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Abstract: - In the present work, the Yee, Warming and Harten, the Harten, the Yee and Kutler, and the 

Hughson and Beran schemes are implemented, on a finite volume context and using a structured spatial 

discretization, to solve the Euler and the Navier-Stokes equations in three-dimensions. All four schemes are 

TVD (“Total Variation Diminishing”) high resolution flux difference splitting ones, second order accurate. An 

implicit formulation is employed to solve the Euler equations, whereas the Navier-Stokes equations are solved 

by an explicit formulation. Turbulence is taken into account considering the algebraic models of Cebeci and 

Smith and of Baldwin and Lomax. The physical problems of the transonic flow along a convergent-divergent 

nozzle and the supersonic flow along a compression corner in the inviscid case are studied. In the viscous case, 

the supersonic flow along a ramp is solved. The results have demonstrated that the most severe results are 

obtained with the Hughson and Beran TVD high resolution scheme, whereas the Yee, Warming and Harten and 

the Yee and Kutler schemes present more accurate results. 

 

Key-Words: - Yee, Warming and Harten algorithm, Harten algorithm, Yee and Kutler algorithm, 
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1 Introduction 
Conventional non-upwind algorithms have been 

used extensively to solve a wide variety of problems 

([1-2]). Conventional algorithms are somewhat 

unreliable in the sense that for every different 

problem (and sometimes, every different case in the 

same class of problems) artificial dissipation terms 

must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks 

and steep compression and expansion gradients may 

defy solution altogether. 
 Upwind schemes are in general more robust but 

are also more involved in their derivation and 

application. Some upwind schemes that have been 

applied to the Euler equations are: [3-7]. Some 

comments about these methods are reported below: 

 [3] presented a work that emphasized that several 

numerical schemes to the solution of the hyperbolic 

conservation equations were based on exploring the 

information obtained in the solution of a sequence 

of Riemann problems. It was verified that in the 

existent schemes the major part of these information 

was degraded and that only certain solution aspects 

were solved. It was demonstrated that the 

information could be preserved by the construction 

of a matrix with a certain “U property”. After the 

construction of this matrix, its eigenvalues could be 

considered as wave velocities of the Riemann 

problem and the UL-UR projections over the matrix’s 

eigenvectors would be the jumps which occur 

between intermediate stages. 

 [4] implemented a high resolution second order 

explicit method based on Harten’s ideas. The 

method had the following properties: (a) the scheme 

was developed in conservation form to ensure that 

the limit was a weak solution; (b) the scheme 

satisfied a proper entropy inequality to ensure that 

the limit solution would have only physically 

relevant discontinuities; and (c) the scheme was 

designed such that the numerical dissipation 

produced highly accurate weak solutions. The 

method was applied to the solution of a quasi-one-

dimensional nozzle problem and to the two-

dimensional shock reflection problem, yielding 

good results. An implicit formulation was also 

investigated to one- and two-dimensional cases. 

 [5] developed a class of new finite difference 

schemes, explicit and with second order spatial 

accuracy to the calculation of weak solutions of the 

hyperbolic conservation laws. These schemes highly 

non-linear were obtained by the application of a first 

order non-oscillatory scheme to an appropriated 

modified flux function. The so derived second order 

schemes reached high resolution, while preserved 

the robustness property of the original non-

oscillatory first order scheme. 
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 [6] presented a work which extended the [5] 

scheme to a generalized coordinate system, in two-

dimensions. The method called “TVD scheme” by 

the authors was tested to the physical problem of a 

moving shock impinging a cylinder. The numerical 

results were compared with the [8] scheme, 

presenting good results.  

 [7] proposed an explicit, second order accurate in 

space, TVD scheme to solve the Euler equations in 

axis-symmetrical form, applied to the studies of the 

supersonic flow around a sphere and the hypersonic 

flow around a blunt body. The scheme was based on 

the modified flux function approximation of [5] and 

its extension from the two-dimensional space to the 

axis-symmetrical treatment was developed. Results 

were compared to the [8] algorithm’s solutions. 

High resolution aspects, capability of shock 

capturing and robustness properties of this TVD 

scheme were investigated. 

 Traditionally, implicit numerical methods have 

been praised for their improved stability and 

condemned for their large arithmetic operation 

counts ([9]). On the one hand, the slow convergence 

rate of explicit methods become they so unattractive 

to the solution of steady state problems due to the 

large number of iterations required to convergence, 

in spite of the reduced number of operation counts 

per time step in comparison with their implicit 

counterparts. Such problem is resulting from the 

limited stability region which such methods are 

subjected (the Courant condition). On the other 

hand, implicit schemes guarantee a larger stability 

region, which allows the use of CFL numbers above 

1.0, and fast convergence to steady state conditions. 

Undoubtedly, the most significant efficiency 

achievement for multidimensional implicit methods 

was the introduction of the Alternating Direction 

Implicit (ADI) algorithms by [10-12] and fractional 

step algorithms by [13]. ADI approximate 

factorization methods consist in approximating the 

Left Hand Side (LHS) of the numerical scheme by 

the product of one-dimensional parcels, each one 

associated with a different spatial coordinate 

direction, which retract nearly the original implicit 

operator. These methods have been largely applied 

in the CFD community and, despite the fact of the 

error of the approximate factorization, it allows the 

use of large time steps, which results in significant 

gains in terms of convergence rate in relation to 

explicit methods. 

 There is a practical necessity in the aeronautical 

industry and in other fields of the capability of 

calculating separated turbulent compressible flows. 

With the available numerical methods, researches 

seem able to analyze several separated flows, three-

dimensional in general, if an appropriated 

turbulence model is employed. Simple methods as 

the algebraic turbulence models of [14-15] supply 

satisfactory results with low computational cost and 

allow that the main features of the turbulent flow be 

detected. 

 [16] performed a comparison between the [8, 17] 

schemes implemented coupled with the [14-15] 

models to accomplish turbulent flow simulations in 

three-dimensions. The Navier-Stokes equations in 

conservative and integral forms were solved, 

employing a finite volume formulation and a 

structured spatial discretization. The [8] scheme is a 

predictor/corrector method which performs coupled 

time and space discretizations, whereas the [17] 

algorithm is a symmetrical scheme and its time 

discretization is performed by a Runge-Kutta 

method. Both schemes are second order accurate in 

space and time and require artificial dissipation to 

guarantee stability. The steady state problem of the 

supersonic turbulent flow along a ramp was studied. 

The results have demonstrated that both turbulence 

models predicted appropriately the boundary layer 

separation region formed at the compression corner, 

reducing, however, its extension in relation to the 

laminar solution, as expected. 

 In the present work, the [4-7] schemes are 

implemented, on a finite volume context and using a 

structured spatial discretization, to solve the Euler 

and the laminar/turbulent Navier-Stokes equations 

in the three-dimensional space. All four schemes are 

TVD high resolution flux difference splitting ones, 

based on the concept of Harten’s modified flux 

function. They are second order accurate in space. 

An implicit formulation is employed to solve the 

Euler equations in the inviscid problems. An 

approximate factorization in Linearized 

Nonconservative Implicit LNI form is employed by 

the flux difference splitting schemes. To solve the 

laminar/turbulent Navier-Stokes equations, an 

explicit formulation based on a time splitting 

procedure is employed. All schemes are first order 

accurate in time in their implicit and explicit 

versions. Turbulence is taken into account 

considering two algebraic models, namely: the [14-

15] ones. The algorithms are accelerated to the 

steady state solution using a spatially variable time 

step, which has demonstrated effective gains in 

terms of convergence rate ([18-19]). All four 

schemes are applied to the solution of the physical 

problems of the transonic flow along a convergent-

divergent nozzle and of the supersonic flow along a 

compression corner in the inviscid case (Euler 

equations). To the laminar/turbulent viscous case, 

the supersonic flow along a ramp is solved. The 
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results have demonstrated that the most severe 

results are obtained with the [7] TVD high 

resolution scheme, whereas the [4] and the [6] 

algorithms present more accurate results. 

 The main contribution of this work to the CFD 

(Computational Fluid Dynamics) community is the 

extension of the TVD high resolution algorithms of 

[4-7] to the three-dimensional space, following a 

finite volume formulation, and their implementation 

coupled with two different algebraic turbulence 

models to simulate viscous turbulent flows, which 

characterizes an original contribution in the field of 

high resolution structured numerical algorithms. The 

implicit implementation in three-dimensions of 

these algorithms is also a meaningful contribution. 

