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Abstract: Consider the following Cauchy problem

ug = div(] Vu™ [P72 Vu™) — ud, (2,t) € S7 = RN x (0,T),

u(z,0) = 6(x),

x € RN,

where 1 < p < 2, and §(z) is the Dirac measure centered at the origin. If m(p — 1) + £ < 1and ¢ > 0, it can be
proved that there is not solution for the above narrated problem.
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1 Introduction

The paper is interested in the following equation

up = div(] Vu™ P72 Vu™) — ul,

(1)
where (,t) € S7 = RN x (0, T), with the following

initial condition

xR, (2)
where 4 is a nonnegative o-finite measure in RV. In
what follows, Br(zo) = {x : |x — x| < R}, and if
zo = 0, simply denote it as Bp.

u(z,0) = p,

Definition 1 A measurable function u is said to be a
weak solution of problem (1)-(2), if u satisfies the fol-
lowing conditions

u € C(0,T; Lip.(R")) 3)
w™ € LP(0, T3 W, P (RY) (4)
Vu™ e Ly (St), (5)
/ u(x, t)p(x, t)dz
RN
+ // (—ugs + |[Vu™ P2 VUV )dxdt
St

—I-// ulpdrdt = / o(z,0)du (6)

St RN

where ¢ € C(St) and p = 0 if |z| is large enough.
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The problem arises in the fields of mechanics,
physics and biology, including the non-Newtonian flu-
ids, the gas flow in porous media, the spread of bio-
logical population, etc.

If the initial value u(x,0) = wug(x) is appropri-
ately smooth, there are many papers in devoting to the
solvability of the Cauchy problem of (1), one can refer
to Wu-Zhao [1], Gmira [2], Yang-Zhao [3], Zhao [4,
5, 6], Zhao-Yuan [7], Dibenedetto-Friedman [8], Li-
Xia [9], Dibenedetto-Herrero [10], Benilan-Crandall-
Pierre [11], Zhao-Xu [12], Fan [13] and the references
therein for details.

For example, when p = 2, we have the following
basic results

AOIfg>m>1,ug € L}OC(RN),orl <m<
g < m+ %, u(z,0) = p is a nonnegative o-finite
measure, then the Cauchy problem of (1) has a global
solution.

() Ifg > m+ %, u(z,0) = p is a nonnegative
o-finite measure, then the Cauchy problem of (1) has
not any solution.

This fact means that, in the case of p = 2, in order
that the Cauchy problem of (1) has a solution , ¢ <
m+ % not only acts as a sufficient condition, but also
acts as a necessary condition. By the way, it is well-
known that, in order that the Cauchy problem of the
equation

up = Au™ u(x,0) = up(z)

(7)
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has a solution, one should pose some restrictions on
the growth order of the initial value. However, if ¢ >
m > 1, the existence of the solution for the Cauchy
problem of equation (1) has not any restrictions on the
growth order of the initial value.

(i) Ifg=m

_ 2
/RN exp{—/1+ [z[2}ug(z)dz < 00,  (8)
orl < g<m,uy€ L. (RY),
2\ = N
up(z) < crfex + [z7) ™=, a.e. R, (9)

where c¢1, ¢y are constants,

1

(m — q)? e
< )
2Nm(m — q) + 4mp

then the Cauchy problem of (1) has a global solution.
The condition (9) restricts the growth order of the ini-

tial value wug is less than |z|m—7, this restriction is
weaker than that of the equation (7), which restricts
initial value ug satisfying that: for some r > 0,

2
sup p’\ w1 / up(x)dxr < 0o,
p=>r By

which roughly means that the growth order of the
2

initial value ug should be less than u—l More-

over, Zhao-Li [14] showed that the condition (9) is

almost extremely, in fact, when 1 < ¢ < m, if

ug € Lj,.(RY), and there is constant o > —2— 5> such

that

> 0,

then the Cauchy problem (7) has not any weak solu-
tion.

(VIO <g<m+E m>(1- %), the
Cauchy problem (1)-(2) has a very singular solution
U(z,t), which satisfies that

UeC(Sr\0),U(z,0) =0,Vz € RV,
lim U(a: t)dx = +00,Vr > 0.
t—0

For another example, when m = 1, we have the
following basic results.

OIf ¢ > p — 1, up € LZOC(RN), orp—1<
q <p—14 %, u(x,0) = pis a nonnegative o finite
measure, then the Cauchy problem of (1) has a global
solution.

