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Abstract: By introducing the fractional derivatives in the sense of caputo, we use the Adomian decomposition
method to construct the approximate solutions for some fractional partial differential equations with time and space
fractional derivatives via the time and space fractional derivatives wave equation, the time and space fractional
derivatives reduced wave equation and the (1+1)-dimensional Burger’s equation . The result of this problems reveal
that the Adomian decomposition method is very powerful, effective, convenient and quite accurate to systems of

nonlinear fractional equation.
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1 Introduction

In recent years, there has been a great deal of interest
in fractional differential equations. First there were
almost no practical applications of fractional calculus,
and it was considered by many as an abstract area con-
taining only mathematical manipulations of little or no
use. Nearly 30 years ago, the paradigm began to shift
from pure mathematical formulations to application-
s in various fields. During the last decade Fractional
Calculus has been applied to almost every field of sci-
ence, engineering, and mathematics. Several fields of
application of fractional differentiation and fractional
integration are already well established, some others
have just started. Many applications of fractional cal-
culus can be found in turbulence and fluid dynamics,
stochastic dynamical system, plasma physics and con-
trolled thermonuclear fusion, nonlinear control the-
ory, image processing, nonlinear biological system-
s, astrophysics [1]-[11]. Historical summaries of the
developments of fractional calculus can be found in
[1]-[3]. There has been some attempt to solve lin-
ear problems with multiple fractional derivatives (the
so-called multi-term equations) [2, 12]. Not much
work has been done for nonlinear problems and on-
ly a few numerical schemes have been proposed to
solve nonlinear fractional differential equations. More
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recently, applications have included classes of nonlin-
ear equation with multi-order fractional derivative and
this motivates us to develop a numerical scheme for
their solutions [13]. Numerical and analytical meth-
ods have included Adomian decomposition method
(ADM) [14]-[16], variational iteration method (VIM)
[17], and homotopy perturbation method [19]-[20].

The main objective of the present paper is to use
the Adomian decomposition method [14]-[16] to cal-
culate the approximate solutions of the following frac-
tional partial differential equations of the form:

(i) The time and space fractional wave equation
with the variable coefficient [21]:

203
_ G(a:)M

ox*?’

9%y,

5 t>0,0<a,B<1,

ey

where G(x) is an arbitrary function of = .

(i) The time and space fractional reduced wave
equation with the variable coefficient [22]:

0*u 1 ,0%u 1 ,0Mu
=3y 5T 27 s
otz — 27 97 27 gy

2

(iii)) The time and space fractional nonlinear
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Burger’s equation [23]:

le" 23 15
%:u%—)\ugg;, t>0, 0<a,B<1
3
where o and X are arbitrary constants.

The function u(z,t) is assumed to be a causal
function of time and space, i.e. vanishing for t < 0
and x < 0. The fractional derivatives are considered
in the Caputo sense. The general response expression
contains a parameter describing the order of the frac-
tional derivative that can be varied to obtain various

responses.

2 Preliminaries and notations

We give some basic definitions and properties of the
fractional calculus theory which are used further in
[2, 3, 24, 25].

Definition 1 A real function f(z),z > 0, is said to be
in the space C\,, u € R, if there exists a real number
(p > ), such that f(x) = P f1(x), where fi(x) €
C(0,00), and it is said to be in the space C' if f™ €
Cu,m e N.

Definition 2 The Riemann-Liouville fractional inte-
gral operator of order o« > 0, of a function f €
Cup > —1, is defined as

Jo (@) = o [
)

a > O7 x>0,
JOf(z) = f(x).

