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Abstract: We present in this paper a method that compute a symplectic SVD-like decomposition for a 2n-by-m
rectangular real matrix. This decomposition focus mainly on numerical solution of some linear-quadratic optimal
control theory and signal processing problems. In particular the resolution of gyroscopic and linear Hamiltonian
systems. Our approach here is based on symplectic reflectors defined on R2n×2. We also give an ortho-symplectic
SVD-like decomposition of a 2n-by-2n symplectic real matrix.
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1 Introduction
The singular value decomposition SVD is a general-
ization of the eigen-decomposition used to analyze
rectangular matrices (the eigen-decomposition is de-
fined only for squared matrix). SVD technique is used
in scientists working on applied linear algebra, signal
and image processing [8, 9]. A symplectic SVD-like
decomposition of rectangular matrix of A ∈ R2n×m,
such that SAQ = Σ where S is symplectic and Q is
orthogonal, is used as the basic tool to compute the
eigenvalues of some structured matrices (Hamiltonian
and skew-Hamiltonian). An example [13] is about the
eigenvalue problem of the matrix,

F =

[
−C −G
I 0

]
=

[
−C −I
I 0

] [
I 0
0 G

]
(1)

which is related to the gyroscopic system [5, 7, 11, 13]

q” + Cq′ +Gq = 0 ; q(0) = q0 ; q′(0) = q1 (2)

A matrix G ∈ Rm×m is symmetric and positive semi-
definite it has a full rank factorization G = LLT . And
C ∈ Rm×m is skew-symmetric. By using the equality[

−C −I
I 0

]
=

[
−1

2C I
I 0

]
J

[
1
2C I
I 0

]
(3)

where J =

(
0 In
−In 0

)
, In denotes the n × n

identity matrix, F is similar to the Hamiltonian matrix

J

[
1
2C I
I 0

] [
I 0
0 LLT

] [
−1

2C I
I 0

]
= J

[
−1

2C I
LT 0

]T [−1
2C I
LT 0

] (4)

Therefore the eigenvalue problem of F can be
solved by computing a symplectic SVD-like decom-

position of
(
−1

2C I
LT 0

)
.

The main purpose of this work is to study a symplec-
tic SVD-like decomposition of a 2n-by-m real matrix.
A method for computing an SVD-like decomposition
was given by Hongguo Xu [12, 13] of a n-by-2m re-
al matrix B. He proved that there exists an orthog-
onal matrix Q and a symplectic matrix S, such that
B = QDS−1 where D is in the following form,

D =


Σ 0 0 0 0 0
0 I 0 0 0 0
0 0 0 Σ 0 0
0 0 0 0 0 0


Σ is positive diagonal.
We treat also in this work a new algorithms that

compute the symplectic SVD-like decomposition of
symplectic matrices based on symplectic and ortho-
symplectic reflectors for more details on symplectic
and ortho-symplectic reflectors, see [2, 1]. Symplectic
matrices appear in at least two active research fields:
optimal control theory and the parametric resonance
of mechanical systems [6, 10]. We construct an or-
thogonal matrix Q ∈ Rm×m and a symplectic matrix
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S ∈ R2n×2n such that,

SAQ =


Σ 0 0 0
0 0 I 0
0 0 0 0
0 Σ 0 0
0 0 0 0


where Σ is positive diagonal. Moreover, we proved
that for symplectic matrix S ∈ R2n×2n, there exist an
orthogonal symplectic matrices U, V ∈ R2n×2n such
that

S = UT



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


V

An algorithm is given to compute this decomposition.
The paper is organized as follows. In section 2 we

introduce some notation, terminology and some basic
facts. We present, in section 3, a symplectic SVD-like
decomposition of a 2n-by-m real matrix. In section 4
we give an ortho-symplectic SVD-like decomposition
of a symplectic matrix. Finally, some numerical ex-
amples are provided to illustrate the effectiveness of
the proposed algorithms.