 

 

2 Navier-Stokes Equations 
As the Euler equations can be obtained from the 

Navier-Stokes ones by disregarding the viscous 

vectors, only the formulation to the latter will be 

presented. The Navier-Stokes equations in integral 

conservative form, employing a finite volume 

formulation and using a structured spatial 

discretization, to three-dimensional simulations, can 

be written as: 

 0dVPV1tQ
V

 


,                       (1) 

where V is the cell volume, which corresponds to an 

hexahedron in the three-dimensional space; Q is the 

vector of conserved variables; and 

     kGGjFFiEEP veveve


  is the 

complete flux vector in Cartesian coordinates, with 

the subscript “e” related to the inviscid contributions 

or the Euler contributions and “v” related to the 

viscous contributions. These components of the 

complete flux vector, as well the vector of 

conserved variables, are described below: 
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In these equations, the components of the viscous 

stress tensor are defined as: 

    zwyvxu32xu2 TMTMxx  , 

  xvyuTMxy  ;                                 (4) 

  xwzuTMxz  ,

    zwyvxu32yv2 TMTMyy  ; (5) 

  ywzvTMyz  , 

    zwyvxu32zw2 TMTMzz  . (6) 

The components of the conductive heat flux vector 

are defined as follows: 

  xeddq iTTMx  PrPr , 

  yeddq iTTMy  PrPr ,                                                 

  zeddq iTTMz  PrPr .      (7) 

The quantities that appear above are described as:  

is the fluid density, u, v and w are the Cartesian 

components of the flow velocity vector in the x, y 

and z directions, respectively; e is the total energy; p 

is the fluid static pressure; ei is the fluid internal 

energy, defined as: 

  22250 wvu.eei  ;                     (8) 

the ’s represent the components of the viscous 

stress tensor; Prd is the laminar Prandtl number, 

which assumed a value of 0.72 in the present 

simulations; PrdT is the turbulent Prandtl number, 

which assumed a value of 0.9; the q’s represent the 

components of the conductive heat flux; M is the 

fluid molecular viscosity; T is the flow turbulent 
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viscosity;  is the ratio of specific heats at constant 

pressure and volume, respectively, equal to 1.4 to 

the atmospheric air; and Re is the Reynolds number 

of the viscous simulation, defined by: 

 MREFREF luRe  ,                                   (9) 

where uREF is a characteristic flow velocity and lREF 

is a configuration characteristic length. The 

molecular viscosity is estimated by the empiric 

Sutherland formula: 

  TS1bT 21

M  ,                              (10) 

where T is the absolute temperature (K), b = 

1.458x10
-6

 Kg/(m.s.K
1/2

) and S = 110.4 K, to the 

atmospheric air in the standard atmospheric 

conditions ([20]). 

 The Navier-Stokes equations were dimensionless 

in relation to the stagnation density, , the critical 

speed of sound, a, and the stagnation viscosity, , 
for the nozzle problem, whereas in relation to the 

freestream density, , the freestream speed of 

sound, a, and the freestream molecular viscosity, 

, for the compression corner and ramp problems. 

To allow the solution of the matrix system of five 

equations to five unknowns described by Eq. (1), it 

is employed the state equation of perfect gases 

presented below: 

  )wvu(.e)(p 222501  .       (11) 

The total enthalpy is determined by    peH . 

 

 

3 Geometrical Characteristics of the 

Spatial Discretization 
Adopting in Equation (1) Q as a constant on a 

computational cell and using a structured mesh 

notation to the fluid and flow quantities, it is 

possible to write: 

       
k,j,iS k,j,ik,j,izveyvexvek,j,ik,j,i dSnGGnFFnEEVtQ 1 . 

(12) 

A given computational cell in this notation is 

composed by the following nodes: (i,j,k), (i+1,j,k), 

(i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1), 

(i+1,j+1,k+1) and (i,j+1,k+1). Figure 1 shows a 

representation of the computational cell, which is a 

hexahedron in three-dimensions. 

 

 

Figure 1 : Computational Cell. 

 

 The calculation of the volume of the 

computational cells is based, in the more general 

case, in the determination of the volume of a 

deformed hexahedron in the three-dimensional 

space.  This volume is determined by the summation 

of the volumes of the six tetrahedrons which 

composes the given hexahedron. Figure 2 exhibits 

the division of a hexahedron in its six tetrahedral 

components, as well the nodes of the vertices which 

define each tetrahedron. 

 

 
Figure 2 : Hexahedron and its Components. 

 The volume of a tetrahedron is given by the 

calculation of the following determinant: 
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where xP, yP, zP, xA, yA, zA, xB, yB, zB, xC, yC and zC 

are Cartesian coordinates of the nodes which define 

the tetrahedron represented in Fig. 3. 

 
Figure 3 : Reference Tetrahedron. 

 The flux area of the hexahedron is calculated by 

the sum of half areas defined by the vector external 

products bxa


 and dxc


, where a


, b


, c


 and 

d


 are vectors formed by the nodes which define a 

given flux surface, conform exhibited in Fig. 4. The 

physical quantity  dxcbxa.


50  determines 

the flux area of each face, which is nothing more 

than the area of a deformed rectangle. 

 

 
Figure 4 : Flux Area (hexahedron). 

 The normal unit vector pointing outward at each 

flux face is calculated taken into account the vector 

external product bxabxan


 , as shown in 

Fig. 5. An additional test is necessary to verify if 

this unit vector is pointing inward or outward of the 

hexahedron. This test is based on the following 

vector mixed product   fbxa)bxa(


 , where 

f


 is the vector formed by one of the nodes of the 

flux face under study and one node of the 

hexahedron that be contained at the face 

immediately opposed, and “” represents the vector 

inner product . The positive signal indicates that the 

normal unit vector is pointing inward the 

hexahedron, what imposes that it should be changed 

by their opposed vector. 

 

Figure 5 : Normal Unit Vector (Hexahedron). 

 

 

4    Numerical Scheme of [4] 
The [4] algorithm, second order accurate in space, is 

specified by the determination of the numerical flux 

vector at (i+½,j,k) interface. The implementation of 

the other numerical flux vectors at the other 

interfaces is straightforward. 

 Following a finite volume formalism, which is 

equivalent to a generalized system, the right and left 

cell volumes, as well the interface volume, 

necessary to coordinate change, are defined by: 

k,j,iR VV 1 , k,j,iL VV   and  LRint VV5.0V  .    

(14) 

The metric terms to this generalized coordinate 

system are defined as: 

 

 intint_xx VSh  , intint_yy VSh  , 

 intint_zz VSh     and   intn VSh  ,            (15) 

 

where SnS xint_x  , SnS yint_y  , SnS zint_z   

are the Cartesian components of the flux area and S 

is the flux area, calculated as described in section 3. 
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 The properties calculated at the flux interface are 

obtained either by arithmetical average or by [3] 

average. In this work, the [3] average was used: 

RLint , 

   LRLRRL uuu  1int , 

   LRLRRL vvv  1int ;            (16) 

   LRLRRLint www  1 , 

   LRLRRL HHH  1int ; (17) 

     222501 intintintintint wvu.Ha  , (18) 

where aint is the speed of sound at the flux interface. 

The eigenvalues of the Euler equations, in the  

direction, are given by: 

zintyintxintcont hwhvhuU  , nintcont1 haU  , 

contU 432 ;                                       (19) 

nintcont haU 5 .                                            (20) 

 The jumps of the conserved variables, necessary 

to the construction of the [4] dissipation function, 

are given by: 

 LRV  int ,       LR uuVu  int , 

      LR vvVv  int ;                            (21) 

      LRint wwVw  , 

 LR eeVe  int .                                         (22) 

 The  vectors, which are the jumps of the 

characteristic variables, at the (i+½,j,k) interface are 

calculated by the following expressions: 

      QR k,j,/ik,j,/ik,j,/i 2121

1

21 



  ,        (23) 

with: 

         T

kji ewvuQ   ,,2/1 , 

defined by Eqs. (21) and (22);                             (24) 
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R

       

    
   

     
















2
intint

'
zint

2
int

'
y

'
x

2
intint

2
int

2
intint

'
zint

2
int

a15.0ahwa15.0

0h

0h

a1wa1

a15.0ahwa15.0

;   (25) 

2222

intintint wvuq  ;                                        (26) 

'

int

'

int

'

int zyx hwhvhu  ;                                 (27) 

nxx hhh '
, nyy hhh '

   and   nz

'

z hhh  .  (28) 

 The Yee, Warming and Harten (1982) 

dissipation function uses the right-eigenvector 

matrix of the normal to the flux face Jacobian 

matrix in generalized coordinates: 

 






















int
'
yint

'
zint

'
x

2
intint

'
zintint

'
yintint

'
xint

'
xintint

'
zint

'
zintint

'
yint

'
yintint

'
xint

uhvhwhq5.0awhavhauhH

hwahw

hvahv

huahu

011

R  

     




















intint
'
zintint

'
yintint

'
xintint

'
zint

'
xint

'
y

int
'
zint

'
y

int
'
yint

'
x

int
'
xint

'
z

awhavhauhHuhvhwh

ahwh

ahvh

ahuh

10

. (29) 

 Two options to the l entropy function, 

responsible to guarantee only relevant physical 

solutions, are implemented aiming an entropy 

satisfying algorithm: 

 llk,j,il Zt     and   2502 .Z ll  ;  (30) 

or: 

 








flffl

fll

l
Zif,Z.