(i) If ¢ > p—14 %, u(z,0) = pis anonnegative
o measure, then the Cauchy problem of (1) has not
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any global solution; this fact means that, in order that
the Cauchy problem of (1) in this case has a solution ,
the condition g < p—l—l—% not only acts as a sufficient
condition, but also acts as a necessary condition. By
the way, it is well-known that, in order that the Cauchy
problem of the equation

= div(|VulP~2Vu), u(z,0) = ug(x),

has a solution, one should pose some restrictions on
the growth order of the initial value. However, if g >
p — 1, the existence of the solution for the Cauchy
problem of equation (1) has not any restrictions on the
growth order of the initial value.

(10)

(iii) If g = p — 1, up € LLY(RN),
_ 21,1+
/RN exp{—c\/1 + |z|*}ug ™ (x)dx < oo,

p—1

ol 2
where the constants a > 0, ¢ < p(p 1) » o P ,0r

l<qg<p—1,uy € L, .(RN),

2\ 39 N
uo(x) < ci(eg + |z]7)2@-1-9 a.e. RY,

(11)
where c1, co are constants,
-1 - p 1=
Cl<< - (p q) )P .
PPl (pg+N(p—1-q))

then the Cauchy problem of (1) has a global solution.
The condition (11) restricts the growth order of the

1

initial value wuy is less than |z| =174, this restriction is
weaker than that of the equation (10), which restricts
initial value ug has the growth order less than ]‘%li.
Moreover, the condition (11) is almost extremely, in
fact, when 1 < ¢ < p — 1 if ug € LZOC(RN) and

there are constants o > o1 B > (0, such that

uo(:z)

ja| o0 fz|®
then the Cauchy problem (10) has not any weak solu-
tion.

(iV)IfmaX{l p—1}<qg<p-1+%.p>
N +1, the Cauchy problem (1)-(2) has a very singular
solution U (z, t) too.

Recently, the author has been studying the solv-
ability of the equation in [15]. By discussing the exis-
tence of the self-similar solution, the author [15] had
got the singular solution of the following more general
equation

ug = div(|Du™P~2Du™) — u? | Du™Pr,  (12)
provided that p > 2, m > 1, and
p>pi,q1+pim>m(p—1)>1. (13)
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While [16-17] had discussed the large time behavior
of the solution of the Cauchy problem of (12). There
are so many papers such as [18-40] which studied the
posedness of the solutions, the HOlder continuity, the
large time behaviors of the solutions, and other relat-
ed results of the special cases of (12) or (1), so it is
impossible to point them one by one here.

2 The main result of the paper

Especially, we quote the following important proposi-
tions obtained in [13].

Proposition 2 Let N > 1. Suppose that u(z,0) = p
is a nonnegative o finite measure. If m,p, q, N satisfy
the conditions that m(p — 1) + & > 1, and 0 < ¢ <
m(p—1)+ %, then there exists a generalized solution
to the Cauchy problem of (1).

Proposition 3 Let N > 1. If m,p,q, N satisfy the
conditions that either m(p — 1) + & < 1,4 > 0, or
1 <m(p—1)+ & < q, then the Cauchy problem
(1)-(2) has not a solution.

In this paper, we will discuss Cauchy problem
(1)-(2) when m(p — 1) < 1. We will prove the fol-
lowing

Theorem 4 Suppose2 >p>1,m>1,q>p—1
and

2—p+%<m(p—

then there is not nonnegative solution for Cauchy
problem (1) with the following initial value

u(z,0) = d0(x), (15)

where 0 is the Dirac measure centered at the origin.

p
H)+—=<1 14

Compared to the above Proposition 3, which is
one of the main results of [13], it can be found that our
Theorem 4 improves the result of Proposition 3 in the
case of that m(p — 1) + & < 1,¢ > 0. This improve-
ment is obtained by quoting the above definition of
the weak solution (Definition 1, which is equivalent to
the corresponding weak solution defined in [13]), and
by choosing suitable testing functions to make more
meticulous estimates. However, the method we used
is different from that of 13], and we use some ideas
in [3], in which m = 1, p < 255 ¢ > 0. Howev-
er, compared to [3], to get Theorem 4, the conditions
m>1,q>p—1are necessary in our proof By the
way, the condition 2 —p+ & < m(p—1)+ & implies
m(p—1) >2—p, we conjecture that this condition
may be weaken to that m(p — 1) > 0.
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3 An important lemma and its proof

Lemma 5 Suppose 1 <p <2, m(p—1)<1,q¢>0,
then the nonnegative solution u of Cauchy problem