2 Terminology, notation and some
basic facts

An ubiquitous matrix in this work is skew-symmetric

matrix J2n =

(
0 In
−In 0

)
, where In denotes the

n × n identity matrix. In the following, we will
drop the subscripts n and 2n whenever the dimension
of corresponding matrix is clear from the context.
By straightforward algebraic manipulation, we can
show that a Hamiltonian matrix M is equivalently
defined by the property MJ = (MJ)T . Likewise,
a matrix W is skew-Hamiltonian if and only if
−WJ = (WJ)T . Any matrix S ∈ R2n×2n satisfying
STJS = SJST = J is called symplectic matrix.
The symplectic similarity transformations preserve
Hamiltonian, skew-Hamiltonian and symplectic
structures.

We introduce some results useful thereafter, we
set Ei = [ei en+i] ∈ R2n×2 for i = 1, · · · , n. We
have

EJ
i = ET

i and EJ
i Ej = δijI2 where δij =

{
1
0

if i = j
if i ̸=j

Proposition 1 Let U = [u1 u2] be a 2n-by-2 real ma-

trix, where u1 =
2n∑
i=1

u
(1)
i ei and u2 =

2n∑
j=1

u
(2)
j ej . Then

U is written in a unique way as linear combination of
(Ei)1≤i≤n on the ring R2×2.

U =

n∑
i=1

EiMi where Mi =

(
u
(1)
i u

(2)
i

u
(1)
n+i u

(2)
n+i

)

2.1 Symplectic reflectors
We recall a symplectic reflector [1, 2] on R2n×2 which
is defined in parallel with elementary reflectors.

Proposition 2 Let U , V be two 2n-by-2 real matrices
satisfying UJU = V JV = I2. If the 2-by-2 matrix
C = I2 + V JU is nonsingular, then the transforma-
tion
S = (U + V )C−1(U + V )J − I2n is symplectic and
takes U to V . It’s called a symplectic reflector. Ad-
ditionally, if UJ = UT and V J = V T , then S is
orthogonal and symplectic.

Lemma 3 Let U = [u1 u2] ∈ R2n×2 be a non-
isotropic matrix and V = Uq(U)−1 its normalized
matrix. Then there exists a symplectic reflector S
takes V to E1 and therefore U to E1q(U) where ,
which is in the following form

SU =



* 0
0 0
...

...
0 0
0 *
0 0
...

...
0 0


↙ n+ 1

where

q(U) =


√
αI2

√
−α

(
1 0
0 −1

) if α > 0

if α < 0
α = uH1 Ju2.

Remark 4 Using symplectic reflector to a matrix
A ∈ R2n×2n, we obtain the factorization A =
SR where S ∈ R2n×2n is symplectic and R =(

R11 R12

R21 R22

)
∈ R2n×2n is J-triangular and in ad-

dition R12 is an n-by-n strictly upper triangular ma-
trix. Which means R is in the following form
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2.2 Skew-Symmetric Schur-Like decomposi-
tion

We present here the Schur like form of real skew-
symmetric matrices.

Theorem 5 [13] Given a 2n-by-m real matrix A,
there exists a real orthogonal matrix Q such that

ATJA = Q

 0p Σ2
p 0

−Σ2
p 0p 0

0 0 0m−2p

QT

with Σp = diag(σ1, σ2, . . . , σp), σi > 0, ∀i and
p = rank(ATJA)

3 Symplectic SVD like Decomposi-
tion

It is shown by Xu [12, 13] that for any n-by-2m real
matrix B there exists an orthogonal matrix Q and a
symplectic matrix S, such that B = QDS−1 where
D is in the following form

D =


Σ 0 0 0 0 0
0 I 0 0 0 0
0 0 0 Σ 0 0
0 0 0 0 0 0


and Σ is positive diagonal. The symplectic SVD-
like decomposition is an effective for computing the
Schur-like form of the skew-symmetric matrix BJBT

and the structured canonical form of the Hamiltonian
matrix JBTB. Xu proposed an algorithm to compute
eigenvalues of JBTB and BJBT using block B11

and B23 in step 1 of the algorithm (see, section 2 in
[13]). As we can see in example 1, although he ob-
tained the eigenvalues (see, [13]), his algorithm does-
n’t compute the full decomposition.

