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Abstract: - In the present work, the Yee, Warming and Harten, the Harten, the Yee and Kutler, and the
Hughson and Beran schemes are implemented, on a finite volume context and using a structured spatial
discretization, to solve the Euler and the Navier-Stokes equations in three-dimensions. All four schemes are
TVD (“Total Variation Diminishing”) high resolution flux difference splitting ones, second order accurate. An
implicit formulation is employed to solve the Euler equations, whereas the Navier-Stokes equations are solved
by an explicit formulation. Turbulence is taken into account considering the algebraic models of Cebeci and
Smith and of Baldwin and Lomax. The physical problems of the transonic flow along a convergent-divergent
nozzle and the supersonic flow along a compression corner in the inviscid case are studied. In the viscous case,
the supersonic flow along a ramp is solved. The results have demonstrated that the most severe results are
obtained with the Hughson and Beran TVD high resolution scheme, whereas the Yee, Warming and Harten and
the Yee and Kutler schemes present more accurate results.
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1 Introduction problem and the U, -Ug projections over the matrix’s
Conventional non-upwind algorithms have been eigenvectors would be the jumps which occur
used extensively to solve a wide variety of problems betweep intermediate stages. _
([1-2]). Conventional algorithms are somewhat [4] implemented a high resolution second order
unreliable in the sense that for every different explicit method based on Harten’s ideas. The
problem (and sometimes, every different case in the method had the following properties: (a) the scheme
same class of problems) artificial dissipation terms was developed in conservation form to ensure that
must be specially tuned and judicially chosen for the limit was a weak solution; (b) the scheme
convergence. Also, complex problems with shocks satisfied a proper entropy inequality to ensure that
and steep compression and expansion gradients may the limit solution would have only physically
defy solution altogether. relevant discontinuities; and (c) the scheme was
Upwind schemes are in general more robust but designed such that the numerical dissipation
are also more involved in their derivation and produced highly accurate weak solutions. The
application. Some upwind schemes that have been method was applied to the solution of a quasi-one-
applied to the Euler equations are: [3-7]. Some dimensional nozzle problem and to the two-
comments about these methods are reported below: dimensional - shock reflection problem, yielding
[3] presented a work that emphasized that several good results. An implicit formulation was also
numerical schemes to the solution of the hyperbolic investigated to one- and two-dimensional cases.
conservation equations were based on exploring the [5] developed a class of new finite difference
information obtained in the solution of a sequence schemes, explicit and with second order spatial
of Riemann problems. It was verified that in the accuracy to the calcu_latlon of weak solutions qf the
existent schemes the major part of these information hyperbolic conservation laws. These schemes highly
was degraded and that only certain solution aspects non-linear were obtained by the application of a.flrst
were solved. It was demonstrated that the order .non-osmllato.ry scheme to an appropriated
information could be preserved by the construction modified flux functl_on. The so _derlved _second order
of a matrix with a certain “U property”. After the schemes reached high resolution, while preserved
construction of this matrix, its eigenvalues could be the robustness property of the original non-
considered as wave velocities of the Riemann oscillatory first order scheme.
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[6] presented a work which extended the [5]
scheme to a generalized coordinate system, in two-
dimensions. The method called “TVD scheme” by
the authors was tested to the physical problem of a
moving shock impinging a cylinder. The numerical
results were compared with the [8] scheme,
presenting good results.

[7] proposed an explicit, second order accurate in
space, TVD scheme to solve the Euler equations in
axis-symmetrical form, applied to the studies of the
supersonic flow around a sphere and the hypersonic
flow around a blunt body. The scheme was based on
the modified flux function approximation of [5] and
its extension from the two-dimensional space to the
axis-symmetrical treatment was developed. Results
were compared to the [8] algorithm’s solutions.
High resolution aspects, capability of shock
capturing and robustness properties of this TVD
scheme were investigated.

Traditionally, implicit numerical methods have
been praised for their improved stability and
condemned for their large arithmetic operation
counts ([9]). On the one hand, the slow convergence
rate of explicit methods become they so unattractive
to the solution of steady state problems due to the
large number of iterations required to convergence,
in spite of the reduced number of operation counts
per time step in comparison with their implicit
counterparts. Such problem is resulting from the
limited stability region which such methods are
subjected (the Courant condition). On the other
hand, implicit schemes guarantee a larger stability
region, which allows the use of CFL numbers above
1.0, and fast convergence to steady state conditions.
Undoubtedly, the most significant efficiency
achievement for multidimensional implicit methods
was the introduction of the Alternating Direction
Implicit (ADI) algorithms by [10-12] and fractional
step algorithms by [13]. ADI approximate
factorization methods consist in approximating the
Left Hand Side (LHS) of the numerical scheme by
the product of one-dimensional parcels, each one
associated with a different spatial coordinate
direction, which retract nearly the original implicit
operator. These methods have been largely applied
in the CFD community and, despite the fact of the
error of the approximate factorization, it allows the
use of large time steps, which results in significant
gains in terms of convergence rate in relation to
explicit methods.

There is a practical necessity in the aeronautical
industry and in other fields of the capability of
calculating separated turbulent compressible flows.
With the available numerical methods, researches
seem able to analyze several separated flows, three-
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dimensional in general, if an appropriated
turbulence model is employed. Simple methods as
the algebraic turbulence models of [14-15] supply
satisfactory results with low computational cost and
allow that the main features of the turbulent flow be
detected.

[16] performed a comparison between the [8, 17]
schemes implemented coupled with the [14-15]
models to accomplish turbulent flow simulations in
three-dimensions. The Navier-Stokes equations in
conservative and integral forms were solved,
employing a finite volume formulation and a
structured spatial discretization. The [8] scheme is a
predictor/corrector method which performs coupled
time and space discretizations, whereas the [17]
algorithm is a symmetrical scheme and its time
discretization is performed by a Runge-Kutta
method. Both schemes are second order accurate in
space and time and require artificial dissipation to
guarantee stability. The steady state problem of the
supersonic turbulent flow along a ramp was studied.
The results have demonstrated that both turbulence
models predicted appropriately the boundary layer
separation region formed at the compression corner,
reducing, however, its extension in relation to the
laminar solution, as expected.

In the present work, the [4-7] schemes are
implemented, on a finite volume context and using a
structured spatial discretization, to solve the Euler
and the laminar/turbulent Navier-Stokes equations
in the three-dimensional space. All four schemes are
TVD high resolution flux difference splitting ones,
based on the concept of Harten’s modified flux
function. They are second order accurate in space.
An implicit formulation is employed to solve the
Euler equations in the inviscid problems. An
approximate factorization in Linearized
Nonconservative Implicit LNI form is employed by
the flux difference splitting schemes. To solve the
laminar/turbulent  Navier-Stokes equations, an
explicit formulation based on a time splitting
procedure is employed. All schemes are first order
accurate in time in their implicit and explicit
versions. Turbulence is taken into account
considering two algebraic models, namely: the [14-
15] ones. The algorithms are accelerated to the
steady state solution using a spatially variable time
step, which has demonstrated effective gains in
terms of convergence rate ([18-19]). All four
schemes are applied to the solution of the physical
problems of the transonic flow along a convergent-
divergent nozzle and of the supersonic flow along a
compression corner in the inviscid case (Euler
equations). To the laminar/turbulent viscous case,
the supersonic flow along a ramp is solved. The
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results have demonstrated that the most severe
results are obtained with the [7] TVD high
resolution scheme, whereas the [4] and the [6]
algorithms present more accurate results.

The main contribution of this work to the CFD
(Computational Fluid Dynamics) community is the
extension of the TVD high resolution algorithms of
[4-7] to the three-dimensional space, following a
finite volume formulation, and their implementation
coupled with two different algebraic turbulence
models to simulate viscous turbulent flows, which
characterizes an original contribution in the field of
high resolution structured numerical algorithms. The
implicit implementation in three-dimensions of
these algorithms is also a meaningful contribution.