Zif,Z
2250

,    (31) 
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where “l” varies from 1 to 5 (three-dimensional 

space) and f assuming values between 0.1 and 0.5, 

being 0.2 the value recommended by [4]. In the 

present studies, Eq. (30) was used to perform the 

inviscid numerical experiments and Eq. (31) was 

used to perform the viscous numerical experiments. 

 The g~  function at the (i+½,j,k) interface is 

defined by: 

       l

ll

l Z.g~  250 ,              (32) 

with 
l  being the lth component of the alpha vector 

(Eq. 23). 

 The g numerical flux function, which is a limited 

function to avoid the formation of new extrema in 

the solution and is responsible to scheme second 

order accuracy, is given by: 

  l
l

k,j,2/1i
l

k,j,2/1il
l

k,j,i signalg~,g~MIN;0.0MAXsignalg   , 

(33) 

where signall is equal to 1.0 if 
l

k,j,/ig~ 21   0.0 and -

1.0 otherwise. 

 The  term, responsible to the artificial 

compression, which enhances the resolution of the 

scheme at discontinuities, is defined as follows: 

 
















0.0if,0.0

0.0if,

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1i

l
k,j,2/1il

k,j,i .          

(34) 

The   parameter at the (i+½,j,k) interface, which 

introduces the artificial compression term in the 

algorithm, is given by the following expression: 

 ),(MAX. l

k,j,i

l

k,j,ill 101  ,             (35) 

in which l assumes the following values: 1 = 0.25 

(non-linear field), 2 = 3 = 4 = 1.0 (linear field) 

and 5 = 0.25 (non-linear field). The numerical 

characteristic speed, l , at the (i+½,j,k) interface, 

which is responsible to transport the numerical 

information associated to the g numerical flux 

function, is defined by: 

 







 

0000

001

.if,.

.if,gg
l

lll

k,j,i

l

k,j,i

l .   (36) 

 The entropy function is redefined considering l  

and l : llllZ  , and l  is recalculated 

according to Eq. (30) or to Eq. (31). Finally, the [4] 

dissipation function, to second order of spatial 

accuracy, is constructed by the following matrix-

vector product: 

       
kjikjikjikjikjikji

tggRD
,,2/1,,,,1,,,,2/1,,2/1]4[ 

 . 

(37) 

 The convective numerical flux vector to the 

(i+½,j,k) interface is described by: 

  )(

]4[int

)(

int

)(

int

)(

int

)(

,,2/1 5.0 l

z

l

y

l

x

ll

kji DVhGhFhEF  , 

(38) 

with: 

 )l(

L

)l(

R

)l(

int EE.E  50 ,  )l(

L

)l(

R

)l(

int FF.F  50 , 

 )l(

L

)l(

R

)l(

int GG.G  50 .                          (39) 

The right-hand-side of the [4] scheme, necessaries 

to the resolution of the implicit version of this 

algorithm, is determined by: 

  
n

kji
n

kji
n

kjikjikji
n

kji FFFVtRHS ,2/1,,,2/1,,2/1,,,,,,])4([  

n

kji

n

kji

n

kji FFF 2/1,,2/1,,,2/1,   .                         (40) 

 To the viscous simulations, it was implemented 

the explicit version. In this case, the time integration 

is replaced by a time splitting method, first order 

accurate, which divides the temporal integration in 

three steps, each one associated with a different 

spatial direction. Considering the initial step 

associated with the  direction, one has: 

 n

k,j,/i

n

k,j,/ik,j,ik,j,i

*

k,j,i FFVtQ 2121   ,

*

k,j,i

n

k,j,i

*

k,j,i QQQ  ;                                 (41) 

in the intermediate step, considering the  direction, 

one has: 

 *

k,/j,i

*

k,/j,ik,j,ik,j,i

**

k,j,i FFVtQ 2121   ,

**

k,j,i

*

k,j,i

**

k,j,i QQQ  ;                                 (42) 

and, in the final step, considering the  direction, 

one has: 
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 **

/k,j,i

**

/k,j,ik,j,ik,j,i

n

k,j,i FFVtQ 2121

1



 
,

11   n

k,j,i

**

k,j,i

n

k,j,i QQQ .                                 (43) 

 The viscous vectors at the flux interface are 

obtained by arithmetical average between the 

primitive variables at the left and at the right states 

of the flux interface, as also arithmetical average of 

the primitive variable gradients, also considering the 

left and the right states of the flux interface. The 

gradients of the primitive variables present in the 

viscous flux vectors are calculated employing the 

Green Theorem which considers that the gradient of 

a primitive variable is constant in the volume and 

that the volume integral which defines this gradient 

is replaced by a surface integral ([21]); For instance, 

to xu  : 

     










V

xk,1j,ik,j,i

k,j,iV

x

V

k,2/1j,i
Suu5.0

V

1
udS

V

1
Sdnu

V

1
dV

x

u

V

1

x

u 
 

      
  k,j,2/1ik,2/1j,ik,j,2/1i xk,j,1ik,j,ixk,1j,ik,j,ixk,j,1ik,j,i Suu5.0Suu5.0Suu5.0  

    
2/1k,j,i2/1k,j,i x1k,j,ik,j,ix1k,j,ik,j,i Suu5.0Suu5.0

   .                                                

(44) 

 

 

5 Numerical Scheme of [5] 
The [5] algorithm, second order accurate in space, 

follows the Eqs. (14) to (29). The next step is the 

definition of the entropy condition, which is defined 

by Eq. (30), l, and Eq. (31). 
 The g~  function at the (i+½,j,k) interface is 

defined according to Eq. (32) and the g numerical  

flux function is given by Eq. (33). The numerical 

characteristic speed l  at the (i+½,j,k) interface is 

defined according to Eq. (36). 

 The entropy function is redefined considering 

l : lllZ  , and l  is recalculated according 

to Eq. (31). Finally, the [5] dissipation function, to 

second order spatial accuracy, is constructed by the 

following matrix-vector product: 

      
kjikjikjikjikjikji

tggRD
,,2/1,,,,1,,,,2/1,,2/1]5[ 

 .                       

(45) 

 The convective numerical flux vector of the [5] 

scheme is defined by: 

  )(

]5[int

)(

int

)(

int

)(

int

)(

,,2/1 5.0 l

z

l

y

l

x

ll

kji DVhGhFhEF  , (46) 

with 
)l(

intE , 
)l(

intF  and 
)l(

intG  determined by Eq. (39). 

The right-hand-side of the [5] scheme, necessaries 

to the resolution of the implicit version of this 

algorithm, is defined by: 

  
n

kji
n

kji
n

kjikjikji
n

kji FFFVtRHS ,2/1,,,2/1,,2/1,,,,,,])5([  

n
kji

n
kji

n
kji FFF 2/1,,2/1,,,2/1,   .                            (48) 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (41) to 

(43). The implementation of the viscous terms 

follows the same procedure as described in section 

4. 

 

 

6 Numerical Scheme of [6] 
The [6] algorithm, second order accurate in space, 

follows Eqs. (14) to (29). The next step consists in 

determining the  function. This function is defined 

in terms of the differences of the gradients of the 

characteristic variables to take into account 

discontinuities effects and is responsible to artificial 

compression: 

 

 
























0.0,0.0

0.0,

,,2/1,,2/1

,,2/1,,2/1

,,2/1,,2/1

,,2/1,,2/1

,,

l

kji

l

kji

l

kji

l

kjil

kji

l

kji

l

kji

l

kji

l

kji

if

if
.                        

