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Abstract: Consider the following Cauchy problem

ut = div(| ∇um |p−2 ∇um)− uq, (x, t) ∈ ST = RN × (0, T ),

u(x, 0) = δ(x), x ∈ RN ,

where 1 < p < 2, and δ(x) is the Dirac measure centered at the origin. If m(p− 1) + p
N ≤ 1 and q > 0, it can be

proved that there is not solution for the above narrated problem.
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1 Introduction
The paper is interested in the following equation

ut = div(| ∇um |p−2 ∇um)− uq, (1)

where (x, t) ∈ ST = RN × (0, T ), with the following
initial condition

u(x, 0) = µ, x ∈ RN , (2)

where µ is a nonnegative σ-finite measure in RN . In
what follows, BR(x0) = {x : |x − x0| < R}, and if
x0 = 0, simply denote it as BR.

Definition 1 A measurable function u is said to be a
weak solution of problem (1)-(2), if u satisfies the fol-
lowing conditions

u ∈ C(0, T ;L1
loc(R

N )) (3)

um ∈ Lp(0, T ;W 1,p
loc (R

N )) (4)

∇um ∈ L∞
loc(ST ), (5)∫

RN
u(x, t)φ(x, t)dx

+

∫∫
ST

(−uφt + |∇um|p−2∇um∇φ)dxdt

+

∫ ∫
ST

uqφdxdt =

∫
RN

φ(x, 0)dµ (6)

where φ ∈ C1(S̄T ) and φ = 0 if |x| is large enough.

The problem arises in the fields of mechanics,
physics and biology, including the non-Newtonian flu-
ids, the gas flow in porous media, the spread of bio-
logical population, etc.

If the initial value u(x, 0) = u0(x) is appropri-
ately smooth, there are many papers in devoting to the
solvability of the Cauchy problem of (1), one can refer
to Wu-Zhao [1], Gmira [2], Yang-Zhao [3], Zhao [4,
5, 6], Zhao-Yuan [7], Dibenedetto-Friedman [8], Li-
Xia [9], Dibenedetto-Herrero [10], Benilan-Crandall-
Pierre [11], Zhao-Xu [12], Fan [13] and the references
therein for details.

For example, when p = 2, we have the following
basic results

(i) If q > m > 1, u0 ∈ L1
loc(R

N ), or 1 < m <
q < m + 2

N , u(x, 0) = µ is a nonnegative σ-finite
measure, then the Cauchy problem of (1) has a global
solution.

(ii) If q ≥ m + 2
N , u(x, 0) = µ is a nonnegative

σ-finite measure, then the Cauchy problem of (1) has
not any solution.

This fact means that, in the case of p = 2, in order
that the Cauchy problem of (1) has a solution , q <
m+ 2

N not only acts as a sufficient condition, but also
acts as a necessary condition. By the way, it is well-
known that, in order that the Cauchy problem of the
equation

ut = △um, u(x, 0) = u0(x) (7)
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has a solution, one should pose some restrictions on
the growth order of the initial value. However, if q >
m > 1, the existence of the solution for the Cauchy
problem of equation (1) has not any restrictions on the
growth order of the initial value.

(iii) If q = m,∫
RN

exp{−
√
1 + |x|2}u0(x)dx <∞, (8)

or 1 < q < m, u0 ∈ L1
loc(R

N ),

u0(x) ≤ c1(c2 + |x|2)
1

m−q , a.e. RN , (9)

where c1, c2 are constants,

c1 <

(
(m− q)2

2Nm(m− q) + 4mp

) 1
m−q

,

then the Cauchy problem of (1) has a global solution.
The condition (9) restricts the growth order of the ini-
tial value u0 is less than |x|

2
m−q , this restriction is

weaker than that of the equation (7), which restricts
initial value u0 satisfying that: for some r > 0,

sup
ρ≥r

ρN− 2
m−1

∫
Bρ

u0(x)dx <∞,

which roughly means that the growth order of the
initial value u0 should be less than |x|2

m−1 . More-
over, Zhao-Li [14] showed that the condition (9) is
almost extremely, in fact, when 1 < q < m, if
u0 ∈ L1

loc(R
N ), and there is constant α > 2

m−q , such
that

lim inf
|x|→∞

u0(x)

|x|α
> 0,

then the Cauchy problem (7) has not any weak solu-
tion.

