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Abstract: In this paper, using graph theory and functional analysis approach, we study the Riesz basis property and
the stabilization of general networks of 1-D wave equations. Firstly, we derive the vector form of the model under
consideration and then discuss the controllers design. We prove that the controlled network is a Riesz system under
certain conditions and hence the spectrum determined growth assumption holds. Further we give some necessary
and sufficient conditions for the asymptotic stability and the non-stability of the controlled network by spectral
conditions. Finally, we apply the obtained results to two networks of special shapes, and analyze their stability by
the “irrational dependence”.
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1 Introduction
In the latest decades, the partial differential equa-
tions on metric graph have always been an attractive
topic in the field of engineering control and mathe-
matical control, involving controllability, observabili-
ty and stabilization ([1, 2, 3, 4, 5, 6, 7, 8, 9] and [10]
as well as the references therein). Also, S. Nicaise
and J. Valein in [11] investigated the stabilization of
the network of 1-D the wave equations with time de-
lay, in which the wave network is assumed that the
set of Dirichlet boundary points, D, is not empty. J.
Valein and E. Zuazua in [12] considered the stabi-
lization of a planar network of strings with a damp-
ing term on one boundary vertex v1 and the other
boundary vertices are fixed. They use observability
estimate to analyze the stability of the damped net-
work. We observed that the networks discussed are
simple ones and the method used in the papers men-
tioned above seems invalid for the complex networks
that have parallel edges and self-loop or for the wave
equation with variable coefficients. Besides the ap-
proach used in [11] and [12], the Riesz basis approach,
as one of the powerful tool in the control theory of
distributed parameter system, was also used success-
fully in study of vibration control of the flexible sys-
tem ([13, 14, 15, 16, 17, 18, 19, 20] and the refer-
ences therein). According to [14], if a system is Riesz
one, then the system satisfies the spectrum determined
growth condition, and hence one can get stability of

the system via the spectral distribution. However, for
most practice models, after small perturbation, they
do not have a Riesz basis property. So G. Q. Xu, Z.
J. Han and S. P. Yung in [17] and [20] extended the
Riesz basis property to the Riesz basis with parenthe-
ses and proved that the system satisfies the spectrum
determined growth assumption under certain assump-
tion on spectral distribution. The advantage of Riesz
basis approach is that it can be used in analysis of
any system although its verification is very difficult
in practice model.

In this paper, we mainly study the stabilization
problem of general complex network of 1-d wave e-
quations, which might contain circuits and parallel
edges. The wave network under consideration is as-
sumed of continuous type. Our strategy is the veloci-
ty feedback controllers on nodes and boundary of the
network. With suitable choice of the feedback con-
trollers our aim is to stabilize the network. Howev-
er, from earlier research for example [4], [5], [11],
[12], [13], [18], we found that stability analysis of the
closed loop system is a difficult task. Therefore, the
second aim of our research is to find a manner that can
be coded by computer language and then use comput-
er to analyze stability of the closed loop system in-
cluding design of controllers.

The main result of the present paper is that the 1-
D wave network system with appropriate vertex con-
trollers is a Riesz system under certain conditions,

WSEAS TRANSACTIONS on MATHEMATICS Dongyi Liu, Genqi Xu

E-ISSN: 2224-2880 418 Issue 5, Volume 11, May 2012



here we mainly give these conditions (see formula
(26)), so it satisfies the spectrum determined growth
assumption (Theorem 8). Thus the asymptotical sta-
bility is equivalent to the non-existence of purely
imaginary eigenvalues. Consequently, the criterion-
s for the asymptotical stability of the networks, The-
orem 16, Corollary 17, Theorem 21, and the criteri-
on for the non-stability of the networks, Theorem 22
are derived. Note that our aim is to find a micropro-
grammable analysis process, so the results are given
by analytic forms.

The rest is organized as follows. In section 2,
we use the graph theory to formulate the connected
network and write the 1-D wave network of continu-
ous type into an abstract differential equation in Cn.
Based on the energy function, we design the feedback
controllers for the system so that its energy decays, in-
here we discuss two modes of controllers according to
different type networks. In section 3, we discuss Riesz
basis property of the system by asymptotical analy-
sis, in which the conditions ensuring the closed loop
system is Riesz one are explicitly given. In section
4, we analyze the stability of the controlled network,
and give some sufficient and necessary conditions for
the asymptotical stability. In section 5, as application
we study two examples. Finally, we give some com-
plementary results about the graph theory in the ap-
pendix.

2 The general wave network and the
controller design

Usually, a network can be regarded as a graph, we
shall identify the graph with the network in this pa-
per. To formulate the wave network, we at first list
some fundamental concepts. Some related results are
presented in appendix. For more details, we refer to
[21].

2.1 Basic notions in graph theory

Let G = (V,E) be a connected planar graph with
the vertex set V = {p1, p2, . . . , pm} and the edge
set E = {ϵ1, ϵ2, . . . , ϵn}. Suppose that the length of
edge ϵi is ℓi and ϵi is incident with vertices pji and
pki . A continuous function πi : [0, ℓi] 7→ ϵi satis-
fying πi(s) ∈ ϵi, s ∈ [0, ℓi] with πi(0) = pji and
πi(ℓi) = pki , is called the parameterized mapping of
ϵi. Obviously, if every edge of G has finite length ℓj ,
then it can be parameterized, and hence G becomes
a metric graph. If every edge of G is signed a direc-
tion that coincides with the parameter increasing, G
become a digraph. Thus, the vertices pji and pki are
called the tail and the head of ϵi respectively. An edge

with the head and the tail at the same vertex is called
a loop (or self-loop), and an edge with distinct end-
s is called a link. Two or more links with the same
pair of ends are called parallel edges. A simple graph
is one without loops and parallel edges. A sequence
consisting of the different vertices and edges of G al-
ternatively,

p1, ϵ1, p2, ϵ2, · · · , pi, ϵi, pi+1, · · · , pk,

is denoted by P (p1, pk), if the ends of edge ϵi are the
vertices pi and pi+1 ( 1 ≤ i ≤ k − 1), then P (p1, pk)
is called a path from p1 to pk. If p1 and pk are the
same vertex, then P (p1, pk) is called a circuit.

In this paper, we always suppose that G = (V,E)
is a connected planar metric digraph without loops.
Set IE = {1, 2, . . . , n} and IV = {1, 2, . . . ,m}. The
following three sets

IE(pj) = {k ∈ IE |ϵk is incident with pj , ϵk ∈ E},

I +
E (pj) =

{
k ∈ IE

∣∣∣∣ pj is the starting point (tail)
of the edge ϵk, ϵk ∈ E

}
and

I −
E (pj) =

{
k ∈ IE

∣∣∣∣ pj is the final point (head)
of the edge ϵk, ϵk ∈ E

}
are called the incident index set, the outgoing inci-
dent index set and the incoming incident index set of
the vertex pj , respectively. The notations deg(pj) =
#IE(pj), deg+(pj) = #I+

E (pj) and deg−(pj) =

#I−
E (pj) represent the degree, out-degree and in-

degree of a vertex pj of G, respectively, where #Γ
represents the number of elements in Γ. The set
Int(G) = {pj ∈ V | deg(pj) > 1} is called the
interior vertex (or node) set of G and the set ∂G =
{pj ∈ V | deg(pj) = 1} is called the boundary of G.

Definition 1. The matrices Ψ+ = (ψ+
i,j)m×n and

Ψ− = (ψ−
i,j)m×n, defined by

ψ+
i,j =

{
1, if πj(0) = pi,
0, otherwise

and

ψ−
i,j =

{
1, if πj(ℓj) = pi,
0, otherwise,

are called the outgoing incidence matrix and the in-
coming incidence matrix, respectively. The incidence
matrix is defined by Ψ = Ψ+ −Ψ−.

Note that Ψ+ and Ψ− have exactly one nonzero
entry in each column and Ψ has exactly two nonzero
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entries in each column, −1 and 1, this is because each
edge has exactly one tail and head. Thus,

Ψ+ =
(
ej+1

, . . . , ej+k
, . . . , ej+n

)
m×n

(1)

and

Ψ− =
(
ej−1

, . . . , ej−k
, . . . , ej−n

)
m×n

, (2)

where j+k , j
−
k ∈ {1, 2, . . . ,m}, k = 1, 2, . . . , n, and

ej+k
and ej−k are the j+k -th and the j−k -th column vector

of the identity matrix of orderm respectively. The sets

J +
Ψ = {j+1 , . . . , j

+
n } and J −

Ψ = {j−1 , . . . , j
−
n }, (3)

are called the outgoing incident index set and incom-
ing incident index set respectively.

2.2 Description of 1-D wave network

For convenience, we denote G =
(∪n

j=1 ϵj

)∪
V .

Let y(z, t) be a function defined on G × [0,+∞)
([22]), where z ∈ G stands for position, t ∈
[0,∞) is time variable. We denote by yj(x, t) the
parametrization realization of y(z, t) on j-th edge,
that is, yj(x, t) = y(z, t)|z∈ϵj = y(πj(x), t). If for
each j ∈ IE , yj(x, t) satisfies the wave equation

Tjyj,xx(x, t) = ρjyj,tt(x, t), x ∈ (0, ℓj), (4)

where Tj > 0 and ρj > 0, then we say that y(z, t)
satisfies the wave equation on G, briefly, G is an 1-D
wave network.