Properties of the operator J“ can be found in [2,
3, 24, 25], we mention only the following:

For feC,, pn>-1, o,8>0 and~y > —1:

() JOJOf(x) = JoHO f(x),

2) J*JP f(a) = J° T f (=),

(y+1
(3) J%2" = F(a(jr—“t+)l) z .
The Riemann-Liouville derivative has certain dis-

advantages when trying to model real-world phenom-
ena with fractional differential equations. Therefore,
we shall introduce a modified fractional differential
operator D proposed by M. Caputo in his work on
the theory of viscoelasticity [2, 3, 24, 25].

x—t)*” 1f (t) dt
“4)

Definition 3 The fractional derivative of f(x) in the
Caputo sense is defined as

t uo
L - T)m’aflia u(@,7) dr,

T 4 g
Diu(z,t) =
rulz,t) form—1<a<m
9 (;;&f’t), fora=meN
Q)
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For more information on the mathematical prop-
erties of fractional derivatives and integrals one can
consult the mentioned references.

3 Basic idea of the Adomain decom-
position method (ADM)

In this section, we illustrate the idea of the Adomain
decomposition method [14]-[16]. Let us consider the
nonlinear differential equation

L(u) + R(u) + N(u) — g(r) = 0, (6)
where L is the highest order derivative which assumed
to be invertible, R 1is a linear differentiable operator
of order less than L, N is a nonlinear differentiable
operator. Applying the inverse operator L~ to both
sides of (6) and using the given condition

u=f— L' R(u) + N(u)] (7)
where the function f represents the terms arising
from the integrating the source term g and by us-
ing the given condition. Adomain’s decomposition

method [14]-[16] defines the solution u(z) by the se-

ries: o
k=0

where the components wug(x,t) are usually deter-
mined recurrently by using the relation:

uo(x,t) = f
uk+1( t) —L~

(®)

YR(ug) + N(ug)], k > 0.
€))

The nonlinear operator N (u) can be decomposed into
an infinite series of a polynomials given by

u) =Y A
k=0

where Ay are so called the Adomains polynomials
which given by

b)) v

10)

=

4 ADM for time and space fraction-
al wave equation with the constant
coefficient

In this section, we use the Adomain decomposition
method to calculate the approximate solution of the
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time and space fractional wave equation in the follow-
ing form:

0%y 5 0%y
at?a = W’ t>0,0<0¢,ﬁ§1 (12)

with the initial conditions

. 0%
u(x,0) =e ", %(1‘,0) =0, (13)
where C' is an arbitrary constant. By using the inverse
operator of Df* to both sides of Eq.(12), we have
w(z,t) = u(xz,0)+ 1“(;7(11) %(m,O) (14)
+C2 2D (Diu(a, 1)),

where Dg = 887/36 , DY = gt% and J< is the inverse
operator of Dy'.
The Adomain decomposition method leads to
t 0%u
t) = 0)+ =—— =——(=,0 15
UO(QZ, ) u(:z, )+F(a+1) ot (l‘, ) (15)

w1 (@,1) = C2I% (D2 (Duy(x,1))], k > 0.
(16)
Applying the recursive relation (16) and the initial
conditions (13), we get the following results:

uO(x7t) = e_xv
. (x t) B 02t2a i (_l)nxn726
BV T T2a+1) &4 T(n+1-28)
C4t4a o (_l)nxn—éL,B
u2(®:0) = Fea 1) nz::l T(n+1—4p)
CGtﬁa > (_1)n$n—65
t —
us(z,1) F@a+&)%§ﬂn+1—6@’
CthZkoz o (_1)nl,n—2k36
7%@”)_FQMw+ng;rm+1—2mﬁ’“ﬂ

Thus the approximate solution of Eq.(12) in a series
form is given by

u(z,t) = up +uy +ug + ... +ug + ...
o0
02t2axn726

u(z,t) = e + nz—:1(_1)n {F(2a+l)f‘(n+l—2ﬁ)

C4t4amn74,8
+ et D)T (nr1-45)
+ CGtGaxnff)ﬂ +
T(6a+ )T (nri—68) ' "
CthQk(’tlﬂl*QkB
T(@hat)T(ni1-2k3) T ==

(18)
Figure 1 and Table 1 illustrate the behavior of the
analytic approximate solutions (18).
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x/t 0.1 0.2 0.3
0.1 | 0.904457 | 0.903508 | 0.902071
0.2 | 0.818103 | 0.81654 | 0.814173

0.3 | 0.739995 | 0.737946 | 0.734844
0.4 | 0.669336 | 0.666889 | 0.663186
0.5 | 0.605414 | 0.602636 | 0.598432
0.6 | 0.547583 | 0.544528 | 0.539906
0.7 | 0.495263 | 0.544528 | 0.487001
0.8 | 0.447928 | 0.491975 | 0.395936
0.9 | 0.405102 | 0.444444 | 0.439174

1 | 0.366356 | 0.401454 | 0.395936

x/t 0.4 0.5 0.6
0.1 | 0.900177 | 0.897839 | 0.895064
0.2 | 0.811054 | 0.807211 | 0.802658
0.3 | 0.730759 | 0.725729 | 0.719772
0.4 | 0.658311 | 0.652309 | 0.645207
0.5 ] 05929 | 0.586093 | 0.578039
0.6 | 0.533824 | 0.526342 | 0.517494
0.7 | 0.480458 | 0.47241 | 0.462894
0.8 | 0.432243 | 0.423719 | 0.413643
0.9 | 0.388678 | 0.379754 | 0.369208
1 | 0.349313 | 0.340055 | 0.329115

x/t | 0.7 0.8 0.9

0.1 | 0.891855 | 0.888206 | 0.884112
0.2 | 0.797397 | 0.791429 | 0.784745
0.3 | 0.712898 | 0.705106 | 0.696389
0.4 | 0.637015 | 0.627735 | 0.617361
0.5 | 0.568754 | 0.558242 | 0.546497
0.6 | 0.507296 | 0.495754 | 0.482865
0.7 | 0.45193 | 0.439526 | 0.425679
0.8 | 0.402036 | 0.388909 | 0.374259
0.9 | 0.357063 | 0.34333 | 0.328008
1 0.316519 | 0.30228 | 0.286397

Table 1.show the approximate solution for the
different values of 0 <z < land 0 < ¢ < 1 when
=01 =09, k=05 N=100,0 <z < 3.

S ADM for time and space fraction-
al wave equation with the variable
coefficient

In this section, we use the Adomain decomposition

method to calculate the approximate solution of the

time and space fractional wave equation with the vari-
able coefficient in the following form:

0%y, 528y,
pry ;1:'2
ot2« Ox28’

t>0,0<a,f<1, (19)
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Fig 1 The surface shows the approximate solution
u(x,t) for Eq (18) :

@B =01 a=09 k=05 N=100,0<t<
3,0<x<3,

(b) The projection of the surface when 5 = 0.1, a =
0.9, k=0.5, N =100,0 < z < 3,t = 0.5,

with the initial conditions

iﬁ@ﬂ%z&

ot 20

u(z,0) = cos(z),

By using the inverse operator of Dyf* to bath sides of
Eq.(19), we have

t> 0%y

u(z,t) = u(x,0 ,0)

)+ ) o (@
+J%[22 Dy (D (x,t))], k> 0.
(2D
The Adomain decomposition method leads to obtain

. 9u o),

UQ(iC,t) = U(.CC,O) + m ota

(22)

Uy (2, 1) = J? [z DB (DBuy(x,1))], k> 0.
(23)
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Applying the recursive relation (23) and the initial
conditions (20), we get the following results:

ug(x,t) = cos(x),

oo
. t2a (71)n00nx2n+2—2ﬁ
up(z,t) = T(2a+1) \ r(2n+1-28)
n=
oo
_ e (=) Cipa?n 1715
U2($vt) — T(4a+1) Zl I'(2n+3—483) ’
n—
oo
. t6a (_1)n02nx2n+676B
U3(:L',t) — T(6a+1) Zl I'(2n+5—60) ’
n—
ke R (1) Otk 268
up(x,t) = T(2ka+1) 21 C(2n+2k—1-2kB)
n=
(24)
where
C'On = 11

Cin = (2n — 26+ 1)(2n — 26+ Q)Con,
Con = (2n — 48+ 3)(2n — 45 + 4)C1,,
Cs, = (2n — 68+ 5)(2n — 68+ G)Czn,

(25)
Thus the approximate solution of (19) in a series form
is given by:

S n Copt20g2n+2-28

u(w,t) = cos(z) + 21(_1) {F(2a+1)F(2n+1—2,8)

Oy pthog2n+ia—4p n=
T DT @ns3=48)

ant6ax2"+6_6ﬁ
+1"(2n+5—65)1"(6a+1) + .