(iv) If 0 < q < m + 2
N , m > (1 − 2

N )+, the
Cauchy problem (1)-(2) has a very singular solution
U(x, t), which satisfies that

U ∈ C(ST \ 0), U(x, 0) = 0, ∀x ∈ RN ,

lim
t→0

∫
Br

U(x, t)dx = +∞, ∀r > 0.

For another example, when m = 1, we have the
following basic results.

(i)If q > p − 1, u0 ∈ L1
loc(R

N ), or p − 1 <
q < p− 1 + p

N , u(x, 0) = µ is a nonnegative σ finite
measure, then the Cauchy problem of (1) has a global
solution.

(ii) If q ≥ p−1+ p
N , u(x, 0) = µ is a nonnegative

σ measure, then the Cauchy problem of (1) has not

any global solution; this fact means that, in order that
the Cauchy problem of (1) in this case has a solution ,
the condition q < p−1+ p

N not only acts as a sufficient
condition, but also acts as a necessary condition. By
the way, it is well-known that, in order that the Cauchy
problem of the equation

ut = div(|∇u|p−2∇u), u(x, 0) = u0(x), (10)

has a solution, one should pose some restrictions on
the growth order of the initial value. However, if q >
p − 1, the existence of the solution for the Cauchy
problem of equation (1) has not any restrictions on the
growth order of the initial value.

(iii) If q = p− 1, u0 ∈ L1+α
loc (RN ),∫

RN
exp{−c

√
1 + |x|2}u1+α

0 (x)dx <∞,

where the constants α > 0, c < p(p− 1)
1−p
p α

p−1
p , or

1 < q < p− 1, u0 ∈ L1
loc(R

N ),

u0(x) ≤ c1(c2 + |x|2)
p

2(p−1−q) , a.e. RN , (11)

where c1, c2 are constants,

c1 <

(
(p− 1− q)p

pp−1(pq +N(p− 1− q))

) 1
p−1−q

,

then the Cauchy problem of (1) has a global solution.
The condition (11) restricts the growth order of the
initial value u0 is less than |x|

p
p−1−q , this restriction is

weaker than that of the equation (10), which restricts
initial value u0 has the growth order less than |x|p

p−1 .
Moreover, the condition (11) is almost extremely, in
fact, when 1 < q < p − 1, if u0 ∈ L1

loc(R
N ), and

there are constants α > p
p−1−q , B > 0, such that

lim
|x|→∞

u0(x)

|x|α
= B,

then the Cauchy problem (10) has not any weak solu-
tion.

(iv) If max{1, p − 1} < q < p − 1 + p
N , p >

2N
N+1 , the Cauchy problem (1)-(2) has a very singular
solution U(x, t) too.

Recently, the author has been studying the solv-
ability of the equation in [15]. By discussing the exis-
tence of the self-similar solution, the author [15] had
got the singular solution of the following more general
equation

ut = div(|Dum|p−2Dum)− uq1 |Dum|p1 , (12)

provided that p > 2,m > 1, and

p > p1, q1 + p1m > m(p− 1) > 1. (13)
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While [16-17] had discussed the large time behavior
of the solution of the Cauchy problem of (12). There
are so many papers such as [18-40] which studied the
posedness of the solutions, the HÖlder continuity, the
large time behaviors of the solutions, and other relat-
ed results of the special cases of (12) or (1), so it is
impossible to point them one by one here.

2 The main result of the paper
Especially, we quote the following important proposi-
tions obtained in [13].

Proposition 2 Let N ≥ 1. Suppose that u(x, 0) = µ
is a nonnegative σ finite measure. If m, p, q,N satisfy
the conditions that m(p − 1) + p

N > 1, and 0 < q <
m(p−1)+ p

N , then there exists a generalized solution
to the Cauchy problem of (1).

Proposition 3 Let N ≥ 1. If m, p, q,N satisfy the
conditions that either m(p − 1) + p

N < 1, q > 0, or
1 < m(p − 1) + p

N < q, then the Cauchy problem
(1)-(2) has not a solution.