Remark 2. If ℓj ̸= 1, we let the change of variable
x = x̃ℓj and denote yj(x̃ℓj , t) by ỹj(x̃, t), thus,

T̃j ỹj,x̃x̃(x̃, t) = ρ̃j ỹj,tt(x̃, t), 0 < x̃ < 1, t > 0,

where ρ̃j = ℓjρj and T̃j = Tj/ℓj . So, when we con-
sider the wave networks, without loss of generality we
can assume that every edge of G has length 1. In this
case, we call G is a normalized wave network.

Let D = {p ∈ V |y(p, t) = 0} and ∂GD = ∂G ∩
D. Sets D and ∂GD are called the Dirichlet set and
the Dirichlet boundary set respectively. Thus, we say
y(z, t) satisfies Dirichlet conditions on D, sometimes
also say the network is fixed on D. The set JD =
{j ∈ IV |pj ∈ D} is called the Dirichlet index set. A
subset ∂GN of ∂G is called the Neumann boundary if
the parameterized function yj(x, t) satisfy

∂GN =

{
p ∈ ∂G

∣∣∣∣∂yj(p, t)∂ν
= f(p, t), j ∈ IE(p)

}

where f(p, t) is called an exterior force acting on p,
∂yj(p, t)

∂ν
is outward normal derivative defined by

∂yj(p, t)

∂ν
=


∂yj(1, t)

∂x
, if j ∈ I−

E (p),

−∂yj(0, t)
∂x

, if j ∈ I+
E (p).

If for some p ∈ ∂G,
∂yj(p, t)

∂ν
= 0, then p is called a

free boundary point. The set

N =

{
p ∈ ∂G

∣∣∣∣∂yj(p, t)∂ν
= 0, j ∈ IE(p)

}
is called Neumann free boundary set, or free boundary
for short.

Definition 3. Let y(z, t) be a function on G ×
[0,+∞). For each j ∈ IE , yj(x, t), satisfies the wave
equation

ρjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1). (5)

If y(z, t) and yj(x, t) satisfy the following conditions:

1 Boundary conditions: ∀p ∈ D,{
yj(1, t) = 0, if j ∈ I −

E (p)
yi(0, t) = 0, if i ∈ I+

E (p),
(6)

and ∀p ∈ ∂GN ,{
yj,x(1, t) = f(p, t), if j ∈ I −

E (p),

yj,x(0, t) = f(p, t), if j ∈ I+
E (p);

(7)

2 Geometrical continuity conditions at nodes: ∀p ∈
Int(G) \ D,

yj(1, t) = y(p, t) = yi(0, t), (8)

where j ∈ I −
E (p), i ∈ I+

E (p);

3 Dynamic condition at vertices: ∀p ∈ Int(G) \ D,∑
j∈I−

E (p)

Tjyj,x(1, t)−
∑

k∈I+
E (p)

Tkyk,x(0, t)

= f(p, t), (9)

where f(p, t) represents an exterior force acting
on p, which takes the different function with vary-
ing of p.

Then G is said to be a continuous-type wave net-
work, y(z, t) is said to satisfy the mixed (Dirichlet-
Neumann, or, D-N) boundary conditions.
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From the above definition, if p ∈ D, the network
is fixed at p, which is called the Dirichlet point; if
p ∈ N , the network is free at p; if p ∈ ∂GN \N , there
is a damping term located on the vertex p. In (9), if for
some p ∈ Int(G) \ D, f(p, t) = 0, then the network
G satisfies the Kirchhoff flow continuous condition at
p. Therefore, the motion of the networkG with mixed
boundary conditions is completely governed by (5)–
(9).

For convenience, we reformulate the equations on
the network G in the vector form. For this, we define
a subspace of L2

loc([0,+∞);Cm) by

L2
D([0,+∞);Cm) ={
(w1(t), . . . , wm(t))T

∣∣∣∣ wj ∈ L2
loc([0,+∞);C),

and wj(t) = 0, if pj ∈ D

}
and a subspace of Cm by

D = { (ξ1, ξ2, . . . , ξm)T ∈ Cm | ξj = 0, if pj ∈ D }.

Let r = dim(D), then D ∼= Cr. Let PD be the orthog-
onal projection from Cm to Cr, whose matrix repre-
sentation is also denoted by PD, that is,

PD = (ej1 , ej2 , . . . , ejr)
T, pjk ̸∈ D, (10)

where the vector ejk is the jk-th column of the identity
matrix Im, jk ∈ {1, 2, . . . ,m}, k = 1, 2, . . . , r. We
call the set JP = {j1, j2, . . . , jr} the projection index
set, or, the non-Dirichlet index set.

Let

Y (x, t) =

y1(x, t)...
yn(x, t)

 and y(v, t) =

y(p1, t)
...

y(pm, t)

 ,

where v = (p1, p2, . . . , pm)T, Y (x, t) and y(v, t) are
said to be the vectorization of y(z, t). Thus, equations
(5)–(9) can be rewritten into the following vector form
TYxx(x, t) =MYtt(x, t), x ∈ (0, 1), t > 0,
Y (0, t) = (Ψ+)Ty(v, t), Y (1, t) = (Ψ−)Ty(v, t),
PD [Ψ−TYx(1, t)−Ψ+TYx(0, t)] = F (t),
Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x),

(11)
where y(v, t) ∈ L2

D([0,+∞);Cm) for vertex vec-
tor v; F (t) = (f(pj1 , t), . . . , f(pjr , t))

T is the vertex
force function; Y0 and Y1 are two initial state vector
functions satisfy conditions Y0(0) = (Ψ+)Ty(v, 0)
and Y0(1) = (Ψ−)Ty(v, 0).

2.3 Feedback controller design

In this subsection we consider the design problem of
controllers. Here we mainly choose the feedback con-
trol law to stabilize the network according the follow-
ing two cases.

2.3.1 Case I: D ̸= ∅.

We define the energy function of the network by

E (t) =
1

2

∫ 1

0
⟨MYt(x, t), Yt(x, t)⟩Cndx

+
1

2

∫ 1

0
⟨TYx(x, t), Yx(x, t)⟩Cndx,

where ⟨·, ·⟩Cn represents the Euclidean inner product
in Cn. Without causing confusion, the subscript Cn

will be omitted below. Using the differential equation
in (11) and integration by parts arrives at

dE (t)

dt
=

1

2
⟨TYx(1, t), Yt(1, t)⟩

−1

2
⟨TYx(0, t), Yt(0, t)⟩

+
1

2
(⟨Yt(1, t), TYx(1, t)⟩

−1

2
⟨Yt(0, t), TYx(0, t)⟩.

So, from the continuity condition

Y(0, t)=(Ψ+)Ty(v, t),Y(1, t)=(Ψ−)Ty(v, t) (12)

and the dynamical condition in (11), it is reduced that

dE (t)

dt
= ℜ (⟨F (t), PDyt(v, t) ⟩Cr)

where ⟨·, ·⟩Cr represents the Euclidean inner produc-
t in Cr. Thus, we take the feedback control law as
follows:

F (t) = −βPDyt(v, t) (13)

where β = diag{β1, . . . , βr} with βk ≥ 0, k =
1, 2, . . . , r. If for some k, βk = 0, it means that there
is no control at the corresponding vertex. Under this
feedback control law, we have

dE (t)

dt
= −⟨βPDyt(v, t), PDyt(v, t)⟩ ≤ 0. (14)

2.3.2 Case II: D = ∅.

If the network has no Dirichlet points, then D = ∅,
r = m and PD = Im. We define the energy function
of the network by

E (t) =
1

2

∫ 1

0
⟨MYt(x, t), Yt(x, t)⟩Cndx

+
1

2

∫ 1

0
⟨TYx(x, t), Yx(x, t)⟩Cndx

+
1

2
⟨γy(v, t), y(v, t)⟩,
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where ⟨·, ·⟩ is the Euclidean inner product in Cn

or Cm, γ = diag{γ1, . . . , γm} with γk ≥ 0 and∑m
k=1 γk > 0. Such a choice of γ ensures that E (t)

vanishing implies that Y (x, t) = 0.
Similar to Case I, we obtain

dE (t)

dt
= ℜ (⟨F (t) + γy(v, t), yt(v, t) ⟩) .

Take the feedback control law

F (t) = −βyt(v, t)− γy(v, t)

where β = diag{β1, . . . , βm} with βk ≥ 0, and if
βk = 0, γk = 0, then (14) also holds.

All in all, the feedback control law can be formu-
lated uniformly by

F (t) = −βPDyt(v, t)− γPDy(v, t), (15)

where β ≥ 0 and γ ≥ 0. One takes γ = 0 if D ̸= ∅.
Thus, the equations (11) together with the feedback
control law (15) forms a closed loop system.

Finally we define two sets

Iβ={k∈IV |βk > 0} and C={pk∈V |k∈Iβ}.(16)

Iβ is called the controlled vertex index set, C is called
the controlled vertex set. If C = V \ D (or equiva-
lently, Iβ = IV \ JD = JP ), i.e., the controllers are
located on all vertices of the network G but the fixed
ones, then the network G is called a completely con-
trolled network; otherwise, it is call a non-completely
(or partially) controlled one. If C = ∂G \ D, name-
ly, the controllers are located on all boundary ∂G but
the fixed ones, the network G is called a completely
boundary controlled one. If C is a proper subset of
∂G \ D, then G is called a non-completely (or par-
tially) boundary controlled one. If C ⊂ Int(G), the
network G is called a internally controlled one. If
C = Int(G) \ D, the network G is called a complete-
ly internally controlled one. If C is a proper subset of
Int(G)\D, the networkG is called a non-completely
(or partially) internally controlled one.