(48) 

The  function at the (i+½,j,k) interface is defined 

as follows: 

  l

k,j,i

l

k,j,ill ,MAX 1181  ,                 (49) 

The g numerical flux function is determined by: 

  l
l

kji
l

kjil
l

kji signalMINMAXsignalg   ,,2/1,,2/1,, ,;0.0 ,                      

(50) 

where signall assumes value 1.0 if 
l

k,j,/i 21   0.0 

and -1.0 otherwise. The numerical characteristic 

speed l  at the (i+½,j,k) interface is calculated by 

the following expression: 

 







 

0000

001

.if,.

.if,gg
l

lll

k,j,i

l

k,j,i

l .   (51) 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-2880 537 Issue 6, Volume 11, June 2012



The l  entropy function at the (i+½,j,k) interface is 

defined by: 

   25.0
2
 lll ;                                (52) 

with l defined according to Eq. (30). Finally, the 

[6] dissipation function, to second order spatial 

accuracy, is constructed by the following matrix-

vector product: 

       
kjikjikjikjikjikji

tggRD
,,2/1,,,,1,,,,2/1,,2/1]6[ 

 .                 

(53) 

 The convective numerical flux vector of the [6] 

scheme is defined by: 

  )(
]6[int

)(
int

)(
int

)(
int

)(
,,2/1 5.0

l
z

l
y

l
x

ll
kji DVhGhFhEF  , (54) 

with 
)l(

intE , 
)l(

intF  and 
)l(

intG  determined by Eq. (39). 

The right-hand-side of the [6] scheme is defined by: 

 n
kji

n
kji

n
kjikjikji

n
kji FFFVtRHS ,2/1,,,2/1,,2/1,,,,,,])6([            

n
kji

n
kji

n
kji FFF 2/1,,2/1,,,2/1,   .                         (55) 

 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (41) to 

(43). The implementation of the viscous terms 

follows the same procedure as described in section 

4. 

 

 

7 Numerical Scheme of [7] 
The [7] algorithm, second order accurate in space, 

follows Eqs. (14) to (29). The next step consists in 

determining the g numerical flux function. To non-

linear fields (l = 1 and 5), it is possible to write: 

 

 
0.0

0.0,0.0

,

,,2/1,,2/1

,,2/1,,2/1

,,2/1,,2/1

,,2/1,,2/1,,2/1,,2/1

,, 



























l
kji

l
kji

l
kji

l
kjil

kji
l

kji

l
kji

l
kji

l
kji

l
kji

l
kji

if

if
g .          

(56) 

To linear fields (l = 2 to 4), it is possible to write: 

  l
l

kji
l

kjil
l

kji signalMINMAXsignalg   ,,2/1,,2/1,, ,;0.0 , 

(57) 

where signall is equals to 1.0 if 
l

k,j,/i 21   0.0 and -

1.0 otherwise. After that, Equations (30), l term, 

and (31) are used and the l term at the (i+½,j,k) 

interface is defined by: 

  25.0 lll Z .                           (58) 

The l  numerical characteristic speed at the 

(i+½,j,k) interface is defined by: 

 
 










 

0.0,0.0

0.0,,,,,1

l

lll
kji

l
kjil

l
if

ifgg
.    (59) 

 The entropy function is redefined considering the 

l  term: lllZ   and l  is recalculated 

according to Eq. (31). The [7] dissipation function, 

to second order accuracy in space, is constructed by 

the following matrix-vector product: 

       
kjikjikjikjikjikji

tggRD
,,2/1,,,,1,,,,2/1,,2/1]7[ 

 .                  

(60) 

 The convective numerical flux vector of the [7] 

scheme is defined by: 

   )(
]7[int

)(
int

)(
int

)(
int

)(
,,2/1 5.0

l
z

l
y

l
x

ll
kji DVhGhFhEF 

,  (61) 

with 
)l(

intE , 
)l(

intF  and 
)l(

intG  determined by Eq. (39). 

The right-hand-side of the [7] scheme is defined by: 

 n
kji

n
kji

n
kjikjikji

n
kji FFFVtRHS ,2/1,,,2/1,,2/1,,,,,,])7([    

n
kji

n
kji

n
kji FFF 2/1,,2/1,,,2/1,   .                         (62) 

 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (41) to 

(43). The implementation of the viscous terms 

follows the same procedure as described in section 

4. 

 

 

8 Implicit Formulation 
All implicit schemes implemented in this work used 

backward Euler in time and LNI approximate 

factorization to solve a three-diagonal system in 

each direction. 
 To the flux difference splitting algorithms tested 

in this work, a Linearized Nonconservative Implicit 

(LNI) form is applied that, although the resulting 

schemes loss the conservative property, preserve 

their unconditionally TVD property. Moreover, the 

LNI form is mainly useful to steady state 

calculations, since the schemes are only 
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conservative after the solution reaches steady state. 

This LNI form to the solution of the studied TVD 

implicit schemes was proposed by [22]. The LNI 

form presents three stages as described below: 

  k,j,i

*

k,j,ik,j,/ik,j,/ik,j,ik,j,/ik,j,/ik,j,i RHSQJtJtI  







 21212121 ;                      

(63) 

  *

k,j,i

**

k,j,ik,/j,ik,/j,ik,j,ik,/j,ik,/j,ik,j,i QQKtKtI  







 21212121 ;                      

(64) 

  **

k,j,i

n

k,j,i/k,j,i/k,j,ik,j,i/k,j,i/k,j,ik,j,i QQLtLtI  











1

21212121 ,                       

(65) 

where: RHSi,j,k is defined by Eq. (40) or (47) or (55) 

or (62) depending if the [4] or the [5] or the [6] or 

[7] scheme is being solved, respectively; the 

difference operators are defined as: 

       k,j,ik,j,ik,j,/i   121

       k,j,ik,j,ik,j,/i 121  

       k,j,ik,j,ik,/j,i   121 ;                         (66) 

      k,j,ik,j,ik,/j,i 121   , 

      k,j,ik,j,i/k,j,i   121 , 

      121   k,j,ik,j,i/k,j,i ;                         (67) 

and the update of the conserved variable vector is 

proceeded as follows: 

 
11   n

k,j,i

n

k,j,i

n

k,j,i QQQ .                                 (68) 

This system of 5x5 block three-diagonal linear 

equations is solved using LU decomposition and the 

Thomas algorithm applied to systems of block 

matrices. 

 The splitting matrices J
+
, J

-
, K

+
, K

-
, L

+
 and L

-
 are 

defined as: 

   1







  RDdiagRJ , 

    1







  RDdiagRJ ,   1







  RDdiagRK ; 

(69) 

  1







  RDdiagRK ,   1







  RDdiagRL ,   

  1







  RDdiagRL ,                                  (70) 

where R, R, R, 
1

R , 
1

R  and 
1

R  are defined by 

Eqs. (25) and (29) applied to each coordinate 

direction;  diag  represents a diagonal matrix, as 

for instance: 

 







































,

,

,

,

,

D

D

D

D

D

D

5

4

3

2

1

 







































,

,

,

,

,

D

D

D

D

D

D

5

4

3

2

1

 

(71) 

and the terms D are defined as: 

    llllQ.D 



  50 , 

    llllQ.D 



  50 ;              

    llllQ.D 



  50 ,              (72) 

with: 

 
 









flffl

fll

l
xif,x.

xif,x
xQ

2250
, f 

defined according to Eq. (31);                             (73) 
l

 , 
l

  and 
l

  are the eigenvalues of the Euler 

equations defined by Eqs. (19) and (20) in each 

coordinate direction; 

 
       

 















 








0.0,0.0

0.0,

,,2/1

,,2/1,,2/1,,

'

,,1

'

,,2/1

kji

l

kji

l

kji

ll

kji

l

kji

kji

l

if

ifgg
;                                   

(74)

 
       

 















 








0.0,0.0

0.0,

,2/1,

,2/1,,2/1,,,

'

,1,

'

,2/1,

kji

l

kji

l

kji

ll

kji

l

kji

kji

l

if

ifgg
;                                  

(75)

 
       

 















 








0.0,0.0

0.0,

2/1,,

2/1,,2/1,,,,

'

1,,

'

2/1,,

kji

l

kji

l

kji

ll

kji

l

kji

kji

l

if

ifgg
;                                  

(76) 
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   






 
 ,,0.0

,,2/1,,2/1,,

'

kji

ll
kji

ll

kji
MINMAXsignalg  

              
kji

ll
kji

lsignal
,,2/1,,2/1   ;                   (77) 

    ,,0.0
,2/1,,2/1,,,

'







 
 kji

ll
kji

ll

kji
MINMAXsignalg

              
kji

ll
kji

lsignal
,2/1,,2/1,   ;                   (78) 

     ,,0.0
2/1,,2/1,,,,

'


 

 kji

ll
kji

ll

kji
MINMAXsignalg  

              
2/1,,2/1,,  

kji

ll
kji

lsignal ;                   (79)
 

 lll Q.  50  to steady state simulations.       (80) 

Finally, lsignal  = 1.0 if   00
21

.
k,j,/i

l 
  and -1.0 

otherwise; lsignal  = 1.0 if   00
21

.
k,/j,i

l 
  and -

1.0 otherwise; and lsignal  = 1.0 if 

  00
21

.
/k,j,i

l 
  and -1.0 otherwise. 