(1)-(2) satisfies

sup / u(x, 7)dxdr
Br

o<r<t

1
S c+ ct1—-mp+m RN_ lfmpp+m . (16)

T
/ / V™ P~ dadt
0 JBg

m(p—1)
< cRY™ N[1=m(p-1)] (/ / t2udazdt>
Bar
(m+1)(p—1)
N(m—mp+1) T 1 P
+cR P </ / t2udacdt>
0 JBagr
(17)
T
/ / uldzxdt < ¢(R,T). (18)
0 JBg

Proof Let & be the cut function on Bap, satisfying that
¢ =1onBpg.and [VE[ < (1—-1)7TR™ 1€ [§,1).
For any t > s > 0, let £P be as a testing function. We

have
/ u(z, t)édx
Bair
t
S/ u(a:,t)fda:—F/ EPuldadr
Baog S Baor
t
= / u(z, 8)édr— / / |Vu™ P2V u™ - VEdrdr
Bar

</ u(z, s dx—if// (VU Pt P drdr
BQR B2R

(19)

The calculations as follows are formal on that they re-
quire u to be strictly positive. They can be make rig-
orous by replacing v with u + ¢ and letting ¢ — 0. By
Holder inequality, we have

t n
/ / |Vu™ PP dadr
s JBagr

t
= // {p_l]Vum]p_l(T—s)ﬁumau_mo‘(T—s)_ﬁdxdT
s JBagr

p—1

t 8 —ma
< (/ EP (T — S)Tfl|Vum|pu PlpdxdT) !
s JBagr

X (/st /BQR(T - 3)_p5umo‘pdmd7); , (20)
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where «, 3 are constants to be chosen later.
In Definition 1, we choose testing function

B a
o= (r — 8)r 1™ (7 — 5),
where
mn(t) € CH(R), my > 0,

and whent > s + h,

whent < s,

and

. / _
lim o (1)t = 0, (21)

then, from the definition of the weak solution, we have

/: /RN ur(z, 7)p(z, 7)dxdr

t o
:// uT(a:,T)fp(r—s)%um(lfﬁ)nhﬁ—s)dxdr
s JBagr
_ p—1

m[(1—B)p—1]+p—1
By m(1-22) 41

t
x/ EP(r — s)r—Tu,
s JBagr

Np(T — s)dxdT

t o
X [/ fpum(l_ri)ﬂnh(T — s)dxdT
s JBagr

3 a
~[ [ e R e — 9 = s)dadr),
s 2R

t
/ div(|Vu™ P2V u™) o (x, 7)dxdr
s JBagr

t
= / div(|[Vu™[P~2Vu™)
S BQR

B [
x&P (1 — s)ﬁum(l_rﬁ)nh(T — s)dxdr

¢ Bp_
== [ [ =97
s JBagr

X |[Vu™P~AVu™ - VédrdT

_ S)gp—lum(l—%)
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ap

7—1/ np(T— 3)( T—S)P 1§u =
Bar

x|Vu™ Pdzdr

t B
—/ / (1 —8) 1
s JBag

X [e&P|Vu P + ¢(e)uP|VEP|dadr

map

n(T —s)u” 1

7—1/ (T — s T—S)P 1§pu =
Bar

x|Vu™ |Pdzdr

t
/ / wlo(z, T)dxdr
s JBagr

t 8 o
= / . &P (T — S)Tﬂum(l_rﬁ)nh(T — s)dxzdr.
2R

and

If we let h — 0. By (21), choosing « such that

ap
—— —=1>0,
p—1

the readers will find that in the following discussion,
when we choose the constant «, it always satisfies this
inequality. Now, we have

t _apm Bp_
/ EPu” 1 (1 — 5)p—1|Vu™|Pdadr
s JBagr

<c/ / +1(T—3)%dxd7
BzR

c Lo _apm
S (1 —s)p—Tu »1 dxdT.
(1—-10)PRp /s /B
2R (22)

Substituting (22) in (20),

t
/ / [Vu™ P P dadr
s JBagr
// T—splu Plda:dT
B2R
+/ / T — s
Bagr
' 1
P
X (/ / (1 — s)_pﬁuapmda:m')
s JBagr

We consider the following two cases.
(1)If—p < p—1, we choose o = p,ﬂ 2 in

(23). Then g
t
// \Vum|p_1£p_1dxd7
s JBagr
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t 1 _ 1 t m(p—1)
c (1—Z)R]_p/ / (1—38)2-D 0" P p-Tdzdr X (/ / (1 — S)—éudﬂh)
S BQR s B?R