2.4 The evolution equation of the controlled
network

To study the Riesz basis property and stabili-
ty of the controlled network, we need to in-
troduce an appropriate state space. Let f be
a function on G with its parametrization on ϵj ,
fj(x). Denote (f1(x), . . . , fn(x))

T by f(x), and
(f(p1), f(p2), . . . , f(pm))T by f(v), where v =
(p1, p2, . . . , pm)T, f(x) and f(v) are called the vec-
torization of f .

Define the function spaces L2(E) and Hk(E) by

L2(E) = {f(x)
∣∣ fj ∈ L2(0, 1), j ∈ IE}

and

Hk(E) = {f ∈ L2(E)
∣∣ fj ∈ Hk(0, 1), j ∈ IE},

where Hk(0, 1) (k = 1, 2) are the usual Sobolev s-
paces and L2(0, 1) is the usual Hilbert space. Let

V k
E (0, 1) =

f ∈ Hk(E)

∣∣∣∣∣∣
f(0) = (Ψ+)Tf(v),
f(1) = (Ψ−)Tf(v),
f(v) ∈ D


with k = 1, 2, where f(v) ∈ D means that

f(v) = (f(p1), f(p2), . . . , f(pm))T (17)

and f(pj) = 0 as pj ∈ D. Take the state space

H = V 1
E(0, 1)× L2(E). (18)

In space H, the inner product is defined by
∀(f, g)T, (f̂ , ĝ)T ∈ H,

⟨
(
f
g

) (
f̂
ĝ

)
⟩H

=

∫ 1

0

(
⟨Tf ′(x), f̂ ′(x) ⟩+ ⟨Mg(x), ĝ(x) ⟩

)
dx

+⟨γPDf(v), PDf̂(v) ⟩Cm (19)

and the norm is given by∥∥∥∥(fg
)∥∥∥∥

H
= ⟨
(
f
g

)
,

(
f
g

)
⟩

1
2
H. (20)

Obviously, H is a Hilbert space. Defined an operator
A in H by

A
(
f
g

)
=

(
g(x)

M−1Tf ′′(x)

)
(21)

with the domain

dom(A) = (22)
(
f
g

)
∈ H

∣∣∣∣∣∣
f ∈ V 2

E(0, 1), g ∈ V 1
E(0, 1),

PD [(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)]
= −βPDg(v)− γPDf(v)

.
Note that g ∈ V 1

E(0, 1) means that g(v) ∈ D,

g(1) = (Ψ−)Tg(v) and g(0) = (Ψ+)Tg(v). (23)

Thus, the closed loop system (11) with (15) can be
rewritten into an evolution equation in H

dZ

dt
= AZ,

Z(t 0) = Z 0,
(24)

where Z = (Y, Yt)
T and Z 0 = (Y 0, Y 1)

T.
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3 Spectrum of A and Riesz basis
In the present paper we suppose that the network has
no self-loop. In what follows, we introduce the main
result about spectrum of A and Riesz basis, whose
proofs will be given later.

Theorem 4. Let H and A be defined by (18) and (21)
respectively. Then

(1) A is dissipative, i.e.

ℜ⟨A(f, g)T, (f, g)T⟩ =
−⟨βPDg(v), PDg(v) ⟩Cr ≤ 0, (25)

and A−1 is compact in H,

(2) the spectrum of A consists of all isolated eigen-
values of finite multiplicity, i.e. σ(A) = σp(A),

(3) A generates a C 0 semigroup of contraction S(t)
on H.

Theorem 4 shows that system (24) (i.e., (11) with
(15)) is well posed. The next theorem shows that the
spectrum of A lie in a strip parallel to the imaginary
axis under certain conditions.

Theorem 5. Let the state space H and the operator A
be defined by (18) and (21), respectively. Then when
β satisfies

βi ̸=
∑

k∈IE(pji )

√
ρkTk, ji ∈ JP ( i.e., pji ̸∈ D), (26)

σ(A) is a finite union of separable sets (taking the
multiplicity into account), i.e.,

σ(A) = ∪N
k=1Λk

where Λk are separable set consisting of eigenvalues
of A, N is the uniform bound of the multiplicities of
eigenvalues in A. Moreover, there exists a positive
constant δ such that

σ(A) ⊂ { λ ∈ C | − δ ≤ ℜλ ≤ 0 } . (27)

Remark 6. A set Λ ⊂ C is said to be separable if
∀λ, µ ∈ Λ, inf

λ̸=µ
|λ− µ| > 0.

The following theorem indicates the complete-
ness of the eigenvectors and generalized eigenvectors
of A and its conditions.

Theorem 7. Let the state space H and the operator A
be defined by (18) and (21) respectively. If β satisfies
(26) , then the system of eigenvectors and generalized
eigenvectors of A is complete in H.

The following Theorem gives the Riesz basis
property of eigenvector and generalized eigenvectors
of A, including the spectrum determined growth as-
sumption of the system (24).

Theorem 8. Let H and A be defined by (18) and (21)
respectively. If β satisfies (26), then there is a se-
quence of eigenvectors and generalized eigenvectors
of A that forms a Riesz basis with parentheses for H.
So, the C0 semigroup S(t) generated by A satisfies
the spectrum determined growth assumption.

Remark 9. The condition (26) is a necessary condi-
tion for the Riesz basis property. If (26) does not hold,
the controlled network system may not be a Riesz one,
see the special examples in [23] and [24]. In addition,
according to Remark 2, the results of Theorem 8 are
independent of the length of edge.

3.1 The proof of Theorem 4
Proof According to (18), (19), (21), (22), (23) and
integration by parts, it can be obtained that

ℜ⟨A(f, g)T, (f, g)T⟩

=
1

2
[⟨A(f, g)T, (f, g)T⟩+ ⟨(f, g)T,A(f, g)T⟩]

= ℜ
{
⟨Tf ′(1), g(1) ⟩ − ⟨Tf ′(0), g(0) ⟩

+ ⟨γPDf(v), PDg(v) ⟩}
= ℜ

{
⟨PD

[
(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)

]
+γPDf(v), PDg(v) ⟩} ,

which implies that (25) holds.
Next,we verify 0 ∈ ρ(A) , i.e., A−1 exists and is

bounded. Consider the following resolvent equation

A(f, g)T = (ζ, ν)T, (f, g)T ∈ dom(A)

with (ζ, ν)T ∈ H, namely,{
g(x) = ζ(x),
Tf ′′(x) =Mν(x).

(28)

Integrating the above second equation from x to 1
leads to

Tf ′(1) = Tf ′(0) + ϱ(0) (29)

and

Tf(x) = Tf(1)− (1− x)Tf ′(1) +

∫ 1

x
ϱ(s)ds

= T (Ψ−)Tf(v)− (1− x)Tf ′(1) + κ(x),

(30)

where κ(x) =
∫ 1
x ϱ(s)ds, ϱ(x) =

∫ 1
x Mν(s)ds. In

the above equality, taking x = 0 yields

TΨTf(v) + Tf ′(1) = κ(0). (31)
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By the domain of A, (22) and (29), we have

−γPDf(v)+PDΨTf
′(1) = βPDζ(v)+PDΨ

+ϱ(0).
(32)

Since f(v) ∈ D, there exists d ∈ Cr such that f(v) =
PT
D d. Thus, it follows from (31) and (32) that d and
Tf ′(1) satisfy algebraic equations{

γd−PDΨTf
′(1)=−βPDζ(v)−PDΨ

+ϱ(0),
TΨTPT

D d+ Tf ′(1)=κ(0).
(33)

The determinant of the coefficient matrix of above e-
quations is

det

(
γ −PDΨ

T (PDΨ)T I

)
=det

(
γ+PDΨT (PDΨ)T

)
.

The Lemma 28 in the Appendix asserts that γ +
PDΨT (PDΨ)T is a symmetrical and positive definite
matrix, so, d and Tf ′(1) can be determined by (33)
uniquely. From f(v) = PT

D d, (30) and (28), f, g can
be determined by ζ, ν uniquely, which implies that
0 ∈ ρ(A) i.e., A−1 exists. The Sobolev’s Embedding
Theorem shows that A−1 is compact. So the asser-
tion (2) holds. Finally, according to Lumer-Phillips
Theorem ([25]), A generates a C0 semigroup of con-
traction. �

3.2 The proof of Theorem 5
Let λ ∈ σ(A), λ ̸= 0 and (f, g)T ∈ dom(A) be
the corresponding eigenvector. Then the eigenvalue
problem of A is given by

Tf ′′(x) = λ2Mf(x), g(x) = λf(x), (34)

with the boundary conditions
f(0) = (Ψ+)Tf(v),
f(1) = (Ψ−)Tf(v),f(v) ∈ D,
PD [(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)]

= −(λβ + γ)PDf(v).

(35)

Set η(x) = (f(x), λ−1Tf ′(x))T, then η(x) satisfies
equation

dη

dx
= λ

[
0 T−1

M 0

]
η. (36)

The fundamental solution of (36) is given by

W (x, λ) = Q

(
e−λxA 0

0 eλxA

)
Q−1, (37)

where

Q =

(
−(

√
MT )−1 (

√
MT )−1

I I

)

and

Q−1 =
1

2

(
−
√
MT I√
MT I

)
,

√
MT = diag{q1, . . . , qn}, A = M1/2T−1/2 =

diag{a1, . . . , an}, ak = ρ
1/2
k T

−1/2
k , qk =

√
ρkTk,

k = 1, . . . , n. Thus, the general solution of (36) is

η(x) =W (x, λ)η(0). (38)

Since f(v) ∈ D, there exists a d ∈ Cr such that
d = PDf(v) and f(v) = PT

D d. Thus,

η(0) =

(
(Ψ+)Tf(v)
λ−1Tf ′(0)

)
=

(
(PDΨ

+)Td
λ−1Tf ′(0)

)
and

η(1) =

(
(Ψ−)Tf(v)
λ−1Tf ′(1)

)
=

(
(PDΨ

−)Td
λ−1Tf ′(1)

)
.