In this paper, we will discuss Cauchy problem
(1)-(2) when m(p − 1) < 1. We will prove the fol-
lowing

Theorem 4 Suppose 2 > p > 1, m > 1, q > p − 1
and

2− p+ p

N
< m(p− 1) +

p

N
≤ 1, (14)

then there is not nonnegative solution for Cauchy
problem (1) with the following initial value

u(x, 0) = δ(x), (15)

where δ is the Dirac measure centered at the origin.

Compared to the above Proposition 3, which is
one of the main results of [13], it can be found that our
Theorem 4 improves the result of Proposition 3 in the
case of that m(p− 1) + p

N < 1, q > 0. This improve-
ment is obtained by quoting the above definition of
the weak solution (Definition 1, which is equivalent to
the corresponding weak solution defined in [13]), and
by choosing suitable testing functions to make more
meticulous estimates. However, the method we used
is different from that of 13], and we use some ideas
in [3], in which m = 1, p ≤ 2N

N+1 q ≥ 0. Howev-
er, compared to [3], to get Theorem 4, the conditions
m > 1, q > p − 1 are necessary in our proof. By the
way, the condition 2−p+ p

N < m(p−1)+ p
N implies

m(p − 1) > 2 − p, we conjecture that this condition
may be weaken to that m(p− 1) > 0.

3 An important lemma and its proof
Lemma 5 Suppose 1 < p < 2, m(p− 1) < 1, q > 0,
then the nonnegative solution u of Cauchy problem
(1)-(2) satisfies

sup
0<τ<t

∫
BR

u(x, τ)dxdτ

≤ c+ ct
1

1−mp+mR
N− p

1−mp+m . (16)∫ T

0

∫
BR

|∇um|p−1dxdt

≤ cR1−N [1−m(p−1)]−p

(∫ T

0

∫
B2R

t
1
2udxdt

)m(p−1)

+cR
N(m−mp+1)

p

(∫ T

0

∫
B2R

t
1
2udxdt

) (m+1)(p−1)
p

.

(17)∫ T

0

∫
BR

uqdxdt ≤ c(R, T ). (18)

Proof Let ξ be the cut function onB2R, satisfying that
ξ = 1 on Bl2R, and |∇ξ| ≤ (1− l)−1R−1, l ∈ [12 , 1).
For any t > s > 0, let ξp be as a testing function. We
have ∫

B2lR

u(x, t)ξdx

≤
∫
B2R

u(x, t)ξdx+

∫ t

s

∫
B2R

ξpuqdxdτ

=

∫
B2R

u(x, s)ξdx−
∫ t

s

∫
B2R

|∇um|p−2∇um·∇ξdxdτ

≤
∫
B2R

u(x, s)dx+
c

(1−l)R

∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ

(19)

The calculations as follows are formal on that they re-
quire u to be strictly positive. They can be make rig-
orous by replacing u with u+ε and letting ε→ 0. By
Hölder inequality, we have∫ t

s

∫
B2R

|∇um|p−1ξp−1dxdτ

=

∫ t

s

∫
B2R

ξp−1|∇um|p−1(τ−s)βumαu−mα(τ−s)−βdxdτ

≤
(∫ t

s

∫
B2R

ξp(τ − s)
βp
p−1 |∇um|pu

−mαp
p−1 dxdτ

) p−1
p

×
(∫ t

s

∫
B2R

(τ − s)−pβumαpdxdτ

) 1
p

, (20)
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where α, β are constants to be chosen later.
In Definition 1, we choose testing function

φ = ξp(τ − s)
βp
p−1u

m(1− αp
p−1

)
ηh(τ − s),

where
ηh(t) ∈ C1(R), ηh ≥ 0,

and when t > s+ h,

ηh(t) = 1,

when t < s,
ηh(t) = 0,

and
lim
h→0

η′h(t)t = 0, (21)

then, from the definition of the weak solution, we have∫ t

s

∫
RN

uτ (x, τ)φ(x, τ)dxdτ

=

∫ t

s

∫
B2R

uτ (x, τ)ξ
p(τ−s)