 This implicit formulation to the LHS of the [4], 

of the [5], of the [6], and of the [7] schemes is first 

order accurate in time and second in space due to 

the presence of the numerical characteristic speed  

associated to the numerical flux function g’. In this 

case, the solution accuracy in space is definitively of 

second order because both LHS and RHS are also of 

second order. 

 It is important to emphasize that as the right-

hand-side of the implicit flux difference splitting 

schemes tested in this work presents steady state 

solutions which depends of the time step, the use of 

large time steps with the implicit schemes can affect 

the steady solutions, as mentioned in [4]. This is an 

initial study with implicit schemes and 

improvements of the implementation of these 

schemes with steady state solutions independent of 

the time step is a goal to be aimed in future works 

by this author. 

 

 

9 Turbulence Models 
 

9.1 Turbulence model of [14] 
The problem of the turbulent simulation is in the 

calculation of the Reynolds stress. Expressions 

involving velocity fluctuations, originating from the 

average process, represent six new unknowns. 

However, the number of equations keeps the same 

and the system is not closed. The modeling function 

is to develop approximations to these correlations. 

To the calculation of the turbulent viscosity 

according to the [14] model, the boundary layer is 

divided in internal and external. 

 Initially, the (w) kinematic viscosity at wall and 

the (xy,w) shear stress at wall are calculated. After 

that, the () boundary layer thickness, the (LM) 

linear momentum thickness and the (VtBL) boundary 

layer tangential velocity are calculated. So, the (N) 

normal distance from the wall to the studied cell is 

calculated. The N
+
 term is obtained from: 

 wwwxy NN 

,Re ,                     (81) 

where w is the wall density. The van Driest 

damping factor is calculated by: 

 
)(  


AN wwe1D ,                            (82) 

with 26A 
 and w  is the wall molecular 

viscosity. After that, the ( dNdVt ) normal to the 

wall gradient of the tangential velocity is calculated 

and the internal turbulent viscosity is given by: 

 
dNdVtND 2

Ti )(Re  ,                       (83) 

where  is the von Kárman constant, which has the 

value 0.4.
 
The intermittent function of Klebanoff is 

calculated to the external viscosity by: 

 
   16

Kleb N551Ng


 .)( .                     (84) 

With it, the external turbulent viscosity is calculated 

by: 

 KlebLMBLTe gVt01680  ).Re( .               (85) 

Finally, the turbulent viscosity is chosen from the 

internal and the external viscosities: 

),( TeTiT MIN  . 

 

9.2 Turbulence model of [15] 
To the calculation of the turbulent viscosity 

according to the [15] model, the boundary layer is 

again divided in internal and external. In the internal 

layer, 

 2

mixTi l    and    
 0AN

mix e1Nl .  (86) 
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In the external layer, 

 
)/;( max KlebKlebwakecpTe CNNFFC ,      (87) 

with: 

 maxmaxmaxmax /; FUNCFNMINF 2

difwkwake  , 

   mix
N

lMAX1Fmax .                         (88) 

Hence, maxN  is the value of N where mixl  

reached its maximum value and lmix is the Prandtl 

mixture length. The constant values are: 40. , 

01680. , 26A0 
, 61Ccp . , 30CKleb .  

and 1Cwk  . KlebF  is the intermittent function of 

Klebanoff given by: 

 
   16

KlebKleb NNC551NF


 max.)( ,      (89) 

  is the magnitude of the vortex vector and difU  

is the maximum velocity value in the boundary layer 

case. To free shear layers, 

   
max

222

max

222

NNdif wvuwvuU  .  (90) 

 

 

10  Spatially Variable Time Step 
The idea of a spatially variable time step consists in 

keeping constant a CFL number in the calculation 

domain and to guarantee time steps appropriated to 

each mesh region during the convergence process. 

The spatially variable time step can be defined by: 

 

 
k,j,i

k,j,i

k,j,i
aq

sCFL
t




 ,                                  (91) 

where CFL is the Courant-Friedrichs-Lewis number 

to method stability;    k,j,is   is  a  characteristic 

length of information transport; and  
k,j,i

aq   is 

the maximum characteristic speed of information 

transport, where a is the speed of sound. The 

characteristic length of information transport, 

  k,j,is , can be determined by: 

     
k,j,iMINMINk,j,i C,lMINs   ,                (92) 

where lMIN is the minimum side length which forms 

a computational cell and CMIN is the minimum 

distance of baricenters among the computational cell 

and its neighbors. The maximum characteristic 

speed of information transport is defined by 

 
k,j,i

aq  , with 
222 wvuq  . 

 

 

11   Initial and Boundary Conditions 

11.1  Initial Condition 
Stagnation values are used as initial condition to the 

nozzle problem. Only at the exit boundary is 

imposed a reduction of 1/3 to the density and to the 

pressure to start the flow along the nozzle ([23]). 

The vector of conserved variables is defined as: 

(a) Domain except the nozzle exit: 

 
    T

kjiQ )1(210001,,  ;  (93) 

 

(b) Nozzle exit: 

 
    T

kjiQ )1(610003/1,,  .  (94) 

To the compression corner and ramp problems, 

values of freestream flow are adopted for all 

properties as initial condition, in the whole 

calculation domain ([17, 23]): 
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where M represents the freestream Mach number,  

is the flow incidence angle upstream the 

configuration under study and  is the angle in the 

configuration longitudinal plane. 

11.2  Boundary Conditions 
Three types of boundary conditions are 

implemented in this work: wall, entrance and exit. 

They are implemented in special cells named “ghost 

cells”, as referred in the CFD community. 

(a) Wall condition - The Euler case requires the 

flux tangency condition. On the context of finite 

volumes, this imposition is done considering that the 

tangent flow velocity component to the wall of the 
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ghost cell be equal to the tangent flow velocity 

component to the wall of the neighbour real cell. At 

the same time, the normal flow velocity component 

to the wall of the ghost cell should be equal to the 

negative of the normal flow velocity component to 

the wall of the neighbour real cell. [24] suggests that 

these procedures lead to the following expressions 

to the velocity components u, v and w of the ghost 

cells: 

 

realzxrealyxrealxxg wnnvnnunnu )2()2()21(  ; (96) 

realzyrealyyrealxyg w)nn(v)nn(u)nn(v 2212  ; (97) 

realzzrealyzrealxzg w)nn(v)nn(u)nn(w 2122  . (98) 

 

In the viscous case, however, the velocity 

components of the ghost cells are set equal to 

corresponding values of the velocity components of 

the real neighbour, with opposite signal. In other 

words: 

 

  realg uu  , realg vv     and   realg ww  .  (99) 

 

The fluid pressure gradient in the direction normal 

to the wall is equal to zero for the inviscid case and 

also equalled to zero in the viscous case due to the 

boundary layer theory. The temperature gradient is 

equal to zero along the whole wall, according to the 

condition of adiabatic wall, for both cases (viscous 

and non-viscous). With these two conditions, a zero 

order extrapolation is performed to the fluid 

pressure and to the temperature. It is possible to 

conclude that the fluid density will also be obtained 

by zero order extrapolation. The energy conserved 

variable is obtained from the state equation to a 

perfect gas. 

(b) Entrance condition: 

(b.1) Subsonic flow: Four properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain ([23]). In other 

words, four characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qnormal-a)” velocity 

cannot be specified and should be determined from 

the interior information of the calculation domain. 