From (38) and the last condition in (35), it can be de-
rived that

D(λ)

(
d

λ−1Tf ′(0)

)
= 0 (39)

where

D(λ)

=

(
I 0
0 PDΨ

−

)
W (1, λ)

(
(PDΨ

+)T 0
0 I

)
−
(

(PDΨ
−)T 0

−(β + λ−1γ) PDΨ
+

)
,

namely,

D(λ) =(
(
√
MT )−1 cosh(λA)

√
MT (PDΨ

+)T − (PDΨ
−)T

PD(Ψ
−) sinh(λA)

√
MT (PDΨ

+)T + (β + λ−1γ)

(
√
MT )−1 sinh(λA)

PD(Ψ
−) cosh(λA)− PD(Ψ

+)

)
. (40)

Obviously, the above algebraic equation (39) has
nonzero solution if and only if the determinant of the
coefficients matrix vanishes at λ ̸= 0, i.e.,

∆(λ) = det(D(λ)) = 0. (41)

Therefore, according to (38), (39) and the identity
f(v) = PT

D d, we have the following result.

Lemma 10. Let A be defined by (21). Then we have

σ(A) = {λ ∈ C \ {0} |∆(λ) = 0 } ,

where ∆(λ) is given by (41).
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We call the matrix D(λ) characteristic matrix of
A (or, the controlled network), ∆(λ) characteristic
determinant of A (or, the controlled network).

The proof of Theorem 5: From (40), it is yielded
that

D(λ)

(
I 0√

MT (Ψ+)TPT
D I

)(
I 0
0 eλA

)

=

√
MT

−1
eλA

√
MT (PDΨ

+)T
√
MT

−1
e2λA

2

PD(Ψ
−)eλA

√
MT (PDΨ

+)T
PD(Ψ

−)e2λA

2


+

(
0 0

λ−1γ −PD(Ψ
+)eλA

)
(42)

+

(
(
√
MT )−1 0

−PD(Ψ
−) I

)(
−
√
MT (PDΨ

−)T −1

2
I

Dβ− 0

)
,

where

Dβ− = β − PD(Ψ
+)

√
MT (PDΨ

+)T

−PD(Ψ
−)

√
MT (PDΨ

−)T.

So,

lim
ℜλ→−∞

∆(λ) det(eλA)

=det(
√
MT )−1 det

(
−
√
MT (PDΨ

−)T −I
2

Dβ− 0

)
.

Thus

∆− = lim
ℜλ→−∞

∆(λ)

det(e−λA)

=
(−1)n+

(n+r)(n+r+1)
2

2n det
(√

MT
) det (Dβ−) .

Similarly, it follows from (40) that

D(λ)

(
I 0

−
√
MT (Ψ+)TPT

D I

)(
I 0
0 e−λA

)

=

√
MT

−1
e−λA

√
MT (PDΨ

+)T
√
MT

−1
e−2λA

−2

−PD(Ψ
−)e−λA

√
MT (PDΨ

+)T
PD(Ψ

−)e−2λA

2


+

(
0 0

λ−1γ PD(Ψ
+)e−λA

)
+

(√
MT

−1
0

PD(Ψ
−) I

)(
−
√
MT (PDΨ

−)T
I

2
Dβ+ 0

)
,

where

Dβ+ = β + PD(Ψ
+)

√
MT (PDΨ

+)T

+PD(Ψ
−)

√
MT (PDΨ

−)T.

Thus,

∆+ = lim
ℜλ→+∞

∆(λ)

det(eλA)

=

det

(
−
√
MT (PDΨ

−)T
I

2
Dβ+ 0

)
det(

√
MT )

=
(−1)

(n+r)(n+r+1)
2

2n det(
√
MT )

det (Dβ+) .

It follows from Lemma 29 in the Appendix that

∆− =
(−1)n+

(n+r)(n+r+1)
2

2n
∏n

j=1

√
ρjTj

·
r∏

i=1

βi − ∑
k∈IE(pji )

√
ρkTk


and

∆+ =
(−1)

(n+r)(n+r+1)
2

2n
∏n

j=1

√
ρjTj

·
r∏

i=1

βi + ∑
k∈IE(pji )

√
ρkTk

 .

Therefore, when ∆− ̸= 0, i.e., β satisfies (26), there
exist positive constants c̃1, c̃2 and δ such that for
|ℜλ| > δ,

c̃1e
ℜ(λ)tr(A) ≤ |∆(λ )| ≤ c̃2e

ℜ(λ)tr(A), (43)

which implies that the zeros set of ∆(λ ) is contained
in the region {λ ∈ C

∣∣ |ℜ(λ)| ≤ δ}. By Theorem
4, the spectrum of A distributes in a strip parallel
to the imaginary axis, i.e., (27) holds. In addition,
(43) shows that ∆( iλ ) is a sine type function on C
(e.g., see [26, Definition II, 1.27, p61]). Levin theo-
rem (e.g., see[26, Proposition II, 1.28, p61], also [15,
Proposition 3.5]) asserts that the set of zeros of ∆(λ )
is a finite union of separable sets. So is σ(A), and for
each λk ∈ σ(A), its algebraic multiplicity is uniform-
ly upper bounded. �

3.3 The proof of Theorem 7
To prove Theorem 7, we first prove two lemmas.

Lemma 11. Let H be defined by (18). Define operator
A0 in H by

A0

(
f
g

)
=

(
g(x)

M−1Tf ′′(x)

)
, (44)
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with

dom(A0) = (45)
(
f
g

)
∈ H

∣∣∣∣∣∣
f ∈ V 2

E(0, 1), g ∈ V 1
E(0, 1),

PD [(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)]
−γPDf(v) = 0

 .

Then A 0 is a skew adjoint operator in H, and
∀(ζ,ϖ)T ∈ H, λ ∈ R, the solution of the resolvent
equation

(λI −A0)

(
f
g

)
=

(
ζ
ϖ

)
(46)

satisfies

∥g(v)∥ = ∥PDg(v)∥ ≤ c∥(ζ,ϖ)T∥, (47)

where c is a positive constant.

Proof ∀ (ζ,ϖ)T, (f, g)T ∈ D(A 0), using identities

f(0) = (Ψ+)Tf(v), f(1) = (Ψ−)Tf(v),

ζ(0) = (Ψ+)Tζ(v) and ζ(1) = (Ψ−)Tζ(v),

and (44),(45), we derive

⟨A0(f, g)
T, (ζ,ϖ)T⟩+ ⟨(f, g)T,A0(ζ,ϖ)T⟩ =

⟨PD[(Ψ
−)Tf ′(1)− (Ψ+)Tf ′(0)], PDϖ(v) ⟩

+⟨γPDf(v), PDϖ(v) ⟩
+⟨PDg(v), PD[(Ψ

−)Tζ ′(1)− (Ψ+)Tζ ′(0)]⟩
+⟨PDg(v), γPDζ(v) ⟩ = 0.

So, A 0 is a skew adjoint operator in H, which implies
that

∥λR(λ,A0)∥ ≤ 1, ∀λ ∈ R. (48)

From (46), we have g(x) = λf(x)− ζ(x), which im-
plies that g(v) = λf(v)−ζ(v) and g′(x) = λf ′(x)−
ζ ′(x). From the equalities g(0) = (Ψ+)Tg(v) and
g(1) = (Ψ−)Tg(v), it follows that

g(1) = g(0) +

∫ 1

0
g′(x)dx

= g(0) +

∫ 1

0
(λf ′(x)− ζ ′(x))dx,

and so,

ΨTg(v) = −
∫ 1

0
(λf ′(x)− ζ ′(x))dx.

When D = ∅, then PD = I , γ ≥ 0 and
∑m

k=1 γ
2
k ̸= 0.

So,(
γ +ΨΨT

)
g(v) =

−Ψ

∫ 1

0
(λf ′(x)− ζ ′(x))dx+ γ(λf(v)− ζ(v)).

From Lemma 28 in the Appendix, it follows that γ +
ΨΨT is nonsingular. Therefore,

g(v) =
(
γ +ΨΨT

)−1
[
Ψ

∫ 1

0
ζ ′(x)dx+ γζ(v)

]
−λ
(
γ +ΨΨT

)−1
[
Ψ

∫ 1

0
f ′(x)dx+ γf(v)

]
.

Thus, from (48) and the following two inequalities:∥∥∥∥∫ 1

0
T 1/2f ′(x)dx

∥∥∥∥2 ≤ ∫ 1

0
⟨Tf ′(x), f ′(x) ⟩dx

(49)
and ∫ 1

0
⟨Tf ′(x), f ′(x)⟩dx+ ∥γ1/2f(v)∥2

≤ ∥(f, g)T∥2 = ∥R(λ,A0)(ζ,ϖ)T∥2. (50)

From above estimates we get

∥g(v)∥2

≤ 4c0|λ|
∥∥∥ΨT−1/2

∥∥∥2 ∥∥∥∥∫ 1

0
T 1/2f ′(x)dx

∥∥∥∥2
+4c0|λ|

∥∥∥γ1/2∥∥∥2 ∥∥∥γ1/2f(v)∥∥∥2
+4c0

∥∥∥ΨT−1/2
∥∥∥2 ∥∥∥∥∫ 1

0
T 1/2ζ ′(x)dx

∥∥∥∥2
+4c0

∥∥∥γ1/2∥∥∥2 ∥γ1/2ζ(v)∥2
≤ |cλ|2

2

[∫ 1

0
⟨Tf ′(x), f ′(x)⟩dx+

∥∥∥γ1/2f(v)∥∥∥2]
+
c2

2

[∫ 1

0
⟨Tζ ′(x), ζ ′(x) ⟩dx+ ∥γ1/2ζ(v)∥2

]
≤ c2

2

(
|λ|2∥R(λ,A0)(ζ,ϖ)T∥2 + ∥(ζ,ϖ)T∥2

)
≤ c2∥(ζ,ϖ)T∥2

where c2 = 8c0max{
∥∥ΨT−1/2

∥∥2 , ∥∥γ1/2∥∥2}, c0 =∥∥∥(γ +ΨΨT
)−1
∥∥∥2.