N(m—mp+1) (m+1)[1—m(p—1)]

t 1 1 p—1
+// T m(pflﬂ“dxdﬂ P +cR™ 7t 2p
Bagr

(m+1)(p—1)

X </:/BZR(T—S)§udxdT);. (24) (/ /32R T —3) 2uclxd7'> ’ (25)

iy By (19), (25),
The conditions 1 < p < 2, m(p — 1) < 1 assure that

sup/ u(x,T)d:L‘S/ u(z, s)dx
Biar Bagr

1>m[1— ]+1>0. s<T<t

m(p—1)
t L (p—1)
By Ho Ider inequality, +¢(1-1)"PR7F </ / u(r — s)_dedT)
s JBagr

t 1 _ _ 1 p—1 2 1
{/ / (1 — 8)To 0 Ly w0 gpdr =)
s JBagr

t 1 1-1) 13(/‘/‘ — §)"2dzd !
< {(/ /B u(r — S),%dde)m[l m(p{l)]ﬂ +c( o u(r — s) rdT
2R

(m+1)[1-—m(p—1)]
Xt 2p

(m+1)(p—1)

t m=1__ p—1 1y 2=l
X(/ / (tr—s) 2 T=m-Ddxdr)r-1 "} »
o JBan < / w(z, s)dx + (1 — 1)"PR~%t
m(p—1)+p—2 Bar
(/ / u(r — s) 2d:vd7') ! ( / )m(P—l)
Baogr X | sup udx
Rm*mPJrlN . s<t<tJBogr
X p t1-m(p-1) _k (m+Dp-—m(p—1)]
’ +e(1—1)"*R™»t 2
in which we have used the conditions p < 2, m > 1. (mt 1) (p—1)
At the same time, we have ( / P
x | sup udx
_ s<t<tJBaopr
t 1 _1 e B
(/ / (7’ — s) 2-1) """ p—1 da;dT) < / u(x, S)dx+c(1_l)_l—m1()p—1)Rl—m(’;—l)tl—m%p—l)
Bz Baor
! —g(pm—3ty), mp——iy pm—lé1 4—1 sup / udzx. (26)
={ BZR[(T =) A 2 0<r<tJBag
1 _ _ p—1
(mp——L_)p=1 (2)Ifm—p >p—1,wechoosea =p—1,08 = 5
dadty T in (23). Then
1
+5 (Pm—f) +1—pm t
— 2( 1) 1
X{/ /BQR T 8 p ] / / ’vum|p71 fp_ldl‘dT
s JBag

dadr} G

Sc{[(l—l)R]_p/: /BQR(T—S)dedT

¢ . m(p=1)—5
_c</ / (T—s)_2udazd7'> . )
s p=2 p—1
br —|—/ / (1 —s) 2 u™ " ""Pdadr) s
s JBagr

XRN(I—mp—&-m)tiQ_mép_l)

1
; 1
we have X (/ / PP (1 — 5)” — 1)d:vdT) "
s JBagr
p—1

t
// IVu™ Pt P~ dadr Since
s JBagr

t p—2 —m p
< ¢(1 — D)= RNI=m(p— 1)) 2= (/s /BQR(T —s) =z umt! pda:dt)
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t _
S [/ / (um-i-l—mp,r— m+12 e ) m+117'mp
s JBag

(m+1—mp)(p—1)

dxdr] P

m(p—1)2

t — m+1—m
x (/ / (1 — s)(pT2+ 3 p)m<Pll>da:d7-> !
Bar

(m+1-—mp)(p—1)

(/ /Bm - s) zd:ch)

@-D%(m+1)  mN(p-1)?2
Xt 2p R

and
' 1
p(p p
(/ / umPP (1 — 5)” )
S BQR
t L m(p—1)
<c (/ / u(r — s)‘?dazcﬁ)
s JBagr
mp—mp2—p2+p+2 _ N[1—mp(p—1)]
Xt 2p R P ,
we have

t
/ / (Vum Pt e dadr
s JBagr
t L m(p—1)
c(l1—-nt? </ /B u(r — s)?dxdT)
2R

m+2 mp
xt Rk

(p=1)(m+1)

(/ /BQR =) 2dxd7->

N[l-m(p—1)] m+43—mp—p

xR P t (27)

where k = p+ N[m(p — 1) — 1].
By (23), (27),

sup u(zx, 7)dx S/ u(zx, s)dz
s<T<t BZQR B2R
m(p—1)
) PR™ (// u(T —s) 2da:d7'>
Bar
2 m(p 1)
(m+1)(p—1)