2 Navier-Stokes Equations

As the Euler equations can be obtained from the
Navier-Stokes ones by disregarding the viscous
vectors, only the formulation to the latter will be
presented. The Navier-Stokes equations in integral
conservative form, employing a finite volume
formulation and using a structured spatial
discretization, to three-dimensional simulations, can
be written as:

oQ/at+1/V [, V-PdV =0, 1)

where V is the cell volume, which corresponds to an
hexahedron in the three-dimensional space; Q is the
vector of conserved variables; and
P=(E,—E, )i +(F. —F,)]+(G, -G, )k is the
complete flux vector in Cartesian coordinates, with
the subscript “e” related to the inviscid contributions
or the Euler contributions and “v” related to the
viscous contributions. These components of the
complete flux vector, as well the vector of
conserved variables, are described below:

p pu pv
pu pu’ +p puv
Q=<pvy, Ec=9 puv ¢, Fo=<pvi+py,
pW puw pVW
e (e+ p)u (e+ p)v
pW
puw
G, =1 pvw ;, 2
pw* + p
(e+ p)w
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0 0
1 Txx 1 TYX
E=-— T F=— T
] ' ]
" Re " Re
sz Tyz
Tl T V+ T, W=, T U+ T VT, W=0,

G,=— Ty . (3)

7

T, U+ TZyV +1,W-(Q,

In these equations, the components of the viscous
stress tensor are defined as:

T = 2y + 1y )00/ 0= 2/3(u + 1y Nou/ax+0v/y + ow/cz),
Ty = (b 17 NOU/0y +0v/0x) (@)

T =y 117 Jou/az +w/ox),
T, = 2y + 1 )2y =23y, + 11y Nou/ox+ 0wy + wje); (5)

Ty :(“M +pT)(6V/52+8\N/8y),
Ta :Z(HM tHy )3\N/82—2/3(MM +iy X@U/5X+a\//6y+5W/6Z). (6)

The components of the conductive heat flux vector
are defined as follows:

A, =—Y(y /Prd +u, /Prd; )de, /ox,
qy = _Y(HM /Pl’d +HT/PrdT )aei /6y,
q, = —y(u, /Prd +p, /Prd; )oe /oz.  (7)

The quantities that appear above are described as: p
is the fluid density, u, v and w are the Cartesian
components of the flow velocity vector in the x, y
and z directions, respectively; e is the total energy; p
is the fluid static pressure; e; is the fluid internal
energy, defined as:

e =¢/p—05(u” +v2 +W?); (8)

the t’s represent the components of the viscous
stress tensor; Prd is the laminar Prandtl number,
which assumed a value of 0.72 in the present
simulations; Prdy is the turbulent Prandtl number,
which assumed a value of 0.9; the g’s represent the
components of the conductive heat flux; wy is the
fluid molecular viscosity; ur is the flow turbulent
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viscosity; y is the ratio of specific heats at constant
pressure and volume, respectively, equal to 1.4 to
the atmospheric air; and Re is the Reynolds number
of the viscous simulation, defined by:

Re = pUper per /HM . )
where Uger is a characteristic flow velocity and Iger
is a configuration characteristic length. The
molecular viscosity is estimated by the empiric
Sutherland formula:

y =bT¥?/(1+5/T), (10)
where T is the absolute temperature (K), b =
1.458x10° Kg/(m.s.K*?) and S = 110.4 K, to the
atmospheric air in the standard atmospheric
conditions ([20]).

The Navier-Stokes equations were dimensionless
in relation to the stagnation density, p., the critical
speed of sound, a., and the stagnation viscosity, /.,
for the nozzle problem, whereas in relation to the
freestream density, p,, the freestream speed of
sound, a,, and the freestream molecular viscosity,
I, Tor the compression corner and ramp problems.
To allow the solution of the matrix system of five
equations to five unknowns described by Eg. (1), it
is employed the state equation of perfect gases
presented below:

P :(y—l)[e—O.Sp(u2 +V2 W )]. (11)

The total enthalpy is determined by H = (e + p)/p.

3 Geometrical Characteristics of the

Spatial Discretization

Adopting in Equation (1) Q as a constant on a
computational cell and using a structured mesh
notation to the fluid and flow quantities, it is
possible to write:

aQi‘j‘k /at = _]7Ni,j,k ,[5 [(Ee B Ev)nx +(Fe B Fv)ny +(Ge _Gv)nz]i‘j‘k dSi,j,k :

ijk

(12)

A given computational cell in this notation is
composed by the following nodes: (i,j,k), (i+1,j,k),
(i+1,j+1,k), (i,j+1,k), (i,j,k+1), (i+1,j,k+1),
(i+1,j+1,k+1) and (i,j+1,k+1). Figure 1 shows a
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representation of the computational cell, which is a
hexahedron in three-dimensions.

(L k) (i+] j+1 k)
(LB (i LK
ikt (i+1 k)
(E3.K) L8
Figure 1 : Computational Cell.
The calculation of the volume of the

computational cells is based, in the more general
case, in the determination of the volume of a
deformed hexahedron in the three-dimensional
space. This volume is determined by the summation
of the wvolumes of the six tetrahedrons which
composes the given hexahedron. Figure 2 exhibits
the division of a hexahedron in its six tetrahedral
components, as well the nodes of the vertices which
define each tetrahedron.
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Figure 2 : Hexahedron and its Components.

The volume of a tetrahedron is given by the
calculation of the following determinant:

Xe  Yp Zp
v _ l Xa Yo Za (13)
PABC Xs Vo Zg '
Xe Ye Zc
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where Xp, Yp, Zp, Xa, YA, Za, X, Y8, Z8, Xc, Yc and zc
are Cartesian coordinates of the nodes which define
the tetrahedron represented in Fig. 3.

Figure 3 : Reference Tetrahedron.

The flux area of the hexahedron is calculated by
the sum of half areas defined by the vector external

products ‘éxﬁ‘ and ‘EXCT‘,Where a, 5, ¢ and
d are vectors formed by the nodes which define a
given flux surface, conform exhibited in Fig. 4. The
physical quantity O.SQ §X6‘+‘ CXJU determines

the flux area of each face, which is nothing more
than the area of a deformed rectangle.

bz

P -
|~ Sudace

e

Figure 4 : Flux Area (hexahedron).
The normal unit vector pointing outward at each
flux face is calculated taken into account the vector
external product A =a XB/‘ axb ‘ , as shown in

Fig. 5. An additional test is necessary to verify if
this unit vector is pointing inward or outward of the
hexahedron. This test is based on the following
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vector mixed product [(éxﬁ)/‘é XBJO F, where

f is the vector formed by one of the nodes of the

flux face under study and one node of the
hexahedron that be contained at the face
immediately opposed, and “e” represents the vector
inner product . The positive signal indicates that the
normal unit vector is pointing inward the
hexahedron, what imposes that it should be changed
by their opposed vector.

Figure 5 : Normal Unit Vector (Hexahedron).

4 Numerical Scheme of [4]

The [4] algorithm, second order accurate in space, is
specified by the determination of the numerical flux
vector at (i+%,j,k) interface. The implementation of
the other numerical flux wvectors at the other
interfaces is straightforward.

Following a finite volume formalism, which is
equivalent to a generalized system, the right and left
cell volumes, as well the interface volume,
necessary to coordinate change, are defined by:

Ve =Vigje Vo =Vij, and Vi, =05(V, +V, ).
(14)

i+1,jk

The metric terms to this generalized coordinate
system are defined as:

hx = S><_int/Vint ! hy :Sy_int/vint !

hz = Sz_in’[/Vint and hn = S/V (15)

int ?

where S, ;,=n,S, S =n,S, S, i,y =N,

are the Cartesian components of the flux area and S
is the flux area, calculated as described in section 3.