The u velocity component was the extrapolated 

variable from the real neighbour volume to the 

nozzle problem, whereas the pressure was the 

extrapolated variable to the compression corner and 

ramp problems. Density, pressure, and the v and w 

components of velocity had their values determined 

by isentropic and geometrical relations in the nozzle 

problem, whereas density and velocity components 

had their values determined by the freestream flow 

properties in the compression corner and ramp 

problems. The total energy per unity fluid volume is 

determined by the state equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with 

their freestream flow values. 

(c) Exit condition: 

(c.1) Subsonic flow: Four characteristic directions 

of information propagation point outward the 

computational domain and should be extrapolated 

from interior information ([23]). The characteristic 

direction associated to the “(qnormal-a)” velocity 

should be specified because it penetrates the 

calculation domain. In this case, the ghost volume’s 

pressure is specified by its freestream value. Density 

and velocity components are extrapolated and the 

total energy is obtained by the state equation of a 

perfect gas. 

 

(c.2) Supersonic flow: All variables are extrapolated 

from the interior domain due to the fact that all five 

characteristic directions of information propagation 

of the Euler equations point outward the calculation 

domain and, with it, nothing can be fixed. 

 

 

12 Configurations of the Physical 

Problems and Employed Meshes 
The geometry of the convergent-divergent nozzle at 

the xy plane is described in Fig. 6. The total length 

of the nozzle is 0.38ft (0.116m) and the throat 

height is equal to 0.090ft (0.027m). The throat is 

located at 0.19ft (0.058m) from the entrance 

boundary. The throat curvature ratio is equal to 

0.090ft. The nozzle convergence angle is 22.33 and 

the nozzle divergence angle is 1.21. An exponential 

stretching of 10% in both  and  directions was 

used. An algebraic mesh of 61 points in the  

direction, 71 points in the  direction and 10 points 

in the  direction was generated, which corresponds 

in finite volumes to 37,800 hexahedrons and 43,310 

nodes. Its spanwise length is 0.10ft (0.0305m). 

Figure 7 exhibits the mesh employed in the 

simulations. 
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Figure 6 : Nozzle Configuration in the xy Plane. 

 

Figure 7 : Nozzle Mesh in Three-Dimensions. 

 The compression corner configuration at the xy 

plane is described in Fig. 8. The corner inclination 

angle is 10
o
. An algebraic mesh of 70 points in the  

direction, 50 points in the  direction and 10 points 

in the  direction was generated, which corresponds 

in finite volumes to 30,429 hexahedrons and 35,000 

nodes. Its spanwise length is 0.5m. Figure 9 exhibits 

such mesh. 

 

Figure 8 : Corner Configuration in the xy Plane. 

 Finally, the ramp configuration at the xy plane 

is described in Fig. 10. The compression corner has 

20 of inclination. Its spanwise length is 0.25m. The 

mesh used in the simulations has 31,860 

hexahedrons and 36,600 nodes to a structured 

discretization of the calculation domain. This mesh 

is equivalent, in finite differences, of being 

composed of 61 points in the  direction, 60 points 

in the  direction and 10 points in the  direction. 

An exponential stretching of 10% in the  direction 

was employed. Figure 11 shows such mesh. Table 1 

presents a summary of the computational meshes. 

 

Figure 9 : Corner Mesh in Three-Dimensions. 

 

Figure 10 : Ramp Configuration in the xy Plane. 

 

Figure 11 : Ramp Mesh in Three-Dimensions. 
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Table 1 : Computational data of the meshes. 

Nozzle Corner Ramp 

61x71x10 70x50x10 61x60x10 

Cells 37,800 30,429 31,860 

Nodes 43,310 35,000 36,600 

 

 

13   Results 

Tests were performed in a microcomputer with 

processor AMD SEMPRON (tm) 2600+, 1.83GHz, 

and 512 Mbytes of RAM memory. Converged 

results occurred to 3 orders of reduction in the 

maximum residual value. The configuration 

upstream and the configuration longitudinal plane 

angles were set equal to 0.0. All pressure 

distributions were determined at the plane 

corresponding to k = KMAX/2, where “KMAX” is 

the maximum number of points in the z direction, 

and j = 1, corresponding to the configuration wall. 

13.1  Inviscid results – Convergent-

divergent nozzle 
Stagnation flow was adopted as initial condition to 

this problem, with only a small reduction of the 

density and the pressure at the nozzle exit to 

initialize the flow. 

 Figures 12 to 15 show the pressure contours 

obtained by the [4], the [5], the [6], and the [7] 

schemes, respectively. The [7] scheme presented the 

most severe pressure field in relation to the other 

schemes, representing a more conservative scheme 

to this problem. Good symmetry characteristics are 

observed in all solution. 

 
Figure 12 : Pressure Contours ([4]). 

 
Figure 13 : Pressure Contours ([5]). 

 
Figure 14 : Pressure Contours ([6]). 

 
Figure 15 : Pressure Contours ([7]). 

 

 Figures 16 to 19 present the Mach number 

contours obtained by the schemes of [4], of [5], of 

[6], and of [7], respectively. The solution generated 

by the [6] scheme is the most intense, but there is 

loss of symmetry in the Mach field, which damages 

the solution. Disregarding this solution due to the 

error in the description of the Mach field, the most 

intense Mach number field is due to the [4] scheme. 

Despite of the [6] solution, all other results present 

good symmetry properties. 
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Figure 16 : Mach Contours ([4]). 

 
Figure 17 : Mach Contours ([5]). 

 
Figure 18 : Mach Contours ([6]). 

 
Figure 19 : Mach Contours ([7]). 

 Figure 20 exhibits the lower wall pressure 

distributions along the convergent-divergent nozzle. 

They are compared with the experimental results of 

[25]. As can be observed, the [4] scheme presents 

the best pressure distribution (closer to the 

experimental results). 

 

Figure 20 : Lower Wall Pressure Distributions. 

 

13.2  Inviscid results – Compression corner 
A freestream Mach number of 3.0, characterizing a 

moderate supersonic flow regime, was adopted as 

initial condition to this problem. The flow reaches 

the compression corner, generating an oblique shock 

wave along the corner. 
 Figures 21 to 24 exhibit the pressure contours 

obtained by the schemes of [4], of [5], of [6], and of 

[7], respectively. All solutions are clear, without 

pressure oscillations, and all pressure fields are 

equal in qualitative and quantitative terms. 

 
Figure 21 : Pressure Contours ([4]). 

 

 Figures 25 to 28 show the Mach number 

contours obtained by the [4], the [5], the [6], and the 
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[7] schemes, respectively. The most intense Mach 

number field is obtained by the [6] algorithm. All 

solutions are clear and without oscillations. 

 
Figure 22 : Pressure Contours ([5]). 

 
Figure 23 : Pressure Contours ([6]). 

 
Figure 24 : Pressure Contours ([7]). 

 

 Figure 29 exhibits the wall pressure distributions 

along the compression corner obtained by all 

schemes. They are compared with the oblique shock 

wave theory results. As can be observed, all TVD 

schemes do not present oscillations at the 

discontinuity. Only the [6] solution presents a 

pressure distribution slightly under-predicted in 

relation to the other schemes. All schemes slightly 

under-predict the shock plateau. Figure 30 shows 

the same pressure distributions plotted using 

symbols to identify how much cells are necessary to 

capture the shock discontinuity. All schemes detect 

the shock discontinuity using four cells, which is an 

acceptable value to high resolution schemes. 

 
Figure 25 : Mach Contours ([4]). 

 
Figure 26 : Mach Contours ([5]). 

 
Figure 27 : Mach Contours ([6]). 

 

 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-2880 546 Issue 6, Volume 11, June 2012



 
Figure 28 : Mach Contours ([7]). 

 
Figure 29 : Wall Pressure Distributions. 

 
Figure 30 : Wall Pressure Distributions. 

 

 One way to quantitatively verify if the solutions 

generated by each scheme are satisfactory consists 

in determining the shock angle of the oblique shock 

wave, , measured in relation to the initial direction 

of the flow field. [26] (pages 352 and 353) presents 

a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and of the deflection angle of the flow after 

the shock wave, . To the compression corner 

problem,  = 10º (corner inclination angle) and the 

freestream Mach number is 3.0, resulting from this 

diagram a value to  equals to 27.5º. Using a 

transfer in Figures 21 to 24, considering the xy 

plane, it is possible to obtain the values of  to each 

scheme, as well the respective errors, shown in Tab. 

2. As can be observed, the best scheme was the [6] 

one, with a percentage error of 0.00%. 

 

Table 2 : Shock angle and respective percentage 

errors to the corner problem. 

 

Algorithm () Error (%) 

[4] 27.90 1.45 

[5] 27.80 1.09 

[6] 27.50 0.00 

[7] 28.00 1.82 
 

 

13.3  Viscous results – Ramp 
The physical problem studied in the viscous laminar 

and turbulent simulations is the flow along a ramp. 

This problem is a supersonic flow hitting a ramp 

with 20 of inclination. It generates a shock and an 

expansion fan. The freestream Mach number 

adopted as initial condition to this simulation was 

5.0, characterizing a high supersonic flow. The 

Reynolds number was estimated to be 4.031x10
5
 at 

a flight altitude of 20,000m and lREF = 0.0437m, 

based on the work of [20]. 

 
13.2.1 Laminar results 

 

 
Figure 31 : Pressure Contours ([4]). 
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 Figures 31 to 34 exhibit the pressure contours 

obtained by the [4], the [5], the [6], and the [7] 

schemes, respectively. The most severe pressure 

field, which characterizes the most conservative 

solution, is obtained by the [7] TVD scheme. Good 

symmetry and homogeneity properties at the k 

planes are observed in all solutions. The shock wave 

is well captured. 

 
Figure 32 : Pressure Contours ([5]). 

 
Figure 33 : Pressure Contours ([6]). 

 
Figure 34 : Pressure Contours ([7]). 

 

 Figures 35 to 38 show the Mach number 

contours obtained by the schemes of [4], of [5], of 

[6], and of [7], respectively. The Mach number 

contours generated by the [7] TVD scheme is the 

most intense. No regions of separation flow are 

observed. 

 
Figure 35 : Mach Contours ([4]). 

 
Figure 36: Mach Contours ([5]). 

 
Figure 37: Mach Contours ([6]). 

 

 Again, one way to quantitatively verify if the 

solutions generated by each scheme are satisfactory 

consists in determining the shock angle of the 

oblique shock wave, , measured in relation to the 

initial direction of the flow field. To the ramp 
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problem,  = 20º (ramp inclination angle) and the 

freestream Mach number is 5.0, resulting from this 

diagram a value to  equals to 30.0º. Using a 

transfer in Figures 31 to 34, considering the xy 

plane, it is possible to obtain the values of  to each 

scheme, as well the respective errors, shown in Tab. 

3. As can be observed, the best scheme was the [7] 

TVD one, with an error of 0.00%. 

 
Figure 38 : Mach Contours ([7]). 

 

Table 3 : Shock angle and respective percentage 

errors to the ramp problem (Laminar). 

 

Algorithm () Error (%) 

[4] 29.50 1.67 

[5] 30.40 1.33 

[6] 29.50 1.67 

[7] 30.00 0.00 

 

 

13.2.2 Turbulent results – [14] model 

 
Figure 39: Pressure Contours ([4]). 

Figures 39 to 42 show the pressure contours 

obtained by the [4], the [5], the [6], and the [7] 

schemes, respectively. The most severe pressure 

field was obtained by the [7] TVD scheme using the 

[14] model. Good symmetry and homogeneity 

properties are observed in all solutions. The shock 

wave is well captured. 

 
Figure 40 : Pressure Contours ([5]). 

 
Figure 41 : Pressure Contours ([6]). 

 
Figure 42 : Pressure Contours ([7]). 

 

 Figures 43 to 46 exhibit the Mach number 

contours obtained by the schemes of [4], of [5], of 
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[6], and of [7], respectively. The most intense Mach 

number fields are obtained by the [4, 6] schemes 

using the [14] model. However, it is important to 

note that these fields are more intense due to pre-

shock oscillations that occur close to the wall, which 

characterizes an unphysical solution. Hence, 

considering the most correct value to the Mach 

number field, the [7] TVD scheme presents the most 

severe field. 

 
Figure 43 : Mach Contours ([4]). 

 
Figure 44 : Mach Contours ([5]). 

 
Figure 45 : Mach Contours ([6]). 

 

 
Figure 46 : Mach Contours ([7]). 

 

 Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 

flow field. Using a transfer in Figures 39 to 42, 

considering the xy plane, it is possible to obtain the 

values of  to each scheme, as well the respective 

errors, shown in Tab. 4. As can be observed, the 

best scheme was the [4] TVD scheme, with an error 

of 0.00%. 

 

Table 4 : Shock angle and respective percentage 

errors to the ramp problem ([14]). 

 

Algorithm () Error (%) 

[4] 30.00 0.00 

[5] 29.90 0.33 

[6] 30.50 1.67 

[7] 31.00 3.33 

 

13.2.3 Turbulent results – [15] model 

 
Figure 47 : Pressure Contours ([4]). 
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 Figures 47 to 50 exhibit the pressure contours 

obtained by the [4], the [5], the [6], and the [7] 

schemes, respectively. The most severe pressure 

field is again obtained with the [7] scheme, using 

now the [15] model. All solutions present good 

symmetry and homogeneity properties. The shock 

wave is well captured.  

 
Figure 48 : Pressure Contours ([5]). 

 
Figure 49 : Pressure Contours ([6]). 

 
Figure 50 : Pressure Contours ([7]). 

 

 Figures 51 to 54 show the Mach number 

contours obtained by the schemes of [4], of [5], of 

[6], and of [7], respectively. The most intense Mach 

number fields are due to the [4] and the [6] TVD 

schemes. No pre-shock oscillations are observed 

with the [15] model, opposed to the behaviour 

observed with the [14] model. 

 
Figure 51 : Mach Contours ([4]). 

 
Figure 52 : Mach Contours ([5]). 

 
Figure 53 : Mach Contours ([6]). 

 

 Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 

flow field. Using a transfer in Figures 47 to 50, 

considering the xy plane, it is possible to obtain the 

values of  to each scheme, as well the respective 

errors, shown in Tab. 5. As can be observed, the [6] 

scheme is the best one to this case. 
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Figure 54 : Mach Contours ([7]). 

 

Table 5 : Shock angle and respective percentage 

errors to the ramp problem ([15]). 

 

Algorithm () Error (%) 

[4] 30.30 1.00 

[5] 30.60 2.00 

[6] 30.00 0.00 

[7] 31.00 3.33 

 

 

13.2.4 Comparison among wall pressure 

distributions, oblique shock angles and 

simulation data 

 
Figure 55 : Wall Pressure Distributions (Lam). 

 

 Figure 55 shows the laminar wall pressure 

distributions obtained by the [4-7] TVD schemes. 

These wall pressure distributions are compared with 

the inviscid solution, which is the true solution 

according to the boundary layer theory. As can be 

observed, the [7] TVD scheme presents the most 

intense pressure field. All solutions over-predict the 

pressure plateau at the ramp. 

 In Figure 56, the wall pressure distributions 

obtained by the all four schemes using the [14] 

model present the most intense pressure field 

generated again by the [7] scheme. Again, all 

solutions over-predict the pressure plateau at the 

ramp. 

 
Figure 56 : Wall Pressure Distributions ([14]). 

 Figure 57 shows the wall pressure distributions 

generated by the all four schemes using the [15] 

model. Again, the [7] scheme presents the most 

severe pressure field. The best pressure distribution, 

in accordance with the boundary layer theory, which 

is represented by the inviscid theory, is due to [4] 

and [6] TVD schemes. 

 
Figure 57 : Wall Pressure Distributions ([15]). 

 

 Figure 58 shows all wall pressure distributions 

obtained by the [4] TVD scheme, in all cases, 

laminar and turbulent. As can be observed, the best 

distribution, in relation to the boundary layer theory, 

occurred as the laminar and the [15] model were 

employed, whereas the most severe pressure 

distribution occurred as the [14] was used. 
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Figure 58 : Wall Pressure Distributions ([4]). 

 
Figure 59 : Wall Pressure Distributions ([5]). 

 
Figure 60 : Wall Pressure Distributions ([6]). 

 

Figure 59 exhibits the wall pressure distributions 

generated by the [5] TVD scheme to the three cases, 

laminar and using the two turbulence models, 

compared with the theory of boundary layer and the 

best solution was again obtained by the laminar 

solution, whereas the [14] model predicts the most 

severe field. Figure 60 presents the wall pressure 

distribution obtained by the [6] TVD scheme to the 

three studied cases. The [14] model predicts the 

most severe pressure field, whereas the laminar and 

the [15] solutions are closer to the theoretical result. 