In this section we will give a new approach to
compute the symplectic SVD-like decomposition us-
ing a symplectic reflector given in [1, 2]. Firstly, we
use the following basic results.

Lemma 6 Let V be a 2n-by-m rectangular real ma-
trix such that

V TJ2nV =

 0p Ip 0
−Ip 0p 0
0 0 0m−2p


Then there exists a 2n-by-2m rectangular symplectic
real matrix S such that SV Q̃X =

Ip 0p 0p×q 0p×(m−2p−q

0q×p 0q×p Iq 0q×(m−2p−q)

0r×p 0r×p 0(r)×q 0r×(m−2p−q)

0p Ip 0p×q 0p×(m−2p−q)

0(n−p)×p 0(n−p)×p 0(n−p)×q 0(n−p)×(m−2p−q)


(r = n − p − q) where Q̃X is an orthogonal matrix
and rank(V ) = 2p+ q.

Proof: Partition V as V = [V1 V2 V3]
such that V1 = [v1,1, . . . , v1,p] ∈ R2n×p,
V2 = [v2,1, . . . , v2,p] ∈ R2n×p and V3 =

[v3,1, . . . , v3,m−2p] ∈ R2n×(m−2p).

Step 1:
Set U1 = [v1,1, v2,1] ∈ R2n×2. Since V TJ2nV is
in the form given in lemma, then UJ

1 U1 = I2 and
then the symplectic reflector S1 = (U1 + E1)(I2 +
EJ

1 U1)
−1(U1 + E1)

J − I2n verify S1U1 = E1.
The (n + 1)th-component of (S1v1,k) is equal to ze-
ro, for k = 2, 3, . . . p. Indeed, on the one hand
(S1v1,1)

TJS1v1,k = vT1,1Jv1,k = 0 and on the other
hand (S1v1,1)

TJS1v1,k = eT1 J(S1v1,k) is nothing but
the (n+ 1)th-component of (S1v1,k). The (n+ 1)th-
component of (S1v2,k) and (S1v3,k) vanishing, re-
spectively for k = 2, 3, . . . p and k = 2, 3, . . .m−2p.
Furthermore, (S1v2,1)

T J (S1v1,k) = 0 and S1v2,1 =
en+1, then the first component of (S1v1,k) vanishes
for k = 2, 3, . . . p. Likewise the first component of
(S1v2,k) and (S1v3,k) vanishes for k = 2, 3, . . . p. Fi-
nally we obtain,

S1V =

n

p←−−−−−−−−−−→xy
1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

p←−−−−−−−−−→
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

m−2p←−−−−−−→
0 · · · 0
∗ · · · ∗
...

. . .
...

∗ · · · ∗

n

xy
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

0 · · · 0
∗ · · · ∗
...

. . . ∗
∗ · · · ∗


Update the value of V : V ←− S1V .

WSEAS TRANSACTIONS on MATHEMATICS S. Agoujil, A. H. Bentbib, A. Kanber

E-ISSN: 2224-2880 629 Issue 7, Volume 11, July 2012



Step 2:
Let set U2 = [v1,2, v2,2] ∈ R2n×2. Since U2satisfy
UJ
2 U2 = I2, then the symplectic reflector S2 = (U2+

E2)(I2+EJ
2 U2)

−1(U2+E2)
J−I2n has the following

form,

S2 =



1 0 · · · 0 0 0 · · · 0

0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
... ∗ ∗ ∗

0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 · · · · · · 0 1 0 · · · 0
... ∗ ∗ ∗ 0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗


and verify S2U2 = E2. Likewise step 1, we obtain
S2V =

1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗

0 ... 0
0 ... 0
∗ ∗ ∗
...

...
...

∗ ∗ ∗
0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗

1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
...

. . .
...

0 0 ∗ ... ∗

0 ... 0
0 ... 0
∗ ∗ ∗
...

...
...

∗ ∗ ∗


Let’s use the QR factorization to W T ,

W T = QW

(
R11 ∈ Rq×q

0(m−2p−q)×q

)
where W = X(1 : q, 1 : m − 2p) ∈ Rq×(m−2p).
QW ∈ R(m−2p)×(m−2p) is orthogonal and R11 is a
nonsingular upper triangular matrix (rank(W ) = q).
Now, X ←− XQW is as follow,

X =

(
RT

11 0q×(m−2p−q)

0 0

)
We set Z = Zq · · ·Z2Z1 which is an orthogonal and
symplectic matrix. Partition Z conformably,

Z =

(
Z11 Z12

Z21 Z22

)
and construct

Sp+1 =


Ip 0 0 0
0 Z11 0 Z12

0 0 Ip 0
0 Z21 0 Z22



which is also orthogonal and symplectic. We set
Q̃X = diag(I2p, QX) ∈ Rm×m which is an orthogo-
nal matrix that commute with

Γ =

 Σp 0 0

0 Σp 0

0 0 Im−2p


Finally, for V verifying hypothesis of the lemma, we
obtain then Sp+1Sp · · ·S2S1V Q̃X =

In×p 0n×p

0n×p In×p

0p×(m−2p)

RT
11 0q×(m−2p−q)

0 0

 .

By setting Sp+2 =diag(Ip, R−1
11 , In−p−q, Ip, R11, In−p−q)

which is a symplectic matrix, we have
Sp+2Sp+1Sp · · ·S2S1︸ ︷︷ ︸

S

V Q̃X = ∆ =


Ip 0p 0p×q 0p×(m−2p−q

0q×p 0q×p Iq 0q×(m−2p−q)

0r×p 0r×p 0r×q 0r×(m−2p−q)

0p Ip 0p×q 0p×(m−2p−q)

0(n−p)×p 0(n−p)×p 0(n−p)×q 0(n−p)×(m−2p−q)


(r = n− p− q)which is the desired form. ⊓⊔

Theorem 7 (Symplectic SVD-like decomposition)
Let A be a 2n-by-m rectangular real matrix. There
exists a symplectic matrix S ∈ R2n×2n and an or-
thogonal matrix Q ∈ Rm×m such that

SAQ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0

0 Σp 0 0
0 0 0 0


Proof. By using the real Schur decomposition to the
skew-symmetric matrix ATJA

ATJA = P

 0p Σ2
p 0

−Σ2
p 0p 0

0 0 0m−2p

P T ,

we construct V = APΓ−1 where

Γ =

 Σp 0 0

0 Σp 0

0 0 Im−2p


Since

V TJV = Γ−1
(
P TATJAP

)
Γ−1

=

 0p Ip 0
−Ip 0p 0
0 0 0m−2p



WSEAS TRANSACTIONS on MATHEMATICS S. Agoujil, A. H. Bentbib, A. Kanber

E-ISSN: 2224-2880 630 Issue 7, Volume 11, July 2012



then using the previous lemma we have

SV Q̃X = ∆ =
Ip 0p 0p×q 0p×(m−2p−q

0q×p 0q×p Iq 0q×(m−2p−q)

0r×p 0r×p 0r×q 0r×(m−2p−q)

0p Iq 0p×q 0p×(m−2p−q)

0(n−p)×p 0(n−p)×p 0(n−p)×q 0(n−p)×(m−2p−q)


with r = n − p − q. Using the fact that Γ−1 and Q̃X

commute, then we obtain

SAPQ̃X = ∆Γ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0

0 Σp 0 0
0 0 0 0


which is corresponding to the asserted form. �

Algorithm 3.1: Symplectic SVD-like algorithm

Input : A matrix A ∈ R2n×m (n ≥ m)
Output : A symplectic matrix S ∈ R2n×2n, an
orthogonal matrix Q ∈ Rm×m and the desired
SVD-like decomposition

1. We compute the skew-symmetric matrix
M = ATJA ∈Rm×m

2. From theorem 5, there exists a real orthogonal
matrix P such that

P TMP =

 0p Σ2
p 0

−Σ2
p 0p 0

0 0 0m−2p


3. We compute the blok-diagonal matrix

Γ =


Σp 0 0

0 Σp 0

0 0 Im−2p



4. We compute a 2n-by-2m rectangular real
matrix V = APΓ−1

5. From Lemma 6, there exists a real symplectic
matrix S such that

SV Q̃X = ∆ =
Ip 0p 0p×q 0p×(m−2p−q

0q×p 0q×p Iq 0q×(m−2p−q)

0r×p 0r×p 0r×q 0r×(m−2p−q)

0p Ip 0p×q 0p×(m−2p−q)

0(n−p)×p 0(n−p)×p 0(n−p)×q 0(n−p)×(m−2p−q)



with r = n− p− q

6. The matrix Σ

Σ = ∆Γ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0

0 Σp 0 0
0 0 0 0


is verifying SAQ = Σ where Q = PQ̃X .

4 SVD-like decomposition of sym-
plectic matrices

We treat here an ortho-symplectic SVD-like decompo-
sition of a symplectic real matrix. It is shown by Xu
[12] that every symplectic matrix S ∈ R2m×2m has
the following real SVD-decomposition

S = U

(
Ω 0
0 Ω−1

)
V T

where U , V are real orthogonal and symplectic matri-
ces. Our purpose is to give an ortho-symplectic SVD-
like decomposition of real symplectic matrices based
on orthogonal symplectic reflectors defined in propo-
sition 2. This approach seems to be effective as we
can see in example 2. The orthogonal symplectic re-
flectors preserve conditioning and guaranteed the sta-
bility of the algorithm.

The classical SVD decomposition of real sym-
plectic matrices is given by the following theorem.

Theorem 8 Let S ∈ R2n×2n be a symplectic matrix.
Then there exist two orthogonal matrices P,Q such
that

S = P



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


QT

with wi ≥ 1.

Remark 9 If σ is a singular value of a symplectic ma-
trix S, then σ−1 is a also a singular value of S.

Indeed, since S is symplectic, then S = S−J =
JTS−TJ . This prove that S and S−T have the same
singular values.

We present below a technical lemma useful there-
after.
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Lemma 10 Using orthogonal matrices P and Q then
from theorem 8 given above, we have

S[q1 q2 . . . qn − Jq1 − Jq2 . . .− Jqn]︸ ︷︷ ︸
Q̃

=

[p1 p2 . . . pn − Jp1 − Jp2 . . .− Jpn]︸ ︷︷ ︸
P̃

(
D

D−1

)

where D =

 ω1

. . .
ωn

, wi ≥ 1, qi = Qei

and pi = Pei for i = 1, · · · , n. Here ei denotes the
ith vector in the canonical basis of R2n.

Proof: From theorem 8 we have Sqi = wipi for i =
1, · · · , n and

S−T = P



ω−1
1

. . .
ω−1
n

ω1

. . .
ωn


QT

Since S is symplectic, then

S(Jqi) = JJTS(Jqi)
= JS−T qi
= w−1

i Jpi.

That gives the desired form. ⊓⊔

Theorem 11 (Ortho-symplectic SVD-Like decom-
position) Let S ∈ R2n×2n be a symplectic real ma-
trix. There exist an orthogonal symplectic matrices
U, V ∈ R2n×2n such that

S = U



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


V T

Proof: We proceed by induction on n.

For n = 1 we have SQ = P

(
ω1

ω−1
1

)
. Let

set U = [p1 − Jp1] and V = [q1 − Jq1]. From
the above lemma, S(−Jq1) = w−1

1 Jp1 then SV =

U

(
ω1

ω−1
1

)
with U and V are orthogonal and

symplectic. That gives the desired form for n = 1.

Let us assume now that n > 1. Consider the n
first columns of Q and P (qi = Qei, pi = Pei, i =
1, . . . n). Let
U1 = (P1+E1)(I2+EJ

1 P1)
−1(P1+E1)

J−I2n is the
ortho-symplectic reflector that transform P1 = [p1 −
Jp1] to E1 = [e1 en+1] and V1 = (Q1 + E1)(I2 +
EJ

1Q1)
−1(Q1 + E1)

J − I2n is the ortho-symplectic
reflector that transform Q1 = [q1 −Jq1] to E1. Since

S[q1 − Jq1] = [p1 − Jp1]

(
ω1

ω−1
1

)
, then

(
U1SV

T
1

)
E1 = E1

(
ω1

ω−1
1

)
.

That prove that S1 = U1SV
T
1 is in the following form

S1 =



ω1 x · · · x 0 x · · · x

0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
... ∗ ∗ ∗

0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 x · · · x ω−1

1 x · · · x
... ∗ ∗ ∗ 0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗


Since S1 remains symplectic, then the components x
in the first and the (n+ 1)th rows are zero. We obtain
then S1 as follow

S1 =



ω1 0 · · · 0 0 0 · · · 0

0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
... ∗ ∗ ∗

0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 0 · · · 0 ω−1

1 0 · · · 0
... ∗ ∗ ∗ 0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗


Then S1 can be written as

S1 = E1

(
ω1

ω−1
1

)
ET

1 + S̃1

where S̃1 =
∑
i=2

∑
j=2

EiMijE
T
j is symplec-

tic as a restricted matrix on R2(n−1). In-

deed, S1 = E1

(
ω1

ω−1
1

)
ET

1 + S̃1 therefore

SJ
1 = E1

(
ω−1
1

ω1

)
ET

1 + S̃J
1 . Since I2n =
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∑
i=1

EiE
T
i = SJ

1 S1 = E1E
T
1 + S̃J

1 S̃1, then S̃J
1 S̃1 =∑

i=2

EiE
T
i =I2(n−1). Using the induction, there ex-

ists Ũ1, Ṽ1 ∈ R2(n−1)×2(n−1) two orthogonal and
symplectic matrices and a positive real numbers
ω2, . . . , ωn such that

S̃1 = Ũ1



ω2

. . .
ωn

ω−1
2

. . .
ω−1
n


Ṽ T
1 .

Let r = 1 : n− 1, k = n : 2(n− 1) and

Ũ =


1 0

0n−1,1 Ũ1(r, r) Ũ1(r, n : k
0 1

0 Ũ1(k, r) Ũ1(k, k)


and

Ṽ =


1 0

0n−1,1 Ṽ1(r, r) Ṽ1(r, k)
0 1

0 Ṽ1(k, r) Ṽ1(k, k)


Setting U = UT

1 Ũ and V = V T
1 Ṽ we obtain then the

desired decomposition

UTSV =



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


The proof is then complete. ⊓⊔
Algorithm 4.1: Symplectic SVD-like algorithm of
symplectic matrix
Input : A symplectic matrix S ∈ R2n×2n

Output U, V ∈ R2n×2n orthogonal and symplectic
matrices such that

S = U



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


V T

1. Initialization U = I2n; V = I2n; D = S

2. By theorem 8 given above, there exists two
orgthogonal matrices P , Q and a positive real num-
bers w1, w2, · · · , wn such that

S = P



ω1

. . .
ωn

ω−1
1

. . .
ω−1
n


QT

Set pi = Pei and qi = Qei for i = 1, · · · , n
P̃ = [p1 p2 . . . pn − Jp1 − Jp2 . . . − Jpn] and
Q̃ = [q1 q2 . . . qn − Jq1 − Jq2 . . . − Jqn]