_int y_int
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The properties calculated at the flux interface are
obtained either by arithmetical average or by [3]
average. In this work, the [3] average was used:

Pint =V/PLPr »
uintz(uL+uR\/pR/pL) (1+ pR/pL)
Vint:(VL+VR\/pR/pL)/(1+\/pR/pL)

Wint Z(WL +WR\/pR/pL)/(1+\/pR/pL)1
Hint :(HL +Hg pR/pL )/(1+\/pR/p|_); a7)

aint = \/(y _1)|_H int O 5(umt +V|nt + Wlnt )J (18)

(16)

where a;y is the speed of sound at the flux interface.
The eigenvalues of the Euler equations, in the &
direction, are given by:

Ucont = u|nthx +V|nthy + Wlnthz ' 7\’ U cont mthn '
7\‘2 :7\‘3 :}\‘4 :Ucont’ (19)
}\’5 = Ucont + a'inthn ' (20)

The jumps of the conserved variables, necessary
to the construction of the [4] dissipation function,
are given by:

Ap :Vint(pR - PL)’ A(pu) :Vint[(pu)R

_(PU)L]’

A(PV) = Vint[(pV)R - (PV)L] ; (21)
A(pW) = Vint[(pW)R - (PW)L ]1
Ae=V, (e, —e). (22)

The o vectors, which are the jumps of the
characteristic variables, at the (i+%2,j,k) interface are
calculated by the following expressions:

{ai+1/2,j,k }: [Ril]m/ 2,jk {Am/ 2,j,k6}1

with:

(23)

{Ai+1/2,j,k6}:{Ap A(Pu) A(PV) A(PW) Ae}T’
defined by Egs. (21) and (22); (24)
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[ PR YRy Y: T O (R
'(( )/ |n}]5q ( 1)/aﬁ1 it Y 1)/a|2m int
[R'II: by Vi h, h,
hzuIn +thIn +hywlm hZ hX
,0'5(( )/ m))Sq -{fa ln] 05[( In)“m*h lml 05[( ﬁ])¢ +h/ ]
—0.5[ /a,mw,m+h /a,m] 05 /alm_
/athmt /amt
hy ; (29)
hy
05[ /a,mw,m+h /a,m] 05 /aInt
CI = uint + th + Wlnt ) (26)
d=u,.h, +v,mhy +w, h; (27)
hX:hX/hn, hyzhy/hn and h, =h,/h,. (28)
The Yee, Warming and Harten (1982)

dissipation function uses the right-eigenvector
matrix of the normal to the flux face Jacobian
matrix in generalized coordinates:

1 1 0
uint'hlxaint Uint th
[R]: Vint hlyamt Vint h;
Wint hzamt Wint hx
Hlnl_h ulntalnt_h Vint@int -h, Windint O'qu h;<W|nt +th|nI+hyu|nt
0 1
h:z Uint +hjxaint
hx Vit + hyaml : (29)
hy Wmt + hzalm
hmet + hxvmt t h umt |-llnt + hxulntamt + h Vlntamt + h Wmtamt

Two options to the v, entropy function,
responsible to guarantee only relevant physical
solutions, are implemented aiming an entropy
satisfying algorithm:

v =At A =Z, and vy, =Z7+0.25; (30)

or:

2]

) it 2,25,
Yi=los(zz+82))s,

it [2<5, Y
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where “I” varies from 1 to 5 (three-dimensional
space) and &; assuming values between 0.1 and 0.5,
being 0.2 the value recommended by [4]. In the
present studies, Eq. (30) was used to perform the
inviscid numerical experiments and Eq. (31) was
used to perform the viscous numerical experiments.

The g function at the (i+%,j,k) interface is

defined by:

g' =05(y, -7 k', (32)
with o' being the Ith component of the alpha vector
(Eq. 23).

The g numerical flux function, which is a limited
function to avoid the formation of new extrema in

the solution and is responsible to scheme second
order accuracy, is given by:

9:,1,k = signal, x I\/IAX[0.0; MINQ@Ll/Z,j,k‘*ail—llz,j,k xsignah)J,
(33)

where signal is equal to 1.0 if §,,,,;, >0.0and -

1.0 otherwise.

The 6 term, responsible to the artificial
compression, which enhances the resolution of the
scheme at discontinuities, is defined as follows:

[ I [ [ .
Oist/a,jk = %ias2, j,k‘/ qaimz, j,k‘ + ‘ai—llz,j,k‘)’ if

00, if

| [
| ai+1/2,j,k‘+‘ai—1/2,j,k‘¢0'0
0= .

| |
ai+1/2‘j‘k‘ + ‘ai—llz,j,k‘ =00

(34)

The B parameter at the (i+%,j,k) interface, which
introduces the artificial compression term in the
algorithm, is given by the following expression:

B, =1.0+,MAX (0}, ,0}.1 4 ), (35)
in which o, assumes the following values: w; = 0.25
(non-linear field), ®; = w3 = @, = 1.0 (linear field)
and s = 0.25 (non-linear field). The numerical
characteristic speed, ¢,, at the (i+%,),k) interface,
which is responsible to transport the numerical

information associated to the g numerical flux
function, is defined by:

0.0,

if o' 0.0

. (36
if o' =0.0 (36)
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The entropy function is redefined considering o,

and B,: Z, =v,+B,9,, and y, is recalculated

according to Eq. (30) or to Eq. (31). Finally, the [4]
dissipation function, to second order of spatial
accuracy, is constructed by the following matrix-
vector product:

{Dm }M/z,J,k = [R]i+1/2,j,k {(B(gi,j,k +gi+1,i,k)_‘l’a)/miyjyk }i+1/2‘j‘k '
@37)

The convective numerical flux vector to the
(i+%,),k) interface is described by:

+0.5D"

int [4] 1

(38)

FO, . =(EQh +FOh +GOh,

int int int

with:

EW =05(EN +E"), D =05(F" +F®©),

int int

G =05(G" +G("). (39)
The right-hand-side of the [4] scheme, necessaries
to the resolution of the implicit version of this

algorithm, is determined by:
RHS([4])1jx ==t jx Vi i (Figllz,j,k =Rl ik + Flox +

Fi,nj—l/2,k - Fi,nj,k+1/2 + Fi,nj,k—1/2>' (40)

To the viscous simulations, it was implemented
the explicit version. In this case, the time integration
is replaced by a time splitting method, first order
accurate, which divides the temporal integration in
three steps, each one associated with a different
spatial direction. Considering the initial step
associated with the & direction, one has:

AQj i« =

—At /Vi,j,k (Fizllz,j,k - Fifllz,j,k)’
Qi*,j,k :Qir,]j,k +AQi*,j,k; (41)

in the intermediate step, considering the n direction,
one has:

AQi*j,k = _Ati,j,k /Vi,j,k (Fifj+l/2,k - FiTj—l/Z,k )’
Qik =Qju +AQ (42)

and, in the final step, considering the ¢ direction,
one has:
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AQunﬂ = _Ati,j,k /Vi,j,k (Fi?,k+l/2 - Fi,,hjk,k—ll 2)

Qi = Qi +AQT (43)

The viscous vectors at the flux interface are
obtained by arithmetical average between the
primitive variables at the left and at the right states
of the flux interface, as also arithmetical average of
the primitive variable gradients, also considering the
left and the right states of the flux interface. The
gradients of the primitive variables present in the
viscous flux vectors are calculated employing the
Green Theorem which considers that the gradient of
a primitive variable is constant in the volume and
that the volume integral which defines this gradient
is replaced by a surface integral ([21]); For instance,

to ou/ox:

@_1jau 1
x V y

T =) 1
véde:\/iu(n odS):ViudSX ;VLLK[OIS(UiLk + “i,i—l,k)sxwzk +

O30+ Ui By, O Ui B #080uUa B, +

O'S(Uivj’k + uivjxkflbxi,j‘k—llz +O'5(uirjvk + uiljvk'*'lbxi,j,kﬂlz J
(44)

5 Numerical Scheme of [5]
The [5] algorithm, second order accurate in space,
follows the Egs. (14) to (29). The next step is the
definition of the entropy condition, which is defined
by Eg. (30), v;, and Eqg. (31).

The g function at the (i+%,jk) interface is

defined according to Eq. (32) and the g numerical
flux function is given by Eg. (33). The numerical

characteristic speed ¢, at the (i+%2,],k) interface is

defined according to Eg. (36).
The entropy function is redefined considering

¢, Z, =v,+¢,,and vy, is recalculated according

to Eq. (31). Finally, the [5] dissipation function, to
second order spatial accuracy, is constructed by the
following matrix-vector product:

{D[S] }i+1/2‘j’k = [R]Mlz,j,k {(gi,j,k 05k _\Va)/mi,j,k }i+l/2,j,k'
(45)

The convective numerical flux vector of the [5]
scheme is defined by:

0] —(EO U] 0] )
I:i+1/2,j,k - (Eint hx + I:int hy + Gint hz int + 0'5D[5] ! (46)
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with E{Y), F() and G determined by Eq. (39).

The right-hand-side of the [5] scheme, necessaries
to the resolution of the implicit version of this
algorithm, is defined by:

RHS((5])7jx = =At jx Vi (Figllz,j,k ~F ikt Flarax—
(48)

Fi,nj—l/Z,k + Fi?j,k+1/2 - Fi,nj,k—1/2)'

The explicit version of this algorithm to perform
the viscous simulations is described by Egs. (41) to
(43). The implementation of the viscous terms
follows the same procedure as described in section
4.

6 Numerical Scheme of [6]

The [6] algorithm, second order accurate in space,
follows Egs. (14) to (29). The next step consists in
determining the 6 function. This function is defined
in terms of the differences of the gradients of the
characteristic variables to take into account
discontinuities effects and is responsible to artificial
compression:

| |

Olir2,jk _ai—llz‘j,k‘

| I E—
0., = | |

ik T Ok T Qi ik

0.0,

(1 |

o f (ai+1/2,j‘k +0iy,jk )75 0.0
w1 I
if (U‘i+l/2,j,k + ai—l/Z,j,k): 0.0

(48)

The « function at the (i+%,j,k) interface is defined
as follows:

K :]/8(1+(’3| MAX(G:,j,k’e:+l,j,k))' (49)

The g numerical flux function is determined by:

gi'ijk = signal, x MAX [0.0; MIN Qa!ﬂ,z'jyk‘,oc!,l,m x signal, )J,
(50)

where signal, assumes value 1.0 if oc:ﬂ,z’j’k > 0.0

and -1.0 otherwise. The numerical characteristic
speed @, at the (i+%,j,k) interface is calculated by
the following expression:

M :{(gil+1’j‘k -9}, )/a,

0.0,

if a'#0.0

. (51
if o' =0.0 &1
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The y, entropy function at the (i+%2,j,k) interface is
defined by:

y, = (v, + )2 +0.25; (52)
with v defined according to Eg. (30). Finally, the
[6] dissipation function, to second order spatial

accuracy, is constructed by the following matrix-
vector product:

{D[e] }i+1/2,j,k :[R]Hl/z,j,k{('((gi,j,k + gi+1,j,k)_\|’a)/Ati,j,k }i+1/2,j,k'
(53)

The convective numerical flux vector of the [6]
scheme is defined by:

| | | | |
Fig-l)/Z,j,k :(E()hx +F{h, +Goh, )/im +0.5DM

int int int 6]

(54)

with E{Y, F() and G{) determined by Eg. (39).

The right-hand-side of the [6] scheme is defined by:

RHS([6])}' x == At 1 Vi i (Figllz,j,k R0k + Flsaak

- Fi,nj—llz,k + Fi,nj,k+1/2 - Fi,nj,k—llz)' (55)

The explicit version of this algorithm to perform
the viscous simulations is described by Egs. (41) to
(43). The implementation of the viscous terms
follows the same procedure as described in section
4,

7 Numerical Scheme of [7]

The [7] algorithm, second order accurate in space,
follows Egs. (14) to (29). The next step consists in
determining the g numerical flux function. To non-
linear fields (I = 1 and 5), it is possible to write:

| |
Qi jki-aojk

[ [
(xi+1/2,j,kai—1/2‘j,k‘ e
, ifla

|

I f i+1/2'k+ai—1/2'k)
- | | ) 0K 20.0.
Biji ity ok T %,k

00, if (Ot!u/z,jx +0(!-1/2,],k): 00

(56)
To linear fields (I = 2 to 4), it is possible to write:

gil,j,k =signal; x MAX lO'O;MINqa:—llz,j,k‘lagﬂlz,j,k xsignah)J,
(57)

where signal; is equals to 1.0 if o ;,,;, >0.0and -
1.0 otherwise. After that, Equations (30), v, term,
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and (31) are used and the o) term at the (i+%,j,k)
interface is defined by:

o, =05(y, —22). (58)

The @, numerical characteristic speed at the
(i+%2,],k) interface is defined by:

0 :{Cﬂ (gi|+1,j,k _gil,j,k)/alr

0.0,

if o' £0.0
. (59
if o' =0.0 (59)

The entropy function is redefined considering the
¢, term: Z, =v, +¢, and w, is recalculated

according to Eq. (31). The [7] dissipation function,
to second order accuracy in space, is constructed by
the following matrix-vector product:

{D[7] }i+l/2,j,k = [R]i+1/2,j,k {(G(gi,j,k +0ijk )_\V(x)/AtivJ'vk }i+1/2,j.k :
(60)

The convective numerical flux vector of the [7]
scheme is defined by:

| | | | |
5 5 = EOR, + FOR, + 6O, Wy + 05D,

(61)

with E{Y), F( and G{!) determined by Eq. (39).

The right-hand-side of the [7] scheme is defined by:

RHS([7D)k == At jx M jx (Flillz,j,k =Rk + Rl ok

- Fi,nj—llz,k + Fi,nj,k+1/2 - Fi,nj,k—llz)' (62)

The explicit version of this algorithm to perform
the viscous simulations is described by Egs. (41) to
(43). The implementation of the viscous terms
follows the same procedure as described in section
4.

8 Implicit Formulation

All implicit schemes implemented in this work used
backward Euler in time and LNI approximate
factorization to solve a three-diagonal system in
each direction.

To the flux difference splitting algorithms tested
in this work, a Linearized Nonconservative Implicit
(LNI) form is applied that, although the resulting
schemes loss the conservative property, preserve
their unconditionally TVD property. Moreover, the
LNl form is mainly useful to steady state
calculations, since the schemes are only
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conservative after the solution reaches steady state.
This LNI form to the solution of the studied TVD
implicit schemes was proposed by [22]. The LNI
form presents three stages as described below:

[l _Ati,j‘k‘]illlz,j,kAHllZ,j,k +Ati,j,k‘]itll2,j,kAi—1l2,j,k ]AQHK = RHSi,j,k ;
(63)

[I - Ati,j,k Ki_,j+1/2,kAi,j+1/2,k u Ati,j,k Ki)tj—llz,kAi,j—llz,k ]AQ.HJk = AQi*,j,k ;
(64)

[I - Ati,j,k Li_,j,k+1/ ZAi,j k2 T Ati,j,k L;r,j,k—ll ZAi,j,k—ll 2 ]Aanﬁ = AQ: Kk
(65)

where: RHS; ;i is defined by Eq. (40) or (47) or (55)
or (62) depending if the [4] or the [5] or the [6] or
[7] scheme is being solved, respectively; the
difference operators are defined as:

A.m,k() Oherise = O
()i,j,k _(')i—l,j,k
| L+ 2k ()i,j+1,k _(')i,j,k; (66)

O
()=

|J—1/2k() ()i,j,k _(')i,j—l,k'
()=
()=

()i,j,k+l _(')i,j,k '
()l,j,k - (')i,j,k—l; (67)

and the update of the conserved variable vector is
proceeded as follows:

|Jk+1/2

Ijk -1/2

anﬁ( =Q'j + AQirjﬁ( : (68)

This system of 5x5 block three-diagonal linear
equations is solved using LU decomposition and the
Thomas algorithm applied to systems of block
matrices.

The splitting matrices J*, J, K, K, L" and L are
defined as:

— R.diag(D; R,
3~ =R.diag(D; R}, K* =R diag(D; R:*;
(69)
K- =R diag(D; R;*, L* = R.diag(D; R;*,
L~ = R.diag(D; R:*, (70)
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where R, R, R; R;*, R* and R:" are defined by
Egs. (25) and (29) applied to each coordinate
direction; diag () represents a diagonal matrix, as
for instance:

_Df“*
D3
Dg = Dy
D"
i D;" |
Df -
Di
D; = Ds™
Di
i D" |
(71)
and the terms D are defined as:
D; = 0-5[Q(7‘|§ +7e )J—r (kla + YI&)]
D; =05[Q, +, )£ (X, +7, )
D =0.5[Q(, +vL )£ (A, +v1 )], (72)
with:
b, if [x|>8,
Qlx )= {0.5(x,2 vot)s, . if x|<s, @

defined according to Eq. (31); (73)
A, K'n and K'Q are the eigenvalues of the Euler

equations defined by Egs. (19) and (20) in each
coordinate direction;

oL - [ T I 5 W

00, (Ot )|+1/2 ik =00
(74)
(Y:]) _ [(gayi,jﬂ,k_(g;l):,j,k}/(a )| 12k i (“ ). ok * :
e 00, 0L!W)l J+1/2k
(75)
(Yl ) _ |:(glc.):,j,k+1_(gé):,j,k}/(a!:)i,j,kﬂlz’ i (ali)i,j,kmz ¢0.0;
i 00, if (O‘lc)i,j,sz =00
(76)

Issue 6, Volume 11, June 2012



WSEAS TRANSACTIONS on MATHEMATICS

. R | | |
(6:) , , = signatimax [o.o, |v||N[cm,2,,-,4(%)%,2’]*‘,

Sig“a'éGLl/z,j,k(Otfa)i,l,z,,-,k)Ji (77)
A\l )
(9, =sianal! max [o.o, MIN(G!VM,ZYk‘(aL)i’jmz’k‘,
SignalLG:,j*l/zyk(OLl])i,j—llz,k )J’ (78)
(01) . =signal! Max [0.0,MIN[ !, .15l )
9¢ i j.k = signal, 0 Oijk1r2/O¢ fi i ksl
Signaléchivk*l/z(alg)i,j,k—l/Z)J; (79)
o' =0.5Q' (k' ) to steady state simulations.  (80)
Finally, signall = 1.0if (ot} >0.0 and -1.0
- . . | — - ]
otherwise; signal; = 1.0 if (ocn )i,j+1/2,k >0.0 and -
1.0 otherwise; and signall = 1.0 if

(Ot'g)ivj'kmz > 0.0 and -1.0 otherwise.

This implicit formulation to the LHS of the [4],
of the [5], of the [6], and of the [7] schemes is first
order accurate in time and second in space due to
the presence of the numerical characteristic speed y
associated to the numerical flux function g’. In this
case, the solution accuracy in space is definitively of
second order because both LHS and RHS are also of
second order.

It is important to emphasize that as the right-
hand-side of the implicit flux difference splitting
schemes tested in this work presents steady state
solutions which depends of the time step, the use of
large time steps with the implicit schemes can affect
the steady solutions, as mentioned in [4]. This is an
initial  study with  implicit schemes and
improvements of the implementation of these
schemes with steady state solutions independent of
the time step is a goal to be aimed in future works
by this author.

9 Turbulence Models

9.1 Turbulence model of [14]

The problem of the turbulent simulation is in the
calculation of the Reynolds stress. Expressions
involving velocity fluctuations, originating from the
average process, represent six new unknowns.
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However, the number of equations keeps the same
and the system is not closed. The modeling function
is to develop approximations to these correlations.
To the calculation of the turbulent viscosity
according to the [14] model, the boundary layer is
divided in internal and external.

Initially, the () kinematic viscosity at wall and
the (zyw) shear stress at wall are calculated. After
that, the (6) boundary layer thickness, the ()
linear momentum thickness and the (Vtg,) boundary
layer tangential velocity are calculated. So, the (N)
normal distance from the wall to the studied cell is
calculated. The N* term is obtained from:

N* =\/@\/’txy,w/pw N/Vw’

where p, is the wall density. The van Driest
damping factor is calculated by:

(81)

Dzl_e(—WMHW/H/N), (82)

with A" =26 and p, is the wall molecular

viscosity. After that, the (dVt/dN) normal to the
wall gradient of the tangential velocity is calculated

and the internal turbulent viscosity is given by:

i, = Rep(kND)? dvt/dN , (83)

where « is the von Karman constant, which has the
value 0.4. The intermittent function of Klebanoff is
calculated to the external viscosity by:
6 *l
gKIeb(N):[1+5'5(N/8) ] : (84)
With it, the external turbulent viscosity is calculated
by:
Hr, =Re(0.0168)pVtg 8, Jyiep - (85)

Finally, the turbulent viscosity is chosen from the
internal and the external viscosities:

Hr =MIN(py, pe ).

9.2 Turbulence model of [15]

To the calculation of the turbulent viscosity
according to the [15] model, the boundary layer is
again divided in internal and external. In the internal
layer,

2

i =pl2 o] and 1, =«N{L-e™/% ). (s6)
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In the external layer,

MTe = pO(’Ccp I:WakeI:Kleb(N; Nmax /CKIeb) ’ (87)
with:

I:Wake = MIN[NanFn‘ax’CWkNmachif / Fmax]’

Frae =1/ [MAX (1, o] )| (@)
Hence, N, is the value of N where I ||

reached its maximum value and I is the Prandtl
mixture length. The constant values are: k=0.4,

a=0.0168, Ay =26, C, =16, Cyp =03
and C, =1. F,, is the intermittent function of
Klebanoff given by:

I:Kleb (N) = [1 + 5"'L_)(CKleb N / N max )6 ]71 ' (89)

|| is the magnitude of the vortex vector and U g

is the maximum velocity value in the boundary layer
case. To free shear layers,

U g :(\/u2 +V2+ W )max —(\/u2 +V2+ W )N:Nw . (90)

10  Spatially Variable Time Step

The idea of a spatially variable time step consists in
keeping constant a CFL number in the calculation
domain and to guarantee time steps appropriated to
each mesh region during the convergence process.
The spatially variable time step can be defined by:

_ CFL(%s),

At = ,
o QQ| + aji,j,k

where CFL is the Courant-Friedrichs-Lewis number
to method stability; (As)iijk is a characteristic

(91)

length of information transport; and Qq|+a)i ik is
the maximum characteristic speed of information
transport, where a is the speed of sound. The

characteristic length of information transport,
(As)i’j’k, can be determined by:
(As)i,j,k :[MIN(IMIN Cun )]i,j,k ' (92)
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where lyy is the minimum side length which forms
a computational cell and Cyy is the minimum
distance of baricenters among the computational cell
and its neighbors. The maximum characteristic
speed of information transport is defined by

(jq|+a)i'jyk,with q=vu? +v> +w* .

11 Initial and Boundary Conditions

11.1 Initial Condition

Stagnation values are used as initial condition to the
nozzle problem. Only at the exit boundary is
imposed a reduction of 1/3 to the density and to the
pressure to start the flow along the nozzle ([23]).
The vector of conserved variables is defined as:

(@) Domain except the nozzle exit:

Qi,j,k:{l 000 (Y+1)/[2Y(Y_1)]}T; (93)

(b) Nozzle exit:

Quu=0/3 0 0 0 (+1)[6v(y-DJ". (99)

To the compression corner and ramp problems,
values of freestream flow are adopted for all
properties as initial condition, in the whole
calculation domain ([17, 23]):

1
M_ cosO

Q. - M _ sinOcosy
MEN M sinesing |

o]
+
v(y-1) 2

where M., represents the freestream Mach number, 6
is the flow incidence angle upstream the
configuration under study and v is the angle in the
configuration longitudinal plane.

(95)

11.2 Boundary Conditions

Three types of boundary conditions are
implemented in this work: wall, entrance and exit.
They are implemented in special cells named “ghost
cells”, as referred in the CFD community.

(@) Wall condition - The Euler case requires the
flux tangency condition. On the context of finite
volumes, this imposition is done considering that the
tangent flow velocity component to the wall of the
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ghost cell be equal to the tangent flow velocity
component to the wall of the neighbour real cell. At
the same time, the normal flow velocity component
to the wall of the ghost cell should be equal to the
negative of the normal flow velocity component to
the wall of the neighbour real cell. [24] suggests that
these procedures lead to the following expressions
to the velocity components u, v and w of the ghost
cells:

Uy = (L=2nN Uy + (=201 )V, +(=20,0,)W,

real !

(96)
v, :(—ZnynX Wrear +(1—2nyny Woeai +(—2nynZ We...; (97)

Wy = (=200, Wy +(=20,0, WV, +(1=20,1, )W, (98)

real

In the viscous case, however, the velocity
components of the ghost cells are set equal to
corresponding values of the velocity components of
the real neighbour, with opposite signal. In other
words:

u,=-u vV, =—-V

o realr Vg and w, =-Ww

real real * (99)

The fluid pressure gradient in the direction normal
to the wall is equal to zero for the inviscid case and
also equalled to zero in the viscous case due to the
boundary layer theory. The temperature gradient is
equal to zero along the whole wall, according to the
condition of adiabatic wall, for both cases (viscous
and non-viscous). With these two conditions, a zero
order extrapolation is performed to the fluid
pressure and to the temperature. It is possible to
conclude that the fluid density will also be obtained
by zero order extrapolation. The energy conserved
variable is obtained from the state equation to a
perfect gas.

(b) Entrance condition:

(b.1) Subsonic flow: Four properties are specified
and one is extrapolated, based on analysis of
information  propagation along  characteristic
directions in the calculation domain ([23]). In other
words, four characteristic directions of information
propagation point inward the computational domain
and should be specified. Only the characteristic
direction associated to the “(Qnorma-@)” velocity
cannot be specified and should be determined from
the interior information of the calculation domain.
The u velocity component was the extrapolated
variable from the real neighbour volume to the
nozzle problem, whereas the pressure was the
extrapolated variable to the compression corner and
ramp problems. Density, pressure, and the v and w
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components of velocity had their values determined
by isentropic and geometrical relations in the nozzle
problem, whereas density and velocity components
had their values determined by the freestream flow
properties in the compression corner and ramp
problems. The total energy per unity fluid volume is
determined by the state equation of a perfect gas.

(b.2) Supersonic flow: All variables are fixed with
their freestream flow values.

(c) Exit condition:

(c.1) Subsonic flow: Four characteristic directions
of information propagation point outward the
computational domain and should be extrapolated
from interior information ([23]). The characteristic
direction associated to the “(Qnorma-@)” velocity
should be specified because it penetrates the
calculation domain. In this case, the ghost volume’s
pressure is specified by its freestream value. Density
and velocity components are extrapolated and the
total energy is obtained by the state equation of a
perfect gas.

(c.2) Supersonic flow: All variables are extrapolated
from the interior domain due to the fact that all five
characteristic directions of information propagation
of the Euler equations point outward the calculation
domain and, with it, nothing can be fixed.

12 Configurations of the Physical
Problems and Employed Meshes

The geometry of the convergent-divergent nozzle at
the xy plane is described in Fig. 6. The total length
of the nozzle is 0.38ft (0.116m) and the throat
height is equal to 0.090ft (0.027m). The throat is
located at 0.19ft (0.058m) from the entrance
boundary. The throat curvature ratio is equal to
0.090ft. The nozzle convergence angle is 22.33° and
the nozzle divergence angle is 1.21°. An exponential
stretching of 10% in both & and m directions was
used. An algebraic mesh of 61 points in the &
direction, 71 points in the n direction and 10 points
in the ¢ direction was generated, which corresponds
in finite volumes to 37,800 hexahedrons and 43,310
nodes. Its spanwise length is 0.10ft (0.0305m).
Figure 7 exhibits the mesh employed in the
simulations.
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L 0.38ft R

Figure 7 : Nozzle Mesh in Three-Dimensions.

The compression corner configuration at the xy
plane is described in Fig. 8. The corner inclination
angle is 10°. An algebraic mesh of 70 points in the &
direction, 50 points in the n direction and 10 points
in the ¢ direction was generated, which corresponds
in finite volumes to 30,429 hexahedrons and 35,000
nodes. Its spanwise length is 0.5m. Figure 9 exhibits
such mesh.

0 4m

10° J
h 1.0m b 1.0m

Figure 8 : Corner Configuration in the xy Plane.

Finally, the ramp configuration at the xy plane
is described in Fig. 10. The compression corner has
20° of inclination. Its spanwise length is 0.25m. The
mesh used in the simulations has 31,860
hexahedrons and 36,600 nodes to a structured
discretization of the calculation domain. This mesh
is equivalent, in finite differences, of being
composed of 61 points in the & direction, 60 points
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in the n direction and 10 points in the ¢ direction.
An exponential stretching of 10% in the n direction
was employed. Figure 11 shows such mesh. Table 1
presents a summary of the computational meshes.

0.24m

¥ 207

0.15m 0.12m 0.15m

Figure 10 : Ramp Configuration in the xy Plane.

Figure 11 : Ramp Mesh in Three-Dimensions.
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Table 1 : Computational data of the meshes.

Nozzle Corner Ramp
61x71x10 | 70x50x10 | 61x60x10
Cells 37,800 30,429 31,860
Nodes 43,310 35,000 36,600
13 Results

Tests were performed in a microcomputer with
processor AMD SEMPRON (tm) 2600+, 1.83GHz,
and 512 Mbytes of RAM memory. Converged
results occurred to 3 orders of reduction in the
maximum residual value. The configuration
upstream and the configuration longitudinal plane
angles were set equal to 0.0°. AIll pressure
distributions were determined at the plane
corresponding to k = KMAX/2, where “KMAX” is
the maximum number of points in the z direction,
and j = 1, corresponding to the configuration wall.

13.1 Inviscid
divergent nozzle
Stagnation flow was adopted as initial condition to
this problem, with only a small reduction of the
density and the pressure at the nozzle exit to
initialize the flow.

Figures 12 to 15 show the pressure contours
obtained by the [4], the [5], the [6], and the [7]
schemes, respectively. The [7] scheme presented the
most severe pressure field in relation to the other
schemes, representing a more conservative scheme
to this problem. Good symmetry characteristics are
observed in all solution.

results — Convergent-
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Figure 12 : Pressure Contours ([4]).
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Figure 15 : Pressure Contours ([7]).

Figures 16 to 19 present the Mach number
contours obtained by the schemes of [4], of [5], of
[6], and of [7], respectively. The solution generated
by the [6] scheme is the most intense, but there is
loss of symmetry in the Mach field, which damages
the solution. Disregarding this solution due to the
error in the description of the Mach field, the most
intense Mach number field is due to the [4] scheme.
Despite of the [6] solution, all other results present
good symmetry properties.
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Figure 19 : Mach Contours ([7]).
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Figure 20 exhibits the lower wall pressure
distributions along the convergent-divergent nozzle.
They are compared with the experimental results of
[25]. As can be observed, the [4] scheme presents
the best pressure distribution (closer to the
experimental results).

10 = Yee, Wanming and Harten (1982)
Harten (195 3)
C "y, — Yeeand Kutler (1985)
03 - — — — 2 Hughson and Beran (1991}
L | ] =on, Putmamand Re(1980)
0ef n
WL
g inf
% L
A U
ns:-
04f
L ] ] ]

LULILUSS [ - (10 LN [N R (. I 0rs 030 035
X

Figure 20 : Lower Wall Pressure Distributions.

13.2  Inviscid results — Compression corner
A freestream Mach number of 3.0, characterizing a
moderate supersonic flow regime, was adopted as
initial condition to this problem. The flow reaches
the compression corner, generating an oblique shock
wave along the corner.

Figures 21 to 24 exhibit the pressure contours
obtained by the schemes of [4], of [5], of [6], and of
[7], respectively. All solutions are clear, without
pressure oscillations, and all pressure fields are
equal in qualitative and quantitative terms.
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Figure 21 : Pressure Contours ([4]).

Figures 25 to 28 show the Mach number
contours obtained by the [4], the [5], the [6], and the
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[7] schemes, respectively. The most intense Mach
number field is obtained by the [6] algorithm. All
solutions are clear and without oscillations.
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Figure 23 : Pressure Contours ([6]).
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Figure 24 : Pressure Contours ([7]).

Figure 29 exhibits the wall pressure distributions
along the compression corner obtained by all
schemes. They are compared with the oblique shock
wave theory results. As can be observed, all TVD
schemes do not present oscillations at the
discontinuity. Only the [6] solution presents a
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pressure distribution slightly under-predicted in
relation to the other schemes. All schemes slightly
under-predict the shock plateau. Figure 30 shows
the same pressure distributions plotted using
symbols to identify how much cells are necessary to
capture the shock discontinuity. All schemes detect
the shock discontinuity using four cells, which is an
acceptable value to high resolution schemes.
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Figure 27 : Mach Contours ([6]).
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Figure 28 : Mach Contours ([7]).
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Figure 29 : Wall Pressure Distributions.
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Figure 30 : Wall Pressure Distributions.

One way to quantitatively verify if the solutions
generated by each scheme are satisfactory consists
in determining the shock angle of the oblique shock
wave, 3, measured in relation to the initial direction
of the flow field. [26] (pages 352 and 353) presents
a diagram with values of the shock angle, B, to
oblique shock waves. The value of this angle is
determined as function of the freestream Mach
number and of the deflection angle of the flow after
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the shock wave, ¢. To the compression corner
problem, ¢ = 10° (corner inclination angle) and the
freestream Mach number is 3.0, resulting from this
diagram a value to B equals to 27.5°. Using a
transfer in Figures 21 to 24, considering the xy
plane, it is possible to obtain the values of 3 to each
scheme, as well the respective errors, shown in Tab.
2. As can be observed, the best scheme was the [6]
one, with a percentage error of 0.00%.

Table 2 : Shock angle and respective percentage
errors to the corner problem.

Algorithm B(®) Error (%)
[4] 27.90 1.45
[5] 27.80 1.09
[6] 27.50 0.00
[7] 28.00 1.82

13.3  Viscous results — Ramp

The physical problem studied in the viscous laminar
and turbulent simulations is the flow along a ramp.
This problem is a supersonic flow hitting a ramp
with 20° of inclination. It generates a shock and an
expansion fan. The freestream Mach number
adopted as initial condition to this simulation was
5.0, characterizing a high supersonic flow. The
Reynolds number was estimated to be 4.031x10° at
a flight altitude of 20,000m and lger = 0.0437m,
based on the work of [20].

13.2.1 Laminar results
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Figure 31 : Pressure Contours ([4]).
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Figures 31 to 34 exhibit the pressure contours
obtained by the [4], the [5], the [6], and the [7]
schemes, respectively. The most severe pressure
field, which characterizes the most conservative
solution, is obtained by the [7] TVD scheme. Good
symmetry and homogeneity properties at the k
planes are observed in all solutions. The shock wave

is well captured.
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Figure 34 : Pressure Contours ([7]).

Figures 35 to 38 show the Mach number
contours obtained by the schemes of [4], of [5], of
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[6], and of [7], respectively. The Mach number
contours generated by the [7] TVD scheme is the
most intense. No regions of separation flow are
observed.

Figure 37: Mach Contours ([6]).

Again, one way to quantitatively verify if the
solutions generated by each scheme are satisfactory
consists in determining the shock angle of the
oblique shock wave, [, measured in relation to the
initial direction of the flow field. To the ramp
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problem, ¢ = 20° (ramp inclination angle) and the
freestream Mach number is 5.0, resulting from this
diagram a value to B equals to 30.0°. Using a
transfer in Figures 31 to 34, considering the xy
plane, it is possible to obtain the values of 3 to each
scheme, as well the respective errors, shown in Tab.
3. As can be observed, the best scheme was the [7]
TVD one, with an error of 0.00%.
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Figure 38 : Mach Contours ([7]).

Table 3 : Shock angle and respective percentage
errors to the ramp problem (Laminar).

Algorithm B(®) Error (%)
[4] 29.50 1.67
[5] 30.40 1.33
[6] 29.50 1.67
[7] 30.00 0.00

13.2.2 Turbulent results — [14] model
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Figure 39: Pressure Contours ([4]).
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Figures 39 to 42 show the pressure contours
obtained by the [4], the [5], the [6], and the [7]
schemes, respectively. The most severe pressure
field was obtained by the [7] TVD scheme using the
[14] model. Good symmetry and homogeneity
properties are observed in all solutions. The shock
wave is well captured.

.20
4.90
4.60
4.30
4.00
370
3.40
310
280
250
220
1.90
1.60
1.30
1.00

Figure 42 : Pressure Contours ([7]).

Figures 43 to 46 exhibit the Mach number
contours obtained by the schemes of [4], of [5], of
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[6], and of [7], respectively. The most intense Mach
number fields are obtained by the [4, 6] schemes
using the [14] model. However, it is important to
note that these fields are more intense due to pre-
shock oscillations that occur close to the wall, which
characterizes an unphysical solution. Hence,
considering the most correct value to the Mach
number field, the [7] TVD scheme presents the most
severe field.

Figure 44 : Mach Contours ([5]).
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Figure 45 : Mach Contours ([6]).
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Figure 46 : Mach Contours ([7]).

Again, it is possible to determine by each scheme
the shock angle of the oblique shock wave, B,
measured in relation to the initial direction of the
flow field. Using a transfer in Figures 39 to 42,
considering the xy plane, it is possible to obtain the
values of 3 to each scheme, as well the respective
errors, shown in Tab. 4. As can be observed, the
best scheme was the [4] TVD scheme, with an error
of 0.00%.

Table 4 : Shock angle and respective percentage
errors to the ramp problem ([14]).

Algorithm B(°) Error (%)
[4] 30.00 0.00
[5] 29.90 0.33
[6] 30.50 1.67
[7] 31.00 3.33

13.2.3 Turbulent results — [15] model
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Figure 47 : Pressure Contours ([4]).
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Figures 47 to 50 exhibit the pressure contours with the [15] model, opposed to the behaviour
obtained by the [4], the [5], the [6], and the [7] observed with the [14] model.
schemes, respectively. The most severe pressure
field is again obtained with the [7] scheme, using
now the [15] model. All solutions present good
symmetry and homogeneity properties. The shock
wave is well captured.
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Figure 53 : Mach Contours ([6]).

Again, it is possible to determine by each scheme
the shock angle of the oblique shock wave, f,

Figure 50 : Pressure Contours ([7]). measured in relation to the initial direction of the

flow field. Using a transfer in Figures 47 to 50,

Figures 51 to 54 show the Mach number considering the xy plane, it is possible to obtain the

contours obtained by the schemes of [4], of [5], of values of B to each scheme, as well the respective

[6], and of [7], respectively. The most intense Mach errors, shown in Tab. 5. As can be observed, the [6]
number fields are due to the [4] and the [6] TVD scheme is the best one to this case.

schemes. No pre-shock oscillations are observed
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Figure 54 : Mach Contours ([7]).

Table 5 : Shock angle and respective percentage
errors to the ramp problem ([15]).

Algorithm B(°) Error (%)
[4] 30.30 1.00
[5] 30.60 2.00
[6] 30.00 0.00
[7] 31.00 3.33
13.24 Comparison among wall pressure
distributions, oblique shock angles and
simulation data
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Figure 55 : Wall Pressure Distributions (Lam).

Figure 55 shows the laminar wall pressure
distributions obtained by the [4-7] TVD schemes.
These wall pressure distributions are compared with
the inviscid solution, which is the true solution
according to the boundary layer theory. As can be
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observed, the [7] TVD scheme presents the most
intense pressure field. All solutions over-predict the
pressure plateau at the ramp.

In Figure 56, the wall pressure distributions
obtained by the all four schemes using the [14]
model present the most intense pressure field
generated again by the [7] scheme. Again, all
solutions over-predict the pressure plateau at the
ramp.
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Figure 56 : Wall Pressure Distributions ([14]).

Figure 57 shows the wall pressure distributions
generated by the all four schemes using the [15]
model. Again, the [7] scheme presents the most
severe pressure field. The best pressure distribution,
in accordance with the boundary layer theory, which
is represented by the inviscid theory, is due to [4]
and [6] TVD schemes.

r [ Beiast 3
bl 1} :
F P NE
F fir [
60 £ i
£ ty ;
@ SN f II
] 1 NSO THEORY] !
S b - {- - |Vee, ffamir and Hijften|(1982) - BL
40 u FAFE
n' LLE L} .!.IJU LI . = -
= f -4 ve:%‘xmjems shm
=N sofi_= == |Hugh : an{l Beran ( ?91 -BL
2 P &
A i o,
1 e
T T T T T T T R

X
Figure 57 : Wall Pressure Distributions ([15]).

Figure 58 shows all wall pressure distributions
obtained by the [4] TVD scheme, in all cases,
laminar and turbulent. As can be observed, the best
distribution, in relation to the boundary layer theory,
occurred as the laminar and the [15] model were
employed, whereas the most severe pressure
distribution occurred as the [14] was used.
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Figure 58 : Wall Pressure Distributions ([4]).
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Figure 60 : Wall Pressure Distributions ([6]).

Figure 59 exhibits the wall pressure distributions
generated by the [5] TVD scheme to the three cases,
laminar and using the two turbulence models,
compared with the theory of boundary layer and the
best solution was again obtained by the laminar
solution, whereas the [14] model predicts the most
severe field. Figure 60 presents the wall pressure
distribution obtained by the [6] TVD scheme to the
three studied cases. The [14] model predicts the
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most severe pressure field, whereas the laminar and
the [15] solutions are closer to the theoretical result.
Finally, Figure 61 presents better pressure
distribution generated by the [7] TVD scheme in the
laminar case, whereas the most intense pressure
field was obtained by using the [14] model.
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Figure 61 : Wall Pressure Distributions ([7]).

TR

Aiming a global comparison involving the shock
angle of the oblique shock waves estimated by the
schemes in these viscous simulations, Tab. 6
exhibits the values calculated to these angles and
respective errors.

Table 6 : Shock angle obtained in the laminar and
turbulent cases to the ramp problem.

Laminar [4] [5] [6] [7]
B (°) 29.50 | 30.40 | 29.50 | 30.00
Error (%) 1.67 1.33 1.67 0.00
[14] [4] [5] [6] [7]
B (%) 30.00 | 29.90 | 30.50 | 31.00
Error (%) 0.00 0.33 1.67 3.33
[15] [4] [5] [6] [7]
B (°) 30.30 | 30.60 | 30.00 | 31.00
Error (%) 1.00 2.00 0.00 3.33

As can be observed, the [7] scheme presented the
best estimative in the laminar case, the [4] scheme
in the turbulent case using the [14] model, whereas
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the [6] scheme in the turbulent case using the [15]
model. The global error was less than 3.5% to all
schemes. As the most severe pressure fields are the
most interesting results in terms of data to the
project phase of airplanes and space vehicles, the
solutions obtained with the [14] model, which in
comparison with the laminar and the [15] model
always presented the most severe field, are the
intended results to an experienced aerodynamicist.
Hence, the best value to be considered to the angle
of the oblique shock wave, in terms of project
analysis, is due to [4], to be, in general, a more
conservative scheme in all three studied cases.

Table 7 presents the computational data of the
numerical simulations in the inviscid case. All
algorithms were implemented and tested in an
implicit way and present converged results in the
two problems. All schemes employed a CFL
number of 1.5 in the nozzle problem, with the
exception of the [6] scheme, which converged using
a CFL number of 1.3. In the compression corner
problem, all schemes converged using a CFL
number of 4.3, with the exception again of the [6]
scheme, which employed a CFL number of 3.2. The
cheapest scheme is the [5] TVD scheme, whereas
the most expensive is the [4] TVD scheme. The [4]
TVD scheme is approximately 2.02% more
expensive than the [5] TVD scheme, which
represent a negligible difference.

Table 7 : Numerical data of the inviscid implicit

simulations.
Nozzle Corner
S® | CFL | Iterations | CFL | Iterations | Cost®
[4] | 1.5 4,000 4.3 100 0.0002823
[5] | 1.5 | 5000 | 4.3 98 0.0002767
[6] | 1.3 4,895 3.2 125 0.0002803
[71 | 1.5 | 4991 | 43 97 0.0002782

®: 5 = Scheme; @: Measured in seconds/per cell/per iterations.

Table 8 shows the computational data of the
numerical simulations in the viscous laminar and
turbulent cases in the ramp problem. All schemes to
the viscous laminar and turbulent cases used an
explicit formulation to the simulations. As can be
observed, the fastest scheme is due to [7] TVD
algorithm in two of the three cases.
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Table 8 : Computational data of the explicit
algorithms to the ramp viscous cases.

Laminar [14] [15]
SW | CFL | Iter. | CFL | lter. | CFL | lter.
[4] | 02 | 9250 | 02 | 7450 | 0.2 | 10677
[5] | 0.3 4,395 0.3 4,095 0.3 4,440
[6] | 0.2 9,251 0.2 7,459 0.2 10,677
[7] | 03 4,212 0.3 3,904 0.3 4,475

D 5 = Scheme.

Table 9 exhibits the computational costs of the
numerical algorithms obtained in the viscous
laminar and turbulent cases. The cheapest algorithm
in the laminar case is due to [5] TVD, while the
most expensive is due to [4] TVD. In the turbulent
case, using the [14] model, the cheapest algorithm is
again due to [5] TVD, while the most expensive is
again due to [4] TVD. Finally, using the [15] model,
the cheapest algorithm is again the [5] TVD scheme,
whereas the most expensive is again the [4] TVD
scheme. As conclusion, in general the [5] TVD
scheme vyields the cheapest one in terms of viscous
laminar and turbulent simulations.

Table 9 : Computational cost of the numerical
algorithms to the ramp viscous laminar and
turbulent cases.

Computational Cost®
Scheme Laminar [14] [15]
[4] 0.0000495 | 0.0001287 | 0.0000615
[5] 0.0000463 | 0.0001231 | 0.0000562
[6] 0.0000476 | 0.0001274 | 0.0000603
[7] 0.0000465 | 0.0001232 | 0.0000566

@: Measured in seconds/per cell/per iterations.

14 Conclusions

In the present work, the [4-7] schemes are
implemented, on a finite volume context and using a
structured spatial discretization, to solve the Euler
and the laminar/turbulent Navier-Stokes equations
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in the three-dimensional space. All four schemes are
TVD high resolution flux difference splitting ones,
based on the concept of Harten’s modified flux
function. They are second order accurate in space.
An implicit formulation is employed to solve the
Euler equations in the inviscid problems. An
approximate factorization in Linearized
Nonconservative Implicit LNI form is employed by
the flux difference splitting schemes. To solve the
laminar/turbulent  Navier-Stokes equations, an
explicit formulation based on a time splitting
procedure is employed. All schemes are first order
accurate in time in their implicit and explicit
versions. Turbulence is taken into account
considering two algebraic models, namely: the [14-
15] ones. The algorithms are accelerated to the
steady state solution using a spatially variable time
step, which has demonstrated effective gains in
terms of convergence rate ([18-19]). All four
schemes are applied to the solution of the physical
problems of the transonic flow along a convergent-
divergent nozzle and the supersonic flow along a
compression corner in the inviscid case (Euler
equations). To the laminar/turbulent viscous case,
the supersonic flow along a ramp is solved.

The results have demonstrated that the most
severe results are obtained with the [7] TVD high
resolution scheme, whereas the [4] and the [6]
schemes present more accurate results. In the
inviscid case, it is possible to highlight that the [4]
TVD scheme yields the best pressure distribution
along the nozzle lower wall. In the compression
corner, all schemes present good wall pressure
distributions, slightly under-predicting the pressure
plateau. Only the [6] scheme presents a wall
pressure distribution under-predicted in relation to
the other numerical schemes. The shock angle of the
obliqgue shock wave that is formed at the
compression corner is best estimated by the [6]
TVD algorithm. The most expensive tested implicit
scheme was due to [4] TVD scheme, whereas the
cheapest was the [5] TVD scheme. The former is
approximately 2.02% more expensive than the
latter.

In the ramp viscous case, the laminar results
present the [7] TVD scheme as yielding the best
value to the shock angle at the ramp. The [14]
model presents the [4] TVD scheme as yielding the
best estimation, whereas in the [15] model, the [6]
TVD scheme produces the best value to the shock
angle. Considering the values estimated by the
shock angle of the oblique shock wave, the [6]
algorithm presents the best estimative to this
parameter in two of the four cases — in the inviscid
case and using the [15] turbulence model.
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Considering the nozzle lower wall pressure
distribution, the [4] scheme predicts approximately
this distribution and accurately the shock angle of
the oblique shock wave, in the ramp problem, using
the [14] model. Hence, in terms of accuracy, the [4]
and the [5] algorithms are the most accurate among
the tested schemes. As general conclusion in terms
of viscous simulations, all algorithms present the
most severe solution considering wall pressure
distribution as using the [14] model. The [5] scheme
was the cheapest considering laminar and turbulent
cases, whereas the [4] scheme was the most
expensive.

With these results, the main contributions of this
work were accomplished, allowing that three-
dimensional simulations, solving the Euler and the
laminar/turbulent Navier-Stokes equations, were
performed, employing four different TVD high
resolution algorithms. Good results were provided,
as expected, mainly in the capture of shock waves,
as occurred in the nozzle and compression corner
problems, and in the accurate prediction of the
properties of the oblique shock wave in the viscous
cases, as occurred in the ramp problem.
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