CkntQkax2n+2k72k6

+I‘(2ka+1)I‘(2n+2k—1—2k,8) e

(26)

Figure 2 and Table 2 illustrate the behavior of the
analytic approximate solutions (26).

Table 2

x/t 0.1 0.2 0.3
0.1 | 0.904457 | 0.903508 | 0.902071
0.2 | 0.818103 | 0.81654 | 0.814173
0.3 | 0.739995 | 0.737946 | 0.734844
0.4 | 0.669336 | 0.666889 | 0.663186
0.5 | 0.605414 | 0.602636 | 0.598432
0.6 | 0.547583 | 0.544528 | 0.539906
0.7 | 0.495263 | 0.544528 | 0.487001
0.8 | 0.447928 | 0.491975 | 0.395936
0.9 | 0.405102 | 0.444444 | 0.439174

1 | 0.366356 | 0.401454 | 0.395936
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x/t 0.4
0.1 | 0.900177
0.2 | 0.811054
0.3 | 0.730759
0.4 | 0.658311
0.5 ] 0.5929
0.6 | 0.533824
0.7 | 0.480458
0.8 | 0.432243
0.9 | 0.388678
1 | 0.349313

0.5
0.897839
0.807211
0.725729
0.652309
0.586093
0.526342

0.47241
0.423719
0.379754
0.340055

0.6
0.895064
0.802658
0.719772
0.645207
0.578039
0.517494
0.462894
0.413643
0.369208
0.329115

x/t 0.7
0.1 | 0.891855
0.2 | 0.797397
0.3 | 0.712898
0.4 | 0.637015
0.5 | 0.568754
0.6 | 0.507296
0.7 | 0.45193
0.8 | 0.402036
0.9 | 0.357063
1 | 0.316519

0.8
0.888206
0.791429
0.705106
0.627735
0.558242
0.495754
0.439526
0.388909

0.34333
0.30228

0.9
0.884112
0.784745
0.696389
0.617361
0.546497
0.482865
0.425679
0.374259
0.328008
0.286397

Table 2.show the approximate solution for the
different values of 0 < x < 1land 0 <t < 1 when
=01, a=09, k=05 N=100,0 < z < 3.

6 ADM for time and space fraction-
al reduced wave equation with the
variable coefficients

In this section, we use the Adomain decomposition

method to calculate the approximate solution of the

time and space fractional reduced wave equation with
the variable coefficient in the following form:

o*u 1 5 0%y 1 ,0%u

gz — 2 97287 2" g2

t>0,0<a,8,7y<1,

(27
with the initial conditions

Q

Oy, 0) =0,

770: 2 27
u(w,y,0) = o+, oo

(28)
By using the inverse operator of Df* to bath sides of
Eq.(27), we have

U({L‘,y,t) = U(ﬂ?,y,O) + 1"(3711) %C;%(xagﬁo)

+J2[y2 DY (DYu(x, y, 1) + 322Dy (Dyu(z, y, 1)),

(29)
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Fig 2 The surface shows the approximate solution
u(x,t) for Eq (26):

(a)
=01 a=09 ,N=10,0<t<20<zx <5,

(b) The projection of the surface when
=01 =09, N=10,0<x <5,t=0.5.

6 _ 98 vy _ oY a _ 0% a
Wherer —w,Dy = By Dt = 9@ and J¢ is
the inverse operator of D¢*. The Adomain decomposi-

tion method leads to get

UO(.’L’,y,t) = U(l’,y,O) + 1“(2711) %(xayvo)

(30)
Uk+1($,y,t) :Jza[%y2Dg(D£uk(x,y’t))

+322D))(Dyuk(z,y,t))], k>0,

31)

Applying the recursive relation (31) and the initial
conditions (28), we get the following results:

UO(:Ba Y, t) = :I"Q + yz’
_ o [DE)P? % | D@ty
u(2, Y, 1) = 37501 [ T(3-28) I(3-27) ] ’
_ tha [(3)y%a2—48
uz(z,y,t) = 22T (4a+1) [ 1'(3-4p)
22 (3)y> 210220 | T(E)a’y> "
+TE2s =) r@3-4y) |~
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 ga [(3)y%22—%F
uz(z,y,t) = 23T (6c+1) [ I'(3-653)
BU2(3)y? 272248 | 302(3)y? 414228

TTe-4prGoz) T Te20Te-1) (32)
F(3)x2y276’y

TTrG=6y |

and

Uk(x,y,t)

o t2ko< F(3)y2$272k6

= 2FT(Zka+t1) [ T(3—2kR)

]{?F2(3) 2—27y,2-2(k—1)B
F(3—21(!k—1)B)F(3—27) (33)
k(k_l)l—\Q(3)y2—4'yx2—2(k—2)ﬁ

T ST = T B—2(k=2)8)
kr2(3)y272(k71)7$2725

I'(3—2(k—1)~)I'(3—2p)

F(3)z2y272k'y
T'(3—2k~y) }

Thus the approximate solution of Eq.(27) in a series
form is given by

u(z,y,t) = 2® +
122 F(3)y2$2*2ﬁ
et [ T(3-25) T(3-27)
t4o‘ |:F(3)y2:£2_4ﬁ 2F2(3)y2—2722—2,ﬁ

F(3)$2y272’y

+ T e | T T(3-49) T(3—28T(3-27)
L)y 7 oo LF(B)y%?-ﬁﬁ
Y

T 6= | T BT (6atD) | T(3-68)
3F2(3)y2—2'yx2—4ﬁ 31‘*2(3) —4dy 2-28
T(3—43T(3-27) | T(B—20T(—47)
I'(3)z2y?— % 12ka T'(3)y22~2k8

T 36y | T T Fr@karD | TB-285)
kr2(3)y2—2wx2—2(k—1)[3

T TE2(—1)AT(3-27)
k;(k;_1)1"2(3):’427473:272(1672)5

B G-I B=2(—2))
kl—*2(3)y272(k71)'yx2726
PB=2(k—1)7)I'(3-28)

F(3)12y272k-y :|
I'(3—2k~y)
(34)
Figure 3 illustrate the behavior of the analytic ap-
proximate solutions (34).

7 ADM for time and space fractional
nonlinear Burger’s equation

In this section, we use the Adomain decomposition

method to calculate the approximate solution of the

time and space fractional nonlinear Burger’s equation
in the following form:

Dy = va(Dﬁu) —Au (Dgu),

35
t>0, 0<a,fB<1, (35)

with the initial condition
u(z,0) = x2, (36)

Applying the inverse operator to both sides of the sys-
tem (35) , we get

u(z, t) = 2% + J*[uD5 (D5u) — AG(u)], 37
t>0, 0<a,B<1,

E-ISSN: 2224-2880 641
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012 014 016 0‘.8 110 X
Fig 3 The surface shows the approximate solution
u(z,t) for Eq (34) when 8 = 0.1, a = 0.2,y =
0.3,y=0.5,0<t<1,0<x<1,andthe
projection of the surface when ¢ = 0.5.

where J¢ is the inverse operator of Df* and G(u) =

u (Dg u) is the nonlinear term in (37). According to
the Adomain decomposition method, we assume that
a series solution of the function u(z, t) is given by

u(z,t) = Zun(x,t). (38)
n=0

The nonlinear term G(u) can be decomposed into an
infinite series of polynomials given by

Gla,t) = Ay, (39)
n=0

where the component u,, (z,t) will be determined re-
cursively while A,,’s are the so called Adomian poly-
nomials of u,,’s respectively.

Specific algorithms have been set in [14]-[16] for
calculating Adomian’s polynomials for nonlinear term

G(u)

1) a —~ i 5 (= \k
k=0 k=0 A=0

(40)
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Thus, we obtain

AO = UQDQ)UO,
A = unguo + ungul,
Ay = ’U,Q.Dguo + ulDful + UQD§u2
41)
and so on.

The components u,, for n > 0 are given by the

following recursive relationships:

ug = u(z,0) =22,
wp = J*wDZ(DBug) — M),
uy = JwDZ(DPuy) — AA4],
us = JYwDZ(DPuy) — \Ay),
Uns1 = J*[DI(Diun) — Ay, n > 0(42)

Using the above recursive relationships, we obtain the
following results:

2

ug = I,
_ « vIl'(3) 2-9 A(3) 4
U= e {F<3—2ﬁ>~”ﬂ M B}’
2a+1
up = 7&2;1) { fr1a* 4P + f1021730 4 frgai—4P
+ 1425738 + fr5a87
3a+1 _ _ _
uz = m { f2122708 4 foout 7P 4 fogut=6P
+ foax550 4 fosa® - foga® 4P
+ fora® 30}
(43)
where
_ vT@B) _ wA(3)
=ty 3= —rEmagy
_ NIB)I(5-8) _ AI2(3)
ha = 153y 115 = 75
_ wAI'rG-p) vA'2(3)
f12 = ~TE BI85 ~ TG 2B BB
for = vful'(3—48) foz = vf131'(5-48)
207 7TE-68) 0 /2B~ TT(GE-68)
Fyp = 220G=38)  ATGUL | ATG48) /i
22 = TT(5-58) T'(3=58) L(3—58)
V2L 20+ 12 (3)

T T2 (a+)I(3—26)(3-36)°
Uf14F(7*3ﬁ) _ )\f13F(3) _ )\f13F(574ﬁ)

fa="Tsps  ~ Te-p —  T6-59)
f _ Ufls].—‘(772ﬁ) _ )\f12F(3)
2= TT(7-4B) T(3=5)
A2oT(2a+1)T2(3)T'(5—8)
T e DT =23 3-A)T(5-25)
_ M12I'(5-38) A0l (2a+1)12(3)

T(5-48) 1 T (a+ ) (3-35)T(3—5)’
fog = ~ AfaTB3)  Afual(7-3B)
26 = T TE=H) T(7—4B)
for = _AMAsTB3)  AfisT(7—-28)
2T~ TTE=PH) T(7-35)

AT (20412 (3)(5-8)
I2(a+1)I2(3—-B)'(5—26) °

(44)
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Thus the approximate solution of (35) in a series form
is given by:

o vl'(3
u(z,t) =2 + F((i+1) {F(3—(2,)8)x

AL(3) 2o+l {fanB

- r(3—5)x47ﬁ} + TG

+f1224 730 4 fraat ™+ f1420730 4 f1526720}
t30¢+1

+m{lel‘2_65 + foox 8 4 fozxt=0P
+ fou2875F 4 for 278 + frga® 10 4 foraB T3} 4

2-23

(45)
Figure 4 illustrate the behavior of the analytic approx-
imate solutions (45).

012 014 0.‘6 0‘}\/110 *

Fig 4 The surface shows the approximate solution
u(x,t) for Eq (45) when 5 = 0.3, a = 0.4, \ =
1,r=2,0<t<1,0 <z <1, and the projection of

the surface when ¢ = 0.5.

-05F

8 Conclusions

In this paper, the application of Adomain decompo-
sition method was extended to explicit the numerical
solutions of the time- and space-fractional partial dif-
ferential equations in mathematical physics with ini-
tial conditions . The Adomain decomposition method
was clearly very efficient and powerful technique in
finding the approximate solutions of the proposed e-
quations. The obtained results demonstrate the reli-
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ability of the algorithm and its wider applicability to
fractional nonlinear evolution equations.
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