗ ∈ K such
that Φx∗ = x∗, then x∗ is one positive ω-periodic so-
lution of system (2). Now, we shall prove that condi-
tion (ii) of Lemma 6 hold.

First, we prove that Φx � x, ∀x ∈ K, |x|1 = r.
Otherwise, there exists x ∈ K, |x|1 = r such that
Φx ≥ x. So |x| > 0 and Φx− x ∈ K, which implies
that

(Φx)(t)− x(t) ≥ Θ|Φx− x|1 ≥ 0,∀t ∈ [0, ω]T.
(17)

Moreover, for t ∈ [0, ω]T, by (H4), we have

(Φx)(t)

=

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+
n∑

j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+
n∑

j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk))

≤ Br|x|0
∫ ω

0

[
a(s) +

n∑
j=1

aj(s)

+
n∑

j=1

bj(s) +
n∑

j=1

cj(s)

]
∆s+BM |x|0

= B(rΠ+M)|x|0
< Θ|x|0. (18)
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In view of (17) and (18), we have

|x|0 ≤ |Φx| < Θ|x|0 < |x|0,

which is a contradiction.
Finally, we prove that Φx � x, ∀x ∈ K, |x|1 =

R also holds. For this case, we only need to prove that

Φx ≮ x, x ∈ K, |x|1 = R.

Suppose, for the sake of contradiction, that there ex-
ists x ∈ K and |x|1 = R such that Φx < x, thus
x− Φx ∈ K \ {0}. Furthermore, for any t ∈ [0, ω]T,
we have

x(t)− (Φx)(t) ≥ Θ|x− Φx|1 > 0. (19)

In addition, for any t ∈ [0, ω]T, we find

(Φx)(t)

=

∫ t+ω

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

aj(s)x(s− τj(s))

+

n∑
j=1

bj(s)

∫ 0

−Tj

Kj(θ)x(θ + s)∆θ

+

n∑
j=1

cj(s)x
∆(s− σj(s))

]
∆s

+
∑

k:tk∈[t,t+ω)T

G(t, tk)er(σ(tk), tk)Ik(x(tk))

≥ AΘ|x|21
∫ ω

0

[
Θa(s) +

n∑
j=1

Θaj(s)

+
n∑

j=1

Θbj(s)−
n∑

j=1

cj(s)

]
∆s

= AΘΓR2

= R. (20)

From (19) and (20), we obtain

|x| > |Φx|0 ≥ R,

which is a contradiction. Therefore, conditions (i) and
(ii) hold. By Lemma 6, we see that Φ has at least
one nonzero fixed point in K. Therefore, system (2)
has at least one positive ω-periodic solutions. This
completes the proof. ⊓⊔

Remark 10. From the proof of our results, one can
see that if all of or some of Tj(j = 1, 2, . . . , n) re-
placed by ∞, the conclusion of Theorem 9 remains
true.

4 An example

Consider the following dynamic system on time scale
T,

x∆(t) = x(t)

[
2+cos t

8π − (5− 2 sin t)x(t)

−(2 + sin t)x(t− τ(t))
−(1− 2

3 sin t)

×
∫ 0
−T1

K1(s)x(t+ s)∆s

−1−sin t
20 x∆(t− σ(t))

]
, t ̸= tk,

x(t+k ) = x(t−k ) + 0.01 sin(x(tk)), k = 1, 2, · · · ,

(21)

where τ, σ ∈ C(T,T) are 2π-periodic function-
s with respect to their first arguments, respective-
ly. T1 ∈ (0,∞)T, K1 ∈ C([−T1, 0]T, (0,∞)),∫ 0
−T1

K1(s)∆s = 1. Obviously,

r(t) =
2 + cos t

8π
, a(t) = 5− 2 sin t,

a1(t) = 2 + sin t, b1(t) = 1− 2

3
sin t,

c1(t) =
1− sin t

20
.

Let T = R, p = 2, by a direct calculation, we can
get Θ = e−

1
2 ,Γ = 30.1734,Π = 30.6781, and

(H1) Θa(t) +
n∑

j=1
Θaj(t) +

n∑
j=1

Θbj(t)−
n∑

j=1
cj(t)

= e−
1
2 (8.05 + 5

3 sin t)−
1−sin t

20 ≥ 3.7717 > 0.

(H2) (1 + rm)A0ΘΓ = 29.3335 ≥ 9.7667 =

max
t∈[0,2π]T

{
a(t) +

n∑
j=1

aij(t) +
n∑

j=1
bij(t) +

n∑
j=1

cij(t)
}
.

Hence, (H1), (H2) hold. For |x|0 > 0, then there
exists a sufficient large number M > 0 such that
(H4) holds. Moreover, rM = 3

8π ≤ 1. According
to Theorem 9, system (21) has at least one positive
2π-periodic solution.
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