βp
p−1u

m(1− αp
p−1

)
ηh(τ−s)dxdτ

=
p− 1

m[(1− β)p− 1] + p− 1

×
∫ t

s

∫
B2R

ξp(τ − s)
βp
p−1u

m(1− αp
p−1

)+1
τ ηh(τ − s)dxdτ

=
p− 1

m[(1− β)p− 1] + p− 1

×{
∫
B2R

ξp(τ − s)
βp
p−1u

m(1− αp
p−1

)+1
ηh(t− s)dx

− βp

p− 1
(τ − s)

βp
p−1

−1

×[
∫ t

s

∫
B2R

ξpu
m(1− αp

p−1
)+1

ηh(τ − s)dxdτ

−
∫ t

s

∫
B2R

ξpu
m(1− αp

p−1
)+1

(τ − s)η′h(τ − s)dxdτ ]},

and ∫ t

s

∫
B2R

div(|∇um|p−2∇um)φ(x, τ)dxdτ

=

∫ t

s

∫
B2R

div(|∇um|p−2∇um)

×ξp(τ − s)
βp
p−1u

m(1− αp
p−1

)
ηh(τ − s)dxdτ

= −p
∫ t

s

∫
B2R

(τ − s)
βp
p−1 ηh(τ − s)ξp−1u

m(1− αp
p−1

)

×|∇um|p−2∇um · ∇ξdxdτ

+(
αp

p− 1
− 1)

∫ t

s

∫
B2R

ηh(τ − s)(τ − s)
βp
p−1 ξpu

−mαp
p−1

×|∇um|pdxdτ

≥ −
∫ t

s

∫
B2R

(τ − s)
βp
p−1 ηh(τ − s)u−

mαp
p−1

×[εξp|∇um|p + c(ε)ump|∇ξ|p]dxdτ

+(
αp

p− 1
− 1)

∫ t

s

∫
B2R

ηh(τ − s)(τ − s)
βp
p−1 ξpu

−mαp
p−1

×|∇um|pdxdτ

and ∫ t

s

∫
B2R

uqφ(x, τ)dxdτ

=

∫ t

s

∫
B2R

ξp(τ − s)
βp
p−1u

m(1− αp
p−1

)
ηh(τ − s)dxdτ.

If we let h→ 0. By (21), choosing α such that

αp

p− 1
− 1 > 0,

the readers will find that in the following discussion,
when we choose the constant α, it always satisfies this
inequality. Now, we have∫ t

s

∫
B2R

ξpu
−αpm

p−1 (τ − s)
βp
p−1 |∇um|pdxdτ

≤ c
∫ t

s

∫
B2R

u
m(1− αp

p−1
)+1

(τ − s)
βp
p−1dxdτ

+
c

(1− l)pRp

∫ t

s

∫
B2R

(τ − s)
βp
p−1u

−αpm
p−1

+pm
dxdτ.

(22)
Substituting (22) in (20),∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ

≤ c{[(1− l)R]−p
∫ t

s

∫
B2R

(τ − s)
βp
p−1u

mp−αpm
p−1 dxdτ

+

∫ t

s

∫
B2R

(τ − s)
βp
p−1

−1
u
m(1− αp

p−1
)+1

dxdτ}
p−1
p

×
(∫ t

s

∫
B2R

(τ − s)−pβuαpmdxdτ

) 1
p

. (23)

We consider the following two cases.
(1) If 1

mp < p− 1, we choose α = 1
mp , β = 1

2p in
(23). Then ∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ
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≤ c[[(1− l)R]−p
∫ t

s

∫
B2R

(τ −s)
1

2(p−1)u
mp− 1

p−1dxdτ

+

∫ t

s

∫
B2R

τ
1

2(p−1)
−1
u
m[1− 1

m(p−1)
]+1
dxdτ ]

p−1
p

×
(∫ t

s

∫
B2R

(τ − s)−
1
2udxdτ

) 1
p

. (24)

The conditions 1 < p < 2, m(p− 1) < 1 assure that

1 > m[1− 1

m(p− 1)
] + 1 > 0.

By Hö lder inequality,

{
∫ t

s

∫
B2R

(τ − s)
1

2(p−1)
−1
u
m[1− 1

m(p−1)
]+1
dxdτ}

p−1
p

≤ {(
∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ)

m[1− 1
m(p−1)

]+1

×(
∫ t

s

∫
B2R

(τ − s)
m−1

2
p−1

1−m(p−1)dxdτ)
1

p−1
−m}

p−1
p

≤ c
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

)m(p−1)+p−2
p

×R
m−mp+1

p
N
t

2−p
1−m(p−1) ,

in which we have used the conditions p < 2, m > 1.
At the same time, we have

(∫ t

s

∫
B2R

(τ − s)
1

2(p−1)u
mp− 1

p−1dxdτ

) p−1
p

≤ {
∫ t

s

∫
B2R

[(τ − s)−
1
2
(pm− 1

p−1
)
u
mp− 1

p−1 ]
1

pm− 1
p−1

dxdt}(mp− 1
p−1

) p−1
p

×{
∫ t

s

∫
B2R

[(τ − s)
1

2(p−1)
+ 1

2
(pm− 1

p−1
)
]

1
1

p−1+1−pm

dxdτ}(
1

p−1
+1−pm) p−1

p

≤ c
(∫ t

s

∫
BR

(τ − s)−
1
2udxdτ

)m(p−1)− 1
p

×RN(1−mp+m)t
2−m(p−1)

2 ,

we have ∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ

≤ c(1− l)1−pRN [1−m(p−1)]t
2−m(p−1)

2

×
(∫ t

s

∫
B2R

(τ − s)−
1
2udxdτ

)m(p−1)

+cR
N(m−mp+1)

p t
(m+1)[1−m(p−1)]

2p

×
(∫ t

s

∫
B2R

(τ − s)−
1
2udxdτ

) (m+1)(p−1)
p

(25)

By (19), (25),

sup
s<τ<t

∫
Bl2R

u(x, τ)dx ≤
∫
B2R

u(x, s)dx

+c(1− l)−pR−k
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

)m(p−1)

×t
2−m(p−1)

2

+c(1−l)−1R
− k

p

(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

) (m+1)(p−1)
p

×t
(m+1)[1−m(p−1)]

2p

≤
∫
B2R

u(x, s)dx+ c(1− l)−pR−kt

×
(

sup
s<τ<t

∫
B2R

udx

)m(p−1)

+c(1− l)−1R
− k

p t
(m+1)[p−m(p−1)]

2p

×
(

sup
s<τ<t

∫
B2R

udx

) (m+1)(p−1)
p

≤
∫
B2R

u(x, s)dx+c(1−l)−
p

1−m(p−1)R
−k

1−m(p−1) t
1

1−m(p−1)

+
1

2
sup

0<τ<t

∫
B2R

udx. (26)

(2) If 1
mp ≥ p−1, we choose α = p−1, β = p−1

2

in (23). Then∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ

≤ c{[(1− l)R]−p
∫ t

s

∫
B2R

(τ − s)
p
2 dxdτ

+

∫ t

s

∫
B2R

(τ − s)
p−2
2 um+1−mpdxdτ}

p−1
p

×
(∫ t

s

∫
B2R

ump(p−1)(τ − s)−
p(p−1)

2 dxdτ

) 1
p

.

Since(∫ t

s

∫
B2R

(τ − s)
p−2
2 um+1−mpdxdt

) p−1
p
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≤ [

∫ t

s

∫
B2R

(um+1−mpτ−
m+1−mp

2 )
1

m+1−mp

dxdτ ]
(m+1−mp)(p−1)

p

×
(∫ t

s

∫
B2R

(τ − s)(
p−2
2

+m+1−mp
2

) 1
m(p−1)dxdτ

)m(p−1)2

p

≤ c
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

) (m+1−mp)(p−1)
p

×t
(p−1)2(m+1)

2p R
mN(p−1)2

p ,

and (∫ t

s

∫
B2R

ump(p−1)(τ − s)−
p(p−1)

2 dxdτ

) 1
p

≤ c
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

)m(p−1)

×t
mp−mp2−p2+p+2

2p R
N [1−mp(p−1)]

p ,

we have ∫ t

s

∫
B2R

|∇um|p−1 ξp−1dxdτ

≤ c(1− l)1−p
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

)m(p−1)

×t
m+2−mp

2 R1−k

+c

(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

) (p−1)(m+1)
p

×R
N [1−m(p−1)]

p t
m+3−mp−p

2p , (27)

where k = p+N [m(p− 1)− 1].
By (23), (27),

sup
s<τ<t

∫
Bl2R

u(x, τ)dx ≤
∫
B2R

u(x, s)dx

+c(1− l)−pR−k
(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

)m(p−1)

×t
2−m(p−1)

2

+c(1−l)−1R
− k

p

(∫ t

s

∫
B2R

u(τ − s)−
1
2dxdτ

) (m+1)(p−1)
p

×t
m+3−mp−p

2p

≤
∫
B2R

u(x, s)dx+c(1−l)−pR−kt

(
sup

s<τ<t

∫
B2R

udx

)m(p−1)

+c(1−l)−1R
− k

p t
2−p(m+1)

p

(
sup

s<τ<t

∫
B2R

udx

) (m+1)(p−1)
p

≤
∫
B2R

u(x, s)dx+c(1−l)−
p

1−m(p−1)R
−k

1−m(p−1) t
1

1−m(p−1)

+
1

2
sup

s<τ<t

∫
B2R

udx. (28)

From (26), (28), according to [14, Lemma 3.1],

sup
s<τ<t

∫
Bl2R

u(x, τ)dx ≤
∫
B2R

u(x, s)dx

+cR
− k

1−m(p−1) t
1

1−mp+m .

Let s → 0. Then (16) is true. By (16), (26) and (27),
we get (17). Substituting (17) into (19), by (16), we
get (18). Thus the lemma is proved.

4 The proof of Theorem 4
Lemma 6 If m(p− 1) + p

N ≤ 1, then the solution of
the Cauchy problem (1)-(15) satisfies

(1) For any given R > 0,

∫ T

0

∫
um(α−1)

(1 + umα)2
|∇um| dxdt ≤ c(α), (29)

and
(2)∫ T

0

∫
BR

um(p−1)+ p
N
−αdxdt < c(α), (30)

(3) ∫ T

0

∫
BR

uq1dxdt <∞. (31)

where 0 < α < p− 1 < 1 and q1 = max{1, q}.

Proof (1) By Definition 1.1, for any ψ(x) ∈
C∞
0 (RN ), ε ∈ (0, T ), we have∫

RN

∫ u(x,T )

0

smα

1 + smα
dsψ(x)pdx

+

∫ T

ε

∫
RN

αum(α−1)

(1 + umα)2
|∇um|p ψpdxdt

= −p
∫ T

ε

∫
RN

umα

1 + umα
|∇um|p−2∇um·∇ψψp−1dxdt

+

∫
RN

∫ u(x,ε)

0

smα

1 + smα
dsψ(x)pdx
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−
∫ T

ε

∫
RN

umα+q

1 + umα
ψpdxdt

≤ p
∫ T

ε

∫
RN

smα

1 + smα
dsψp(x)dxdt

+

∫
RN

∫ u(x,ε)

0

smα

1 + smα
dsψ(x)pdx. (32)

Noticing that∫ T

0

∫
Rn

umα

1 + umα
|∇um|p−1 |∇ψ|ψp−1dxdt

≤ η
∫ T

0

∫
Rn

um(α−1)

(1 + umα)2
|∇um|p ψpdxdt

+c(η)

∫ T

0

∫
Rn
um(1+α)(p−1) |∇ψ|p dxdt

and when ε→ 0,∫
RN

∫ u(x,ε)

0

smα

1 + smα
dsψp(x)dx

≤
∫
RN

u(x, ε)ψp(x)dx→
∫
RN

ψp(x)dµ. (33)

Then, if we let ε→ 0 in (32), we have

sup
0<t<T

∫
RN

u(x, t)ψ(x)pdx

+

∫ T

0

∫
RN

um(α−1)

(1 + umα)2
|∇um|p ψpdxdt

= c

(
1 +

∫ T

0

∫
RN

um(1+α)(p−1) |∇ψ|p dxdt
)
.

(34)
This implies that

sup
0<t<T

∫
RN

u(x, t)ψ(x)pdx

≤ c
(
1 +

∫ T

0

∫
RN

um(1+α)(p−1) |∇ψ|p dxdt
)
.

(35)
We now choose α small enough such that m(1 +

α)(p− 1) < 1, by Young inequality, we have∫ T

0

∫
RN

um(1+α)(p−1) |∇ψ|p dxdt

≤ ε
∫ T

0

∫
RN

uψpdxdt

+c(ε)

∫ T

0

∫
RN

( |∇ψp|
ψm(1+α)(p−1)

) 1
1−m(1+α)(p−1)

dxdt.

(36)

Let X ∈ C∞
0 (B2R), X |BR

= 1, and let

ψ = Xh, h ≥ 1

1−m(1 + α)(p− 1)
.

By the above inequalities (35)-(36), we have∫ T

0

∫
RN

um(1+α)(p−1) |∇ψ|p dxdt ≤ c, (37)

sup
0<t<T

∫
RN

u(x, t)ψp(x)dx ≤ c. (38)

Combining (34)-(38), we get (29), i.e.∫ T

0

∫
BR

um(α−1)

(1 + umα)2
|∇um| dxdt ≤ c(α).

Now, let

w = u
m(p−1−α)

p .

By Sobolev inequality,(∫
RN

ψpwrdx

) 1
γ

≤ c
(∫

RN
|∇ψw|p dx

) θ
p

×
(∫

B2R

w
p

p−1−αdx

) (1−θ)(p−1−α)
p

, (39)

where,

θ =

(
p− 1− α

p
− 1

γ

)(
1

N
− 1

p
+
p− 1− α

p

)−1

.

For γ =
p(p−1+ p

N
−α)

p−1−α , by (39), we have

∫ T

0

∫
RN

ψpwrdxdt ≤
∫ T

0

∫
RN
|∇(ψw)|p dxdt

× sup
0<t<T

(∫
B2R

w
p

p−1−αdx

) (γ−θ)(p−1−α)
p

.

Hence, by (38), (29), we have∫ T

0

∫
RN

ψpum(p−1)+ p
N
−αdxdt

≤ c(α)
(
1 +

∫ T

0

∫
RN
|∇ψ|p um(p−1−α)dxdt

)
.

At the same time, if we rewrite the first equality
of the formula (32) as∫

RN

∫ u(x,T )

0

smα

1 + smα
dsψ(x)pdx

+

∫ T

ε

∫
RN

αum(α−1)

(1 + umα)2
|∇um|p ψpdxdt
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+

∫ T

ε

∫
RN

umα+q

1 + umα
ψpdxdt

= −p
∫ T

ε

∫
RN

umα

1 + umα
|∇um|p−2∇um·∇ψψp−1dxdt

+

∫
RN

∫ u(x,ε)

0

smα

1 + smα
dsψ(x)pdx,

by (33), letting ε → 0, and setting u1 = max{u, 1},
we have

sup
0<t<T

∫
RN

u1ψ(x)
pdx+

∫ T

0

∫
RN

ψpuq1dxdt

+

∫ T

0

∫
RN

um(α−1)

(1 + umα)2
|∇um|p ψpdxdt

≤ c
(
1 +

∫ T

0

∫
RN

u
m(1+α)(p−1)
1 |∇ψ|p dxdt

)
,

where we choose q1 = max{q, 1}, α < q1−p+1
p−1 , the

condition q > p − 1 assures that α > 0. This also
implies

sup
0<t<T

∫
RN

u1ψ(x)
pdx

≤ c
(
1 +

∫ T

0

∫
RN

u
m(1+α)(p−1)
1 |∇ψ|p dxdt

)
.

(40)
Using a similar argument as in the proof of (3.1), we
obtain ∫ T

0

∫
RN

uq1dxdt ≤ c. (41)

Hence, (40) and (41) imply the conclusion (30). Thus,
the lemma is proved.

Lemma 7 If m(p − 1) + p
N ≤ 1, q ≥ 0, then the

solution of Cauchy problem (1)-(15) satisfies∫∫
ST

(uξt − |∇um|p−2∇um · ∇ξ − uqξ)dxdt = 0,

(42)
where ξ ∈ C∞

0 (RN × (−T, T )).

Proof Let

ψk(x, t) = ηk(x, t) = ηk(|x|2)ξ(x, t),

where

ξ ∈ C∞
0 (RN × (−T, T )), η ∈ c∞(−∞,+∞)

η(s) = 1 when s ≥ 2; η(s) = 0, when s ≤ 1.
Let ηk(s) = η(ks). By the definition of weak

solution,∫ T

0

∫
RN

[u(ξηk)t−|∇um|p−2∇(ξηk)∇um−uqξ]dxdt = 0.

By Lemma 6, it is enough to prove that

lim
k→∞

∫∫
ST

|∇um|p−2∇um · ∇ηkξdxdt = 0. (43)

Denoting Dk = {x : k−1 < |x|2 < 2k−1}, clear-
ly mesDk ≤ ck

−N
2 . Hence, by Hölder inequality and

Lemma 6, we have

|
∫∫

ST

|∇um|p−2∇um · ∇ηkξdxdt|

≤ k
1
2

∫ T

0

∫
Dk

|∇um|p−1 dxdt

≤ k
1
2 (

∫ T

0

∫
Dk

umα

(1 + umα)2
|∇um|p dxdt)

p−1
p

×(
∫ T

0

∫
Dk

(1 + umα)2(p−1)um(p−1)(1−α)dxdt)
1
p

≤ ck
1
2 (

∫ T

0

∫
Dk

u
m(p−1)(1+α)
1 dxdt)

1
p

≤ c1(
∫ T

0

∫
Dk

u
m(p−1)+ p

N
−α

1 dxdt)
m(p−1)(1+α)

(m(p−1)+
p
N

−α)p

×k
1
2
− p−Nα−αNm(p−1)

2p(m(p−1)+
p
N

−α) ,

where u1 = max{u, 1}. Since m(p − 1) + p
N ≤ 1

implies p ≤ (m+1)N
mN+1 , we can choose

α <
p− p(1−m(p− 1))− p2

N

N +Nm(p− 1)− p
,

to obtain

1

2
− p−Nα− αNm(p− 1)

2p(m(p− 1) + p
N − α)

< 0.

If p = (m+1)N
mN+1 , we choose ξ in (25) and (27) as

ξηk, and notice that R = k
1
2 . Let s → 0 in (25) and

(27). Then we also obtain (43) in this case, and so
Lemma 7 is got.

The proof Theorem 4 Suppose to the contrary that
Cauchy (1)-(15) has a solution. Then by Lemma 7,
we have∫∫

ST

(uξt − |∇um|p−2∇um · ∇ξ − uqξ)dxdt = 0,

(44)
where ξ ∈ C∞

0 (RN × (−T, T )).
Let ηk(t) = 1−

∫ t−τ−2k
−∞ jh(s)ds, where

jh ∈ C1
0 (−2h, 2h) , jh ≥ 0,∫

R
jh (s) ds = 1, τ ∈ (0, T ) , 2h < T − τ.
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Clearly,ηk ∈ C∞(R). If t < τ + h, 0 ≤ ηk ≤ 1; if
t < T , limk→0 ηk(t) = 0.

For any ∀χ ∈ C∞
0 (RN ) , we choose ξ =

χ(x)ηk(t) in (44), then

−
∫ T

0

∫
RN

jh(t− τ − 2h)uχdxdt

−
∫ T

0

∫
RN

[|∇um|p−2∇um·∇χηk−uqχ(x)ηk]dxdt = 0.

Let k → 0+. We have∫
RN

u(x, τ)χ(x)dx

= −
∫ τ

0

∫
RN
|∇um|p−2∇um · ∇χdxds

−
∫ τ

0

∫
RN

uqχ(x)dxdt.

This implies that for ∀χ ∈ C∞
0 (RN ),

lim
τ→0

∫
RN

u(x, τ)χ(x)dx = 0.

This contradicts (15).
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