When D ̸= ∅, PD ̸= I and γ = 0, there exists a
d ∈ D such that g(v) = PT

D d and

ΨTPT
D d = ΨTg(v) = −

∫ 1

0
(λf ′(x)− ζ ′(x))dx.

Thus,

PDΨΨTPT
D d = −PDΨ

∫ 1

0
(λf ′(x)− ζ ′(x))dx.
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Lemma 28 in the Appendix asserts that PDΨΨTPT
D is

nonsingular, and hence

d = −(PDΨΨTPT
D )−1PDΨT

−1/2

·
(
λ

∫ 1

0
T 1/2f ′(x)dx−

∫ 1

0
T 1/2ζ ′(x)dx

)
.

From (48),(49) and (50) with γ = 0, it is derived that

∥PDg(v)∥2 = ∥d∥2

≤ c2

2
|λ|2

∥∥∥∥∫ 1

0
T 1/2f ′(x)dx

∥∥∥∥2
+
c2

2

∥∥∥∥∫ 1

0
T 1/2ζ ′(x)dx

∥∥∥∥2
≤ c2

2

[
|λ|2∥R(λ,A0)(ζ,ϖ)T∥2 + ∥(ζ,ϖ)T∥2

]
≤ c2∥(ζ,ϖ)T∥2,

where c2 = 4∥(PDΨΨTPT
D )−1PDΨT

−1/2∥2. �

Lemma 12. Let H and A be defined by (18) and (21),
respectively. Then, A∗, the adjoint operator of A, is
given by

A∗
(
ζ
ϖ

)
=

(
−ϖ(x)

−M−1Tζ ′′(x)

)
(51)

with the domain

dom(A∗) = (52)
(
ζ
ϖ

)
∈ H

∣∣∣∣∣∣
ζ ∈ V 2

E(0, 1), ϖ ∈ V 1
E(0, 1),

PD [(Ψ−)Tζ ′(1)− (Ψ+)Tζ ′(0)]
= βPDϖ(v)− γPDζ(v)

 ,

and R(λ, A∗)(f, g)T = (ζ,ϖ)T (λ ̸= 0) with

ζ(x) = cosh(λxA)η0,1 + (
√
MT ) −1 sinh(λxA)η0,2

−λ−1

∫ x

0
A sinh(λ(x− s)A)(g(s)− λf(s))ds

(53)

and
ϖ(x) = f(x)− λζ(x), (54)

where η0,1 and η0,2 are two vectors.

Proof A direct verification shows that A∗ is of the
form (51) with the domain (52). In what follows, we
mainly consider the resolvent of A∗.

Set λ ∈ ρ(A∗) and (f, g)T ∈ H, consider the
resolvent problem

(λI −A∗) (ζ,ϖ)T = (f, g)T,

which is equivalent to the differential equations
ϖ(x) = f(x)− λζ(x) and

Tζ ′′(x)− λ2Mζ(x) =M(g(x)− λf(x)),
ζ(0) = (Ψ+)Tζ(v), ζ(1) = (Ψ−)Tζ(v),
PD [(Ψ−)Tζ ′(1)− (Ψ+)Tζ ′(0)]

= βPDf(v)− (λβ + γ)PDζ(v)
(55)

with ζ(v) ∈ D.
Set η(x) = (ζ(x), λ−1Tζ ′(x))T, similar to (36),

η(x) satisfies nonhomogenous equations

dη

dx
= λ

(
0 T−1

M 0

)
η −

(
0

λ−1M(g − λf)

)
.

Thus,

η(x) =W (x, λ)η0

−
∫ x

0
W (x− s, λ)

(
0

λ−1M(g(s)− λf(s))

)
,

where

η0 =

(
ζ(0)

λ−1Tζ ′(0)

)
=

(
(Ψ+)Tζ(v)
λ−1Tζ ′(0)

)
. (56)

From (56) and the boundary conditions in (55), it fol-
lows that(
I 0
0 PDΨ

−

)
η(1) =(

I 0
0 PDΨ

−

)
W (1, λ)

(
(Ψ+)T 0

0 I

)(
ζ(v)

λ−1Tζ ′(0)

)
−
∫ 1

0

(
λ−1A sinh(λ(1− s)A)(g(s)− λf(s))

PD(Ψ
−)λ−1M cosh(λ(1− s)A)(g(s)− λf(s))

)
ds

and (
I 0
0 PDΨ

−

)
η(1)

=

(
(Ψ−)T 0

−(β + λ−1γ)PD PDΨ
+

)(
ζ(v)

λ−1Tζ ′(0)

)
+

(
0

λ−1βPDf(v)

)
.

Since ζ(v) ∈ D, there exists a d ∈ Cr such that d =
PDζ(v). Thus, similar to (39), it is deduced that

D(λ)

(
d

λ−1Tζ ′(0)

)
= K̂, (57)

where D(λ) is given by (40) and

K̂ =

(
0

λ−1βPDf(v)

)
+

λ−1

∫ 1

0

(
A sinh(λ(1− s)A)(g(s)− λf(s))

PD(Ψ
−)M cosh(λ(1− s)A)(g(s)− λf(s))

)
ds.
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Note that λ ∈ ρ(A∗) = ρ(A), so det(D(λ)) ̸= 0,
which implies that the equations (57) has a unique
solution (d, λ−1Tζ ′(0))T ∈ Cr+n. Hence, η0 =
(η0,1, η0,2)

T can be solved by (56) and ζ(v) = PT
D d.

Thus, (53) is obtained by (55) and (56). �
Remark 13. When λ = 0, it follows from (55) that
ζ(x) = ζ(1)−ζ ′(1)(1−x)+T−1M

∫ 1
x

∫ 1
r g(s)ds dr.

Thus,

R(0, A∗)

(
f
g

)
=(

ζ(1)− ζ ′(1)(1− x) + T−1M
∫ 1
x

∫ 1
r g(s)ds dr

f(x)

)
,

where ζ(1) and ζ ′(1) are two vectors, which can
be determined uniquely, similar to f(1) and f ′(1) in
(33).

Proof of Theorem 7: Denote by

Sp(A) = span

{
m̃∑
k=1

yk

∣∣∣∣∣ yk ∈ E(λ k,A)H,
∀λk ∈ σ(A), m̃ ∈ N

}
,

(58)
where E(λ k,A) is the Riesz projector corresponding
to λ k. It is easy to prove that

Sp(A)⊥ = {z ∈ H|E(λ k,A∗)z = 0,∀λ k ∈ σ(A)}.
(59)

To prove Sp(A) = H, we need only to prove
Sp(A)⊥ = {0}, according to (59). In what follows,
we will prove Sp(A)⊥ = {0}.

Let (ζ̃, ν̃)T ∈ H and (ζ̃, ν̃)T⊥Sp(A). It follows
from [27, Lemma 6,pp.2296] that R∗(λ, A)(ζ̃, ν̃)T is
an entire function on C valued in H. Thus, ∀ (ζ, ν)T ∈
H, we define a function on complex plane C by

F (λ ) = ⟨ (ζ, ν)T, R∗(λ, A)(ζ̃, ν̃)T ⟩H. (60)

It follows from Lemma 12 that F (λ) is an entire func-
tion of finite exponential type. In addition, Theorem 4
and Hille-Yosida Theorem asserts that

|F (λ)| ≤ (ℜλ )−1 ∥(ζ, ν)∥
∥∥∥(ζ̃, ν̃)∥∥∥ , for ℜλ > 0.

Hence lim
ℜλ→+∞

|F (λ)| = 0.