(//BZR T—5) 2da:d7> ’

m+3—mp—p
Xt 2p

m(p—1)
S/ u(z, s)da+ce(1—-1) PRt ( sup / udm)
Bsgr Bagr

s<T<t
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(m+1)(p—1)
_1 _k 2—p(m+1) D
+c(1-0)""R »t » sup udx
s<T<t BQR

< / u(zx, s)dz+c(1-1) T=m(p=1) R 1*”1_&*” t =G
Bagr

1
+- Sup/ udx. (28)
2s<7'<t Bagr

From (26), (28), according to [14, Lemma 3.1],

sup/ u(x,r)dxg/
s<T<t BZQR B2R

k 1
_|_CR_ 1-m(p—1) t 1—mp+m

Let s — 0. Then (16) is true. By (16), (26) and (27),
we get (17). Substituting (17) into (19), by (16), we
get (18). Thus the lemma is proved.

u(zx, s)dz

4 The proof of Theorem 4

Lemma 6 Ifm(p — 1) + & < 1, then the solution of
the Cauchy problem (1)-(15) satisfies
(1) For any given R > 0,

/ / :L may 5 [Vu™|dzdt < c(a), (29)

and

(2)
T P
/ / WP DE R =0 dt < c(a), (30)
0 JBgr

(3) .
/ / uPdzdt < oo. (31)
0o JBg

where 0 < a < p—1< 1land ¢ = max{1,q}.

Proof (1) By Definition 1.1,
C&°(RN), € (0,T), we have

u(z,T) gma J pg
L sy

m(a 1)
[ /
RN

:—p/ / (V™ [P~ V™ VP dadt
RN 1+uma
u(z,e) gma J ry
+/RN/O [ gma sp(x)Pdx
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ma+q

Pdzdt
/ lwl%%ﬂmw *

s mao
< dsyP(x)dzdt
<o [ o T s

U(ﬁ,E) Sma
RN 0

14 sme
Noticing that

dsy(x)Pdx. (32)

T ume 1 -
/0 /nm‘vu P V[P dadt

<if] fodse

+c(n) / / um =D |7 P dadt
O n

and when ¢ — 0,

/ /u(w,s)
RN Jo

< /RN u(x, )P (x)dx — /RN YP(x)dp.  (33)

Then, if we let € — 0 in (32), we have

/RN u(z, t)p(z)Pde

A+ amo) \Vu™ P pPdadt

mo

1+ sma

dsyP(x)dx

sup
0<t<T

=c (1 —|—/0 /RN umF)P=1) 74P dwdt) .

(34)
This implies that
sup / u(x, t)(x)Pdx
o<t<T JRN
T
gc<1+ / / um<1+a>(p—1>\w\pdxdt>.
0 JRN
(35)

We now choose « small enough such that m(1 +
a)(p — 1) < 1, by Young inequality, we have

T

/ / u™ IO E=D |7 P dadt

0 JRN
T

< 5/ / upPdxdt
0 JRN
1
|V )P T—m(i+a)(p—1)
/ /RN (wm(l—l—a) (p— 1)) dxdt

(36)
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Let X € CSO(BQR), X ‘BR: 1, and let

1
m(l+a)(p—1)

X" h>
Y = 27

By the above inequalities (35)-(36), we have

T
/ / WA= |y P dedt < e, (37)
0 JRN
s [ i@ se  (@9)
0<t<T JRN

Combining (34)-(38), we get (29), i.e.
/T / um(ozfl)
0 Br (1 + uma)Z

Now, let

|Vu™| dzxdt < c(a).

m(p—1-a)
w=Uu p

By Sobolev inequality,

(/RN wl’)uﬂ”dac>i <ec (/RN |Vypwl|? dav)Z

A=0)(p—1-a)

(39)

0:<p—1—a_1> <1_1+p—1—0¢>_1‘
P v/ \N p D

P10 by (39), we have

/ / WP dedt < / /
(y=0)(p—1—0)
X sup

_p V4
wr—l-adg
0<t<T \JBapr

Hence, by (38), (29), we have

T
/ / PPy P DT R =g gt
0 RN
T
) <1+ / / va\pum(PW)dxdt).
0 RN

At the same time, if we rewrite the first equality
of the formula (32) as

For v =

V (¢pw)|P dxdt

Sma

u(z,T) J pg
L rmds(ayda

m(a—1)
+ / / o 2|vu 1P P deedt
RN uma
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ma+q