3. For k = 1, · · · , n, do u = P̃ ek and v = Q̃ek

For j = 1, · · · , k−1 do u(j)← 0 , u(n+j)← 0
and v(j)← 0 , v(n+ j)← 0

End(j)

If ∥u∥ ̸= 0 and ∥v∥ ̸= 0 then u ←− u

∥u∥
and

v ←− v

∥v∥
We put X = [u − Ju], Y = [v − Jv] and
Ek = [I2n(:, k), I2n(:, n+ k)]
We construct a symplectic reflectors RX , RY which
transform respectively X , Y to Ek

RX = (X +E1)(I2+EJ
1X)−1(X +E1)

J − I2(n−k)

RY = (Y +E1)(I2 +EJ
1 Y )−1(Y +E1)

J − I2(n−k)

Set U := UUkU , PT := UUkPT , V := V VkV and
QT =:= V VkQT

EndIf
EndFor
End.

5 Numerical examples
In this section, we compared and tested the numeri-
cal methods given above (algorithm 3.1 and algorith-
m 4.1) with Xu method given in [13]. Our numer-
ical experiments were carried out with Matlab 7.8.0
(R2009a) and run it on a Core Duo Pentium proces-
sor.
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Example 1: Let B be a rectangular matrix defined as
follows, (see, [13]),

B = Q


Σ 0 0 0 0 0

0 I 0 0 0 0

0 0 0 Σ 0 0

0 0 0 0 0 0

UT

where Q is a random orthogonal matrix and U is a
14 × 14 random orthogonal symplectic matrix. We
compute in this example the error occurred on the
computed symplectic SVD-like decomposition. Let

Σ1 = diag(4, 3, 2, 1)

Σ2 = diag(10−4, 10−2, 1, 102)

Σ3 = diag(102, 2, 1, 10−2)

Then we obtain the following results,

Alg 3.1 Xu method [13]
Σ1 8.0883e− 015 9.0858e− 015

Σ2 5.2122e− 009 141.6480

Σ3 1.6946e− 010 141.7189

Example 2: Let the symplectic matrix A obtained

from the diagonal matrix
(

B 0n
0n B−T

)
where B is

defined as follows, (see, [4]),

4/5 −3/5 0 0 0 0
3/5 4/5 0 0 0 0
0 0 2 0 0 0
0 0 0 4 0 0
0 0 0 0 6 2
0 0 0 0 −1 3


by using symplectic similarity transformations ran-
domly generated by symplectic reflectors. We then
obtained the following error occurred on the comput-
ed symplectic SVD-like decomposition

Alg 4.1 Xu method [13]
2.4428e− 013 1.1946e− 010

Example 3: Let the symplectic matrix A obtained

from the diagonal matrix
(

D 0n
0n D−1

)
by using

symplectic similarity transformations randomly gen-
erated by symplectic reflectors, where D = diag(v)

such that v2i−1 = 10log(i), v2i = 10−log(i) for i =
1 . . . n2 and v(n) = 10−n. We obtained the following
error occurred on the computed symplectic SVD-like
decomposition

Alg 4.1 Xu method [13]
n = 5 1.2909e− 009 7.5570e− 004

n = 10 9.4812e− 006 1.7747e+ 005

Now, let’s get D = diag[1, 2, . . . , n]. The error
occurred on the computed symplectic SVD-like de-
composition is represented bellow for n from 1 to 100.

0 10 20 30 40 50 60 70 80 90 100
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Structured SVD−like decomposition of a symplectic matrix 

 

 
Algorithm 4.1
Method in section 4 of Xu

6 Conclusion
We have developed a new way to compute a sym-
plectic SVD-like decomposition of both real rectan-
gular and symplectic matrices. Numerical results giv-
en above show the efficiency of our approach in com-
puting the decomposition especially in case of ill-
conditioned matrices.
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tion pour des matrices structurées, PHD The-
sis (February 2008), Faculté des Sciences et
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