Finally, Figure 61 presents better pressure 

distribution generated by the [7] TVD scheme in the 

laminar case, whereas the most intense pressure 

field was obtained by using the [14] model. 

 
Figure 61 : Wall Pressure Distributions ([7]). 

 

 Aiming a global comparison involving the shock 

angle of the oblique shock waves estimated by the 

schemes in these viscous simulations, Tab. 6 

exhibits the values calculated to these angles and 

respective errors. 

Table 6 : Shock angle obtained in the laminar and 

turbulent cases to the ramp problem. 

 

Laminar [4] [5] [6] [7]  

 () 29.50 30.40 29.50 30.00 

Error (%) 1.67 1.33 1.67 0.00 

[14] [4] [5] [6] [7] 

 () 30.00 29.90 30.50 31.00 

Error (%) 0.00 0.33 1.67 3.33 

[15] [4] [5] [6] [7] 

 () 30.30 30.60 30.00 31.00 

Error (%) 1.00 2.00 0.00 3.33 

 

As can be observed, the [7] scheme presented the 

best estimative in the laminar case, the [4] scheme 

in the turbulent case using the [14] model, whereas 
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the [6] scheme in the turbulent case using the [15] 

model. The global error was less than 3.5% to all 

schemes. As the most severe pressure fields are the 

most interesting results in terms of data to the 

project phase of airplanes and space vehicles, the 

solutions obtained with the [14] model, which in 

comparison with the laminar and the [15] model 

always presented the most severe field, are the 

intended results to an experienced aerodynamicist. 

Hence, the best value to be considered to the angle 

of the oblique shock wave, in terms of project 

analysis, is due to [4], to be, in general, a more 

conservative scheme in all three studied cases. 

 Table 7 presents the computational data of the 

numerical simulations in the inviscid case. All 

algorithms were implemented and tested in an 

implicit way and present converged results in the 

two problems. All schemes employed a CFL 

number of 1.5 in the nozzle problem, with the 

exception of the [6] scheme, which converged using 

a CFL number of 1.3. In the compression corner 

problem, all schemes converged using a CFL 

number of 4.3, with the exception again of the [6] 

scheme, which employed a CFL number of 3.2. The 

cheapest scheme is the [5] TVD scheme, whereas 

the most expensive is the [4] TVD scheme. The [4] 

TVD scheme is approximately 2.02% more 

expensive than the [5] TVD scheme, which 

represent a negligible difference. 

Table 7 : Numerical data of the inviscid implicit 

simulations. 

 

Nozzle Corner 

S
(1)

 CFL Iterations CFL Iterations Cost
(2)

 

[4] 1.5 4,000 4.3 100 0.0002823 

[5] 1.5 5,000 4.3 98 0.0002767 

[6] 1.3 4,895 3.2 125 0.0002803 

[7] 1.5 4,991 4.3 97 0.0002782 
(1): S = Scheme; (2): Measured in seconds/per cell/per iterations. 

 

 Table 8 shows the computational data of the 

numerical simulations in the viscous laminar and 

turbulent cases in the ramp problem. All schemes to 

the viscous laminar and turbulent cases used an 

explicit formulation to the simulations. As can be 

observed, the fastest scheme is due to [7] TVD 

algorithm in two of the three cases. 

 

Table 8 : Computational data of the explicit 

algorithms to the ramp viscous cases. 

 

Laminar [14] [15] 

S(1) CFL Iter. CFL Iter. CFL Iter. 

[4] 0.2 9,251 0.2 7,459 0.2 10,677 

[5] 0.3 4,395 0.3 4,095 0.3 4,440 

[6] 0.2 9,251 0.2 7,459 0.2 10,677 

[7] 0.3 4,212 0.3 3,904 0.3 4,475 

(1) S = Scheme. 

 

 Table 9 exhibits the computational costs of the 

numerical algorithms obtained in the viscous 

laminar and turbulent cases. The cheapest algorithm 

in the laminar case is due to [5] TVD, while the 

most expensive is due to [4] TVD. In the turbulent 

case, using the [14] model, the cheapest algorithm is 

again due to [5] TVD, while the most expensive is 

again due to [4] TVD. Finally, using the [15] model, 

the cheapest algorithm is again the [5] TVD scheme, 

whereas the most expensive is again the [4] TVD 

scheme. As conclusion, in general the [5] TVD 

scheme yields the cheapest one in terms of viscous 

laminar and turbulent simulations. 

Table 9 : Computational cost of the numerical 

algorithms to the ramp viscous laminar and 

turbulent cases. 

 

Computational Cost
(1)

 

Scheme Laminar [14] [15] 

[4] 0.0000495 0.0001287 0.0000615 

[5] 0.0000463 0.0001231 0.0000562 

[6] 0.0000476 0.0001274 0.0000603 

[7] 0.0000465 0.0001232 0.0000566 
(1): Measured in seconds/per cell/per iterations. 

 

 

14   Conclusions 
In the present work, the [4-7] schemes are 

implemented, on a finite volume context and using a 

structured spatial discretization, to solve the Euler 

and the laminar/turbulent Navier-Stokes equations 
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in the three-dimensional space. All four schemes are 

TVD high resolution flux difference splitting ones, 

based on the concept of Harten’s modified flux 

function. They are second order accurate in space. 

An implicit formulation is employed to solve the 

Euler equations in the inviscid problems. An 

approximate factorization in Linearized 

Nonconservative Implicit LNI form is employed by 

the flux difference splitting schemes. To solve the 

laminar/turbulent Navier-Stokes equations, an 

explicit formulation based on a time splitting 

procedure is employed. All schemes are first order 

accurate in time in their implicit and explicit 

versions. Turbulence is taken into account 

considering two algebraic models, namely: the [14-

15] ones. The algorithms are accelerated to the 

steady state solution using a spatially variable time 

step, which has demonstrated effective gains in 

terms of convergence rate ([18-19]). All four 

schemes are applied to the solution of the physical 

problems of the transonic flow along a convergent-

divergent nozzle and the supersonic flow along a 

compression corner in the inviscid case (Euler 

equations). To the laminar/turbulent viscous case, 

the supersonic flow along a ramp is solved. 
 The results have demonstrated that the most 

severe results are obtained with the [7] TVD high 

resolution scheme, whereas the [4] and the [6] 

schemes present more accurate results. In the 

inviscid case, it is possible to highlight that the [4] 

TVD scheme yields the best pressure distribution 

along the nozzle lower wall. In the compression 

corner, all schemes present good wall pressure 

distributions, slightly under-predicting the pressure 

plateau. Only the [6] scheme presents a wall 

pressure distribution under-predicted in relation to 

the other numerical schemes. The shock angle of the 

oblique shock wave that is formed at the 

compression corner is best estimated by the [6] 

TVD algorithm. The most expensive tested implicit 

scheme was due to [4] TVD scheme, whereas the 

cheapest was the [5] TVD scheme. The former is 

approximately 2.02% more expensive than the 

latter. 

 In the ramp viscous case, the laminar results 

present the [7] TVD scheme as yielding the best 

value to the shock angle at the ramp. The [14] 

model presents the [4] TVD scheme as yielding the 

best estimation, whereas in the [15] model, the [6] 

TVD scheme produces the best value to the shock 

angle. Considering the values estimated by the 

shock angle of the oblique shock wave, the [6] 

algorithm presents the best estimative to this 

parameter in two of the four cases – in the inviscid 

case and using the [15] turbulence model. 

Considering the nozzle lower wall pressure 

distribution, the [4] scheme predicts approximately 

this distribution and accurately the shock angle of 

the oblique shock wave, in the ramp problem, using 

the [14] model. Hence, in terms of accuracy, the [4] 

and the [5] algorithms are the most accurate among 

the tested schemes. As general conclusion in terms 

of viscous simulations, all algorithms present the 

most severe solution considering wall pressure 

distribution as using the [14] model. The [5] scheme 

was the cheapest considering laminar and turbulent 

cases, whereas the [4] scheme was the most 

expensive. 

 With these results, the main contributions of this 

work were accomplished, allowing that three-

dimensional simulations, solving the Euler and the 

laminar/turbulent Navier-Stokes equations, were 

performed, employing four different TVD high 

resolution algorithms. Good results were provided, 

as expected, mainly in the capture of shock waves, 

as occurred in the nozzle and compression corner 

problems, and in the accurate prediction of the 

properties of the oblique shock wave in the viscous 

cases, as occurred in the ramp problem. 
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