Pdxdt
+/ /RN 1+um0‘w v

= —p / / (V™ [P~ V™ VP dadt
RN 1+uma

u(ze) gma p Py
+/R/0 S dsb(a)da,

by (33), letting ¢ — 0, and setting u; = max{u, 1},
we have

T
sup/ u1¢(x)pdx+/ / YPuddxdt
0<t<T JRN 0o JRN

p,,p
+/ /RN Humazyw [P yPdzdt

¢ (1 4 / / uyr Oy \wpdxdt) ,
0 RN

—p+1
where we choose ¢ = max{q,1}, a < %, the
condition ¢ > p — 1 assures that « > 0. This also
implies

sup
0<t<T

T
<e (1 4 / / uyr Oy \dedt)
0 RN

(40)
Using a similar argument as in the proof of (3.1), we

obtain .
/ / wdzdt < c.
0 RN

Hence, (40) and (41) imply the conclusion (30). Thus,
the lemma is proved.

/ urp(x)Pde
RN

(41)

Lemma7 If m(p — 1) + & < 1, ¢ > 0, then the

solution of Cauchy problem (1)-(15) satisfies

// (u& — |Vu™P~2 V™ - VE — ui€)dzdt = 0,
St

(42)

where £ € C°(RN x (=T, T)).

Proof Let
Ui, t) = mp(, 1) = mp(|2*)€(x, 1),

where
€€ C(RYN x (=T,T)), n € ¢®(—00,+00)

n(s) =1 whens > 2;n(s) =0, when s < 1.
Let ni(s) = n(ks). By the definition of weak

solution,
/ / w(Eng)i—|Vu™ P2V (Eng) Vu™ —ul€]dadt = 0.
E-ISSN: 2224-2880 686
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By Lemma 6, it is enough to prove that

lim / / |Vu™|P~2 Vu™ - Vipédedt = 0. (43)
k—o00 St

Denoting Dy, = {z : k~! < |z* < 2k~ '}, clear-
ly mesDj, < k=
Lemma 6, we have

. Hence, by Holder inequality and

\ / /S |Vu™ P2 Vu™ - VpEdadt]
T

1 T 1
< ki/ / |Vu™ P~ dxdt
Dy

% UG P dedt)
k2 J
/ /Dk 1+uma)2‘ P ddt) 5

T
X(/ / (1_|_uma)Z(p—l)um(p—l)(l—a)dl,dt)%
0 D

T
< ck3( / / WD) gy
Dy,

m(p— 1)(1+(¥)
/ / m(p 1)—"_N adl’dt) (m(p— 1)+W7Q)P
Dy,

1_p—Noa-— aNm(p—1)
w2 2P(m(1’*1>+%*0¢>7

where u; = max{u, 1}. Since m(p — 1) + 2

v <=1

implies p < (ZX,QJIV, we can choose
2
p—pl-—m@p-1)-%
N+Nm(p—1)—p ~’
to obtain
1 p—Na- aNm( -1)
- — < 0.
> W1+ % —0)
If p = (z#ﬁv, we choose £ in (25) and (27) as

&ng, and notice that R = k3. Let s — 0 in (25) and
(27). Then we also obtain (43) in this case, and so
Lemma 7 is got.

The proof Theorem 4 Suppose to the contrary that
Cauchy (1)-(15) has a solution. Then by Lemma 7,
we have

// (u& — |Vu™ P2 V™ - VE — ui€)dzdt = 0,
St

(44)
where £ € C°(RN x (=T, T)).
Letn(t) =1— 77 % Jn(s)ds, where

o0

jh € C& (_2h7 Qh) 7jh > 07

/jh(s)ds:l,Te(O,T), o <T—r
R
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Clearly,n, € C®(R). If t <7+ h, 0 < < 1;if
t<T,limg_,g nk(t) =0.

For any Yy € C§°(RY) , we choose & =
X(2)nk(t) in (44), then

T
—/ / Jn(t — 7 — 2h)uxdxdt
0 JRN

T
_/o /RN [ Vu™ P2 V™V xm—udx () nk)dzdt = 0.

Let £ — 0. We have

/RN u(z, 7)x(z)dx

= —/ /N IVu™P~2 Vu™ - Vxdzds
0 JR

—/0 /RN ulx(z)dxdt.

This implies that for Vy € C§°(RY),

lim
7—0

u(z, 7)x(z)dz = 0.
RN

This contradicts (15).
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