Now, let us consider the solution of the following
equations{

(λI −A) (f, g)T = (ζ, ν)T,

(λI −A0)
(
f̂ , ĝ

)T
= (ζ, ν)T,

(61)

where λ ∈ ρ(A) ∩ ρ(A0) and λ < 0. Let f̃(x) =

f(x)− f̂(x), g̃(x) = g(x)− ĝ(x). Then

R (λ,A) (ζ, ν)T=R (λ,A0) (ζ, ν)
T+
(
f̃ , g̃

)T
(62)

and
(
f̃ , g̃

)T
satisfies g̃(x) = λf̃(x) and

T f̃ ′′(x) = λ2Mf̃(x),

f̃(0) = (Ψ+)Tf̃(v), f̃(1) = (Ψ−)Tf̃(v),

PD

[
(Ψ−)T f̃ ′(1)− (Ψ+)T f̃ ′(0)

]
= −(λβ + γ)PDf̃(v)− βPDĝ(v)

(63)

with f̃(v) ∈ D.
Set η(x) = (f̃(x), λ−1T f̃ ′(x))T. Similar to (34)

and (35), the solution of (63), η(x) satisfies

η =W (x, λ)η0 with η0 =

(
(Ψ+)Tf̃(v)

λ−1T f̃ ′(0)

)
, (64)

where W (x, λ) is defined by (37). Since f̃(v) ∈ D,
there is a d ∈ Cr such that f̃(v) = PT

D d. Let ηd =

(d, λ−1T f̃ ′(0))T ∈ Cr+n, then

η0 =

(
(PDΨ

+)T 0
0 I

)(
d

λ−1T f̃ ′(0)

)
=

(
(PDΨ

+)T 0
0 I

)
ηd. (65)

Thus, similar to (39), ηd satisfies

D(λ)ηd = −λ−1

(
0

βPDĝ(v)

)
, (66)

where D(λ) is defined by (40).
Set

D(λ,γ) =

(
0 0

λ−1γ −PDΨ
+

)

+

(√MT )−1eλA
√
MT (PDΨ

+)T
(
√
MT )−1eλA

2

PD(Ψ
−)eλA

√
MT (PDΨ

+)T
PD(Ψ

−)eλA

2


(67)

and

Dc =

 −(Ψ−)TPT
D −

√
MT

−1

2

β − PDΨ
+
√
MT (PDΨ

+)T
PDΨ

−

2

,
(68)

then it follows from (40) that

D(λ) =[
D(λ,γ) +Dc

(
I 0
0 e−λA

)](
I 0

−
√
MT (PDΨ

+)T I

)
.
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Let

η̃d =

(
I 0
0 e−λA

)(
I 0

−
√
MT (PDΨ

+)T I

)
ηd

i.e.,

η̃d =

(
d

e−λA
(
λ−1T f̃ ′(0)−

√
MT (PDΨ

+)Td
)) ,

thus, (66) implies that

η̃d = −λ−1

[
D(λ,γ)

(
I 0
0 eλA

)
+Dc

]−1(
0

βPDĝ(v)

)
,

where D(λ,γ) and Dc are defined by (67) and (68),
respectively. Therefore, ∥d∥ = O(λ−1)∥βPDĝ(v)∥,
for sufficiently large −λ > 0.

According to Definition (20), the direct calcula-
tion shows that∥∥∥(f̃ , g̃)T∥∥∥2 = −λ⟨PDf̃(v), βPDf̃(v) ⟩

−⟨PDf̃(v), βPDĝ(v) ⟩.

By d = PDf̃(v) and (47) in Lemma 11, it can be
derived that∥∥∥(f̃ , g̃)T∥∥∥ = O(

√
|λ|)

∥∥(ζ, ν)T∥∥ .
Thus, for sufficiently large −λ > 0, it follows from
(60) and (62) that

|F (λ )| ≤ |λ−1|
∥∥(ζ, ν)T∥∥ ∥∥∥(ζ̃, ν̃)T∥∥∥

+

∥∥∥∥(f̃ , g̃)T∥∥∥∥ ∥∥∥(ζ̃, ν̃)T∥∥∥
= O(|λ |−1/2)

∥∥(ζ, ν)T∥∥ ∥∥∥(ζ̃, ν̃)T∥∥∥ .
Since F (λ) is an entire function of finite exponential
type, the Phrangmen-Lindelöf theorem in [30] and the
above inequality show that F (λ) ≡ 0. Thus, it follows
from (60) that R∗(λ, A)(ζ̃, ν̃)T ≡ 0, which leads to
(ζ̃, ν̃)T ≡ 0. So, Sp (A) = H. �

3.4 The proof of Theorem 8
Firstly, we introduce the definition of the subspaces
Riesz basis ([28]) and the Riesz basis with parentheses
([29]).

Definition 14. A subspace sequence of {Hj}∞j=1 in a
separable Hilbert space H is called a Riesz basis of
subspaces for space H, if for every ϕ ∈ H there is a
unique ϕj ∈ Hj ,j = 1, 2, . . . such that ϕ =

∑∞
j=1 ϕj ,

and there exists positive constants c1 and c2, such that
∀ϕ ∈ H,

c1

∞∑
j=1

∥ϕj∥2 ≤ ∥ϕ∥2 ≤ c2

∞∑
j=1

∥ϕj∥2.

A sequence {ϕj}∞j=1 is called a Riesz basis with
parentheses if there is a sequence of integers n0 =
1 ≤ n1 ≤ · · · ≤ nk ≤ · · · such that {Hk}∞k=1 with
Hk = span{ϕj |j = nk−1 + 1, . . . , nk} forms a Riesz
basis of subspaces.

The proof of Theorem 8: Denote by S(t) the semi-
group generated by A. Let σ1(A) = {−∞}, σ2(A) =
σ(A). Theorem 4 and 5 shows that all the conditions
of [19, Lemma 4.5] are fulfilled. So, there exist t-
wo S(t)-invariant closed subspaces H1 and H2 corre-
sponding to σ1(A) and σ2(A), and there is a sequence
of eigenvectors and generalized eigenvectors of A that
forms a Riesz basis with parentheses for H2. Theorem
7 claims that the sequence is complete in H, which
implies that H2 = H. Therefore the sequence is also
a Riesz basis with parentheses for H. The Riesz ba-
sis property together with spectral distribution and the
uniform boundedness of the multiplicities of eigen-
values of A implies that S(t) satisfies the spectrum
determined growth assumption. �

4 Stability of the closed loop system
As a consequence of the Riesz basis with parenthe-
ses and Theorem 5, we asserts the system satisfies the
spectrum determined growth assumption. Therefore,
asymptotical stability of both the semigroup S(t) gen-
erated by A and the closed loop system ((11) and (15))
are equivalent to the non-existence of purely imagi-
nary eigenvalues of the operator A. In what follows,
by the spectral analysis, we present some sufficient
and necessary conditions for the asymptotical stability
of the closed loop system. For this, we first introduce
the following definition [31, 32]

Definition 15. Let A be defined by (21), which is an
infinitesimal generator of a C0 semigroup S(t) on the
Hilbert space H defined by (18). S(t) is asymptotical
stable (strongly stable) if

lim
t→∞

S(t)x = 0, ∀x ∈ H.

The corresponding Cauchy problem (24) is also called
asymptotical stable.

Next, we verify whether or not there exist the
spectral points on the imaginary axis. Let λ = iθ ∈
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σp(A) (θ ∈ R and θ ̸= 0) and (f, g)T ∈ dom(A) be
the corresponding eigenvector, then (25) implies that

ℜ(λ)⟨(f, g)T, (f, g)T⟩
= ℜ(A(f, g)T, (f, g)T)

= −⟨βPDg(v), PDg(v) ⟩ = 0. (69)

According to (34) and (35), the eigenvalue problem is
equivalent to existence of the nonzero solution of the
following differential equations

Tf ′′(x) = −θ2Mf(x), g(x) = iθf(x), (70)

with the boundary conditions
f(0)=(Ψ+)Tf(v),
f(1)=(Ψ−)Tf(v),f(v) ∈ D
PD [(Ψ−)Tf ′(1)−(Ψ+)Tf ′(0)]=−γPDf(v).

(71)

Since we suppose that λ ∈ iR, the spectral points
is on the imaginary axis, the eigenvalue problem (70)-
(71) is called the purely imaginary spectral analysis or
spectral analysis on the imaginary axis.

Case 1: D = ∅ and β is a diagonal positive
definite matrix.

In this case, PD = I , D ∼= Cm and it is required
that

∑m
k=1 γk > 0, γk ≥ 0 (k ∈ IV ). The wave net-

work is controlled completely. It follows from (69)
that g(v) = 0, which implies that f(v) = 0. So, the
eigenvalue problem (70)-(71) becomes

Tf ′′(x) = −θ2Mf(x) (72)

with the boundary conditions{
f(0) = 0, f(1) = 0
(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0) = 0

(73)

and g(x) = iθf(x). From the first boundary condition
of (73) it follows that solution of the equation (72) is
of the form

f(x) = T−1/2 sin(θAx)ξ, (74)

whereA =
√
T−1M = diag{a1, a2, · · · , an} and the

ξ ∈ Cn is an arbitrary constant vector. From the sec-
ond and third boundary conditions in (73) it follows
that{

sin(θA)ξ = 0,

(Ψ−) cos(θA)M1/2ξ − (Ψ+)M1/2ξ = 0.
(75)

According to (1) and (2), it can be derived that

(Ψ−) cos(θA)M1/2ξ

=
(
ej−1

cos(θa1)
√
ρ1,

. . . , ej−k
cos(θak)

√
ρk, . . . ,

ej−n cos(θan)
√
ρn

)
ξ

and

(Ψ+)M1/2ξ =(
ej+1

√
ρ1, . . . , ej+k

√
ρk, . . . , ej+n

√
ρn

)
ξ.

So∑
k∈I−

E (pi)

cos(θak)
√
ρkξk =

∑
k∈I+

E (pi)

√
ρkξk, i ∈ IV .

(76)
From (75) and (76), it is yielded that

sin(θak)
√
ρkξk = 0, k ∈ IE ,∑

k∈I−
E (pi)

cos(θak)
√
ρkξk

=
∑

k∈I+
E (pi)

√
ρkξk, i ∈ IV .

(77)

Hence, there are not spectral points on imaginary axis,
if and only if (77) implies that ξ ≡ 0.

Case 2: D = ∅ and β is a diagonal and semi-
positive definite matrix.

In this case, PD = I , D ∼= Cm and Iβ ⊂ JP = IV ,
which means that the network G is a non-completely
controlled one. When N ̸= ∅, the controlled network
has free boundary vertices. If pk ∈ Int(G) and k ∈
JP \Iβ , which means there is no controller at pk, and
hence the controlled network satisfies the Kirchhoff
condition (dynamic condition) at node pk.

According to the definition of C, the controller
vertex set, for each pk ∈ C, it is derived from (69) that
g(pk) = 0 (k ∈ Iβ), and hence f(pk) = 0 (k ∈ Iβ).
Define subspace Dβ of Cm by

Dβ = {(x1, x2, · · · , xm) ∈ Cm
∣∣ xk = 0, k ∈ Iβ}

Obviously, f(v) ∈ Dβ . Therefore, the eigenvalue
problem (70)-(71) becomes g(x) = iθf(x) and

Tf ′′(x) = −θ2Mf(x) (78)

with the boundary conditions
f(v) ∈ Dβ,
f(0) = (Ψ+)Tf(v),
f(1) = (Ψ−)Tf(v),
(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0) = 0.
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From (1), (2), (17) and (71), it follows that fk(0) =
eT
j+k
f(v) = f(pj+k

) and fk(1) = eT
j−k
f(v) = f(pj−k

).

So, the above boundary conditions are equivalent to

fk(0) = 0, j+k ∈ Iβ,
fk(0) = f(pj+k

), j+k ∈ JP \ Iβ,
fk(1) = 0, j−k ∈ Iβ,
fk(1) = f(pj−k

), j−k ∈ JP \ Iβ,
j−k , j

+
k ∈ IV , k ∈ IE ,

(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0) = 0.

(79)

The solution of the equation (78) is of the from

f(x) = T−1/2 sin(θAx)ξ + T−1/2 cos(θAx)ω,

where ξ, ω ∈ Cn are constant vectors. The boundary
conditions (79) lead to ξ and ω satisfy

ωk = 0, j+k ∈ Iβ ,
T

−1/2
k ωk = f(pj+k

), j+k ∈ JP \ Iβ ,
T

−1/2
k sin(θak)ξk + T

−1/2
k cos(θak)ωk = 0, j−k ∈ Iβ ,

T
−1/2
k sin(θak)ξk + T

−1/2
k cos(θak)ωk = f(pj−k

),

j−k ∈ JP \ Iβ ,
((Ψ−)T 1/2 cos(θA)− (Ψ+)T 1/2)Aξ

−(Ψ−)T 1/2 sin(θA)Aω = 0.

The last equations in the above is equivalent to∑
k∈I−

E (pi)

[cos(θak)
√
ρkξk − sin(θak)

√
ρkωk]

=
∑

k∈I+
E (pi)

√
ρkξk, i ∈ IV .

Therefore, there are not spectral points on imaginary
axis if, and only if

ωk = 0, j+k ∈ Iβ,
ωk = T

1/2
k f(pj+k

), j+k ∈ JP \ Iβ,
sin(θak)ξk + cos(θak)ωk = 0, j−k ∈ Iβ,
sin(θak)ξk + cos(θak)ωk = T

1/2
k f(pj−k

),

j−k ∈ JP \ Iβ,∑
s∈I−

E (pi)

(
cos(θas)

√
ρsξs − sin(θas)

√
ρsωs

)
=

∑
s∈I+

E (pi)

√
ρsξs,

j−k , j
+
k , i ∈ IV , k ∈ IE ,

(80)

implies that ξ = ω ≡ 0.

Case 3: D ̸= ∅ and β is a diagonal positive
definite matrix.

In this case, γ = 0, D ∼= Cr, r < m, the wave net-
work is controlled completely. It follows from (69)

that PDf(v) = 0. So, the eigenvalue problem (70)
and (71) is given by g(x) = iθf(x) and

Tf ′′(x) = −θ2Mf(x)

with the boundary conditions{
f(0) = 0, f(1) = 0
PD [(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)] = 0.

So the solution of the above equation is defined by
(74) with ξ satisfying{

sin(θA)ξ = 0,

PD [(Ψ−) cos(θA)− (Ψ+)]M1/2ξ = 0.
(81)

Similar to Case 1, the spectral points are not on
imaginary axis if and only if that ξ = 0 can be derived
from the following equations


sin(θak)

√
ρkξk = 0, k ∈ IE ,∑

k∈I−
E (pi)

cos(θak)
√
ρkξk =

∑
k∈I+

E (pi)

√
ρkξk,

pi ̸∈ D, i ∈ IV .
(82)

Case 4: D ̸= ∅ and β is a diagonal and semi-
positive definite matrix.

In this case, γ = 0, D ∼= Cr, r < m, the wave network
is a non-completely controlled one. Similar to Case 2,
it follows from (69) that g(pk) = 0, for k ∈ Iβ , which
implies that f(pk) = 0, for k ∈ Iβ . So, the eigenvalue
problem (70)–(71) is formulated by

Tf ′′(x) = −θ2Mf(x) (83)

with the boundary conditions

fk(0) = 0, j+k ∈ Iβ ∪ JD,
fk(0) = f(pj+k

), j+k ∈ JP \ Iβ,
fk(1) = 0, j−k ∈ Iβ ∪ JD,
fk(1) = f(pj−k

), j−k ∈ JP \ Iβ,
j−k , j

+
k ∈ IV , k ∈ IE ,

PD [(Ψ−)Tf ′(1)− (Ψ+)Tf ′(0)] = 0,

and g(x) = iθf(x). Therefore, the solution of the
equation (83) is

f(x) = T−1/2 sin(θAx)ξ+T−1/2 cos(θAx)ω, (84)
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where ξ, ω ∈ Cn are two arbitrary constant vectors.
Thus, ξ and ω satisfy

ωk = 0, j+k ∈ Iβ ∪ JD,

ωk = T
1/2
k f(pj+k

), j+k ∈ JP \ Iβ,
sin(θak)ξk + cos(θak)ωk = 0, j−k ∈ Iβ ∪ JD,

sin(θak)ξk + cos(θak)ωk = T
1/2
k f(pj−k

),

j−k ∈ JP \ Iβ,∑
s∈I−

E (pi)

(
cos(θas)

√
ρsξs − sin(θas)

√
ρsωs

)
=

∑
s∈I+

E (pi)

√
ρsξs,

k ∈ IE , pi ̸∈ D, i ∈ IV .
(85)

Therefore, the spectral points are not on imaginary
axis if and only if it can be derived from (85) that
ξ = ω = 0.

From the above four cases, we can draw a conclu-
sion as follows.

Theorem 16. Let H and A be defined by (18) and
(21), respectively, and β satisfies (26). Then the con-
trolled network ((11) with (15)) is asymptotically sta-
ble if and only if one of the following four conditions
holds.

1. When D = ∅ and β is a diagonal positive definite
matrix, for all θ ∈ R, (77) implies that ξ = 0.

2. When D = ∅ and β is a diagonal and semi-
positive definite matrix, for all θ ∈ R, (80) im-
plies that ξ = ω = 0.

3. When D ̸= ∅ and β is a diagonal and semi-
positive definite matrix, for all θ ∈ R, (82) im-
plies that ξ = 0.

4. When D ̸= ∅ and β is a diagonal positive definite
matrix, ∀θ ∈ R, (85) implies that ξ = ω = 0.

Proof We only prove the sufficient and necessary con-
dition (1), the others can be proven similarly.

If the controlled network is asymptotically stable,
then according to the spectrum determined growth as-
sumption, there is no spectral point of A on the imag-
inary axis. Suppose that for some real number θ0, a
nonzero vector ξ ∈ Cn can be found such that (77)
holds, then λ = iθ0 is a spectral point of A, which is
a contradiction.

Conversely, if ∀θ ∈ R, (77) implies that ξ = 0,
then from above the spectral analysis on the imaginary
axis, it follows that the spectral points of A are not on
the imaginary axis. Thus, the spectrum determined
growth assumption asserts that the controlled network
is asymptotically stable. �

If the network (11) is controlled completely, i.e.,
β is a diagonal positive definite matrix, from (77) and
(82) it can be deduced that ∀ i ∈ JP ,∑

k∈I−
E (pi)

δk
√
ρkξk =

∑
k∈I+

E (pi)

√
ρkξk, (86)

where δk is +1 or −1. Thus, (77) and (82) are equiv-
alent to

sin(θA)M1/2ξ = 0, PD(Ψ
+ −Ψ−Sδ)M

1/2ξ = 0,
(87)

where

Sδ = diag{δ1, δ2, . . . , δn} with δk ∈ {−1, 1}. (88)

Note that if D = ∅, then JP = IV and PD = Im.
Thus, we have the following result.

Corollary 17. Let all assumptions of Theorem 16 be
fulfilled and the network ((11) with (15)) be controlled
completely. Then the controlled network is asymp-
totically stable if the kernel of the matrix PD(Ψ

+ −
Ψ−Sδ), ker(PD(Ψ

+ − Ψ−Sδ)), is the null space, for
any diagonal matrix Sδ defined by (88).

To characterize the implication relation in Theo-
rem 16 further, we introduce the following definition
and lemma.

Definition 18. For any two different numbers ak and
as, if

ak
as

̸= nk
ns

where nk, ns ∈ Z and ns ̸= 0, then we

call the pair (ak, as) satisfying the relation “IR(1,1)”.

The above definition shows that the ratio of ak
and as is an irrational number, so the property is called
irrational dependence.

Remark 19. In fact, this property reflects relationship
between spectra and edges of the network. To see this,
let us consider the following Sturm–Liouville problem

Tkf
′′
k (x) = λ2ρkfk(x), x ∈ (0, 1)

with fk(0) = fk(1) = 0. The general solution is given
by

fk(x) = c1e
−akλx + c2e

akλx.

From the boundary conditions fk(0) = fk(1) = 0, it
follows that {

c1 + c2 = 0,
c1e

−akλ + c2e
akλ = 0.

So, its point spectrum is

σDk = {λ ∈ C|e2akλ = 1} = {iπnk/ak|nk ∈ Z}.

We call it Dirichlet spectrum of k-th edge. Hence σDk ∩
σDs = ∅ if and only if (ak, as) satisfies the relation
“IR(1,1)”.
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Lemma 20. Suppose that for some pi ̸∈ D, ∀θ ∈ R,{
sin(θak)

√
ρkξk = 0, k ∈ IE(pi),∑

k∈I−
E (pi)

cos(θak)
√
ρkξk =

∑
k∈I+

E (pi)

√
ρkξk,

(89)
where ak > 0. If (ak, as) satisfies the relation
“IR(1,1)”, ∀k, s ∈ IE(pi), k ̸= s, then ξk = 0, ∀k ∈
IE(pi).

Proof It can be derived from (89) that (86) hold-
s for pi. For all k ∈ IE(pi), if sin(θak) ̸= 0,
then ξk = 0, ∀k ∈ IE(pi). If sin(θak) = 0 for
some k ∈ IE(pi), then θak = nkπ, nk ∈ Z. Since
(ak, as) satisfies the relation “IR(1,1)”, ∀s ∈ IE(pi)
with s ̸= k,

θas = θak
as
ak

=
as
ak
nkπ ̸= nsπ, ns ∈ Z.

Thus, sin(θas) ̸= 0, which implies that ξs = 0, ∀s ∈
IE(pi), s ̸= k. Therefore, it follows from (86) that
ξk = 0,∀k ∈ IE(pi). �

Theorem 21. Let the network ((11) with (15)) be con-
trolled completely. Suppose that all assumptions of
Theorem 16 are true and each edge has at most one
fixed vertex. For all i ∈ JP , ∀k, s ∈ IE(pi), k ̸= s, if
(ak, as) satisfies the relation “IR(1,1)”, then the con-
trolled network is asymptotically stable.

Proof For each i ∈ JP , i.e., pi ̸∈ D, owing to Lemma
20, ξk = 0, ∀k ∈ IE(pi). The fact that each edge
has at most one fixed vertex shows that k takes over
all IE . So ξ ≡ 0. Thus, the controlled network is
asymptotically stable. �

According to Remark 19 and under the assump-
tions of Theorem 21, if all edges jointed with vertex
pk, ∀k ∈ IV , have no the same Dirichlet spectra, then
the controlled network is asymptotically stable. We
also remark that when Theorem 16, Theorem 21 and
Lemma 20 are applied to judge the stability of con-
crete networks, only if the “IR(1,1)” relation is true for
partial pairs (ak, as), where k, s ∈ IE(pi), k ̸= s,
pi ̸∈ D, owing to the edge-edge joint condition. Refer
to the examples given in the next section. But when
all pairs (ak, as) with k ̸= s are rational numbers, the
network ((11) with (15)) can not be stabilized.

Theorem 22. Let all assumptions of Theorem 16 be
fulfilled and the network ((11) with (15)) be controlled
completely. Assume that all pairs (ak, as) with k ̸= s
are rational numbers. If there is a diagonal matrix Sδ
defined by (88) such that ker (PD(Ψ

+ −Ψ−Sδ)) ̸=
{0}, then the network is not stable. Especially, if
ker (PDΨ) ̸= {0}, then it is not stable.

Proof Since ker(PD(Ψ
+ − Ψ−Sδ)) ̸= {0} for some

matrix Sδ = diag{δ1, δ2, . . . , δn}, there exists nonze-
ro vector ξ such that PD(Ψ

+−Ψ−Sδ))ξ = 0. The as-
sumption that all pairs (ak, as) with k ̸= s are rational
numbers implies that there is nonzero constant θ ∈ R
such that cos(θA) = Sδ, i.e., cos(akθ) = δk = ±1,
k = 1, 2, . . . , n. Thus,

sin(θA)(M−1/2ξ) = 0

and

PD[Ψ
+ −Ψ− cos(θA)]M1/2(M−1/2ξ) = 0.

According to (74),(75), or (74), (81), we know that
iθ is the purely imaginary spectrum of the network,
which implies that the network is not stable. �

5 Application and conclusion

In this section, we shall apply the previous results to
several concrete networks. The process of analyzing
is as follows.

Step 1 Denote the network by G = (V,E) with the
vertex set V and the edge set E. Write down the
outgoing and incoming incident matrix Ψ+ and
Ψ− of G, the Dirichlet set D and corresponding
index sets J+

Ψ , J−
Ψ , I+

E (p), I−
E (p), Iβ , and so on.

Step 2 By Theorem 16, together with the concrete
network, reduce (77), (80), (82) or (85) to a sim-
plified form. Using Lemma 20, present the con-
ditions for the asymptotical stability of the con-
trolled network.

5.1 A wave network with parallel edges

In the subsection, we consider a wave network
G = (V,E) with V = {p1, p2, p3, p4} and E =
{s1, s2, . . . , s6}, whose shap shown as figure 1 with
fixed vertex p4, i.e., the Dirichlet set D = {p4}. Sup-
pose that the length of each edge is one. The outgoing
incident matrix Ψ+ and incoming incident matrix Ψ−

of G are

Ψ+ =


1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 1
0 0 0 0 0 0


and

Ψ− =


0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1

 ,
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Figure 1: A wave network with parallel edges

respectively, and their corresponding index sets are

J +
Ψ = {j+1 , j

+
2 , j

+
3 , j

+
4 , j

+
5 , j

+
6 } = {1, 2, 3, 2, 1, 3}

and

J −
Ψ = {j−1 , j

−
2 , j

−
3 , j

−
4 , j

−
5 , j

−
6 } = {2, 3, 1, 1, 2, 4},

respectively. The index sets are

IE(p1)={1, 3, 4, 5}, I+
E (p1)={1, 5}, I−

E (p1)={3, 4};
IE(p2)={1, 2, 4, 5}, I+

E (p2)={2, 4}, I−
E (p2)={1, 5};

IE(p3) = {2, 3, 6}, I+
E (p3)={3, 6}, I−

E (p3)={2};
IE(p4)={6}, I−

E (p4)={6}, I+
E (p4)=∅.

Thus, the dynamic behavior of the controlled network
is governed by partial differential equations
TYxx(x, t) =MYtt(x, t), x ∈ (0, 1), t > 0,
Y (0, t) = (Ψ+)Ty(v, t), Y (1, t) = (Ψ−)Ty(v, t),
PD[Ψ

−TYx(1, t)−Ψ+TYx(0, t)]=−βPDyt(v, t),
Y (x, 0) = Y0, Yt(x, 0) = Y1,

(90)
where M = {ρ1, . . . , ρ6}, T = {T1, . . . , T6},
β = {β1, β2, β3}, βk ≥ 0, k = 1, 2, 3,
PD = (I3, 0), v = (p1, p2, p3, p4)

T and y(v, t) =
(y(p1, t), y(p2, t), y(p3, t), 0)

T.
According to Theorem 8 and (26), when β1, β2

and β3 satisfy conditions
β1 ̸=

√
ρ1T1 +

√
ρ3T3 +

√
ρ4T4 +

√
ρ5T5,

β2 ̸=
√
ρ1T1 +

√
ρ2T2 +

√
ρ4T4 +

√
ρ5T5,

β3 ̸=
√
ρ2T2 +

√
ρ3T3 +

√
ρ6T6,

(91)
the controlled network (90) satisfies the Riesz ba-
sis property and the spectrum determined growth as-
sumption.

Next, we analyze stability of the network (90).
Let the controlled vertex set be C = {p1, p2, p3},

namely, βk > 0, k = 1, 2, 3. In this case, the net-
work (90) is controlled completely. According to The-
orem 21, aj =

√
ρj/Tj , if ∀k, s ∈ IE(p1), k ̸= s,

∀k, s ∈ IE(p2), k ̸= s and ∀k, s ∈ IE(p3), k ̸= s,
(ak, as) satisfies the relation “IR(1,1)”, that is, the
pairs (a1, a3), (a1, a4), (a1, a5), (a3, a4), (a3, a5),
(a4, a5), (a1, a2), (a2, a4), (a2, a5), (a2, a3), (a2, a6)
and (a3, a6) satisfy the relation “IR(1,1)”, then the
controlled network is asymptotically stable. In fact,
by the edge-edge joint conditions, the number of the
pairs satisfying the relation “IR(1,1)” can be reduced.
From (82), it can be derived that

sin(θ
√
ρk/Tk)

√
ρkξk = 0, k ∈ {1, 2, 3, 4, 5, 6},

cos(θ
√
ρ3/T3)

√
ρ3ξ3 + cos(θ

√
ρ4/T4)

√
ρ4ξ4

=
√
ρ1ξ1 +

√
ρ5ξ5,

cos(θ
√
ρ1/T1)

√
ρ1ξ1 + cos(θ

√
ρ5/T5)

√
ρ5ξ5

=
√
ρ2ξ2 +

√
ρ4ξ4,

cos(θ
√
ρ2/T2)

√
ρ2ξ2 =

√
ρ3ξ3 +

√
ρ6ξ6.

(92)
So, by Theorem 16, Lemma 20 and (92), we can ob-
tain the following conclusion.

Corollary 23. Suppose that βk > 0 (k = 1, 2, 3), and
(91) holds. Let aj =

√
ρj/Tj , j = 1, 2, . . . , 6. If one

of the following conditions is fulfilled

1. (a1, a3), (a1, a4), (a3, a4), (a4, a5), (a3, a5) and
(a5, a1) satisfy the relation “IR(1,1)”,

2. (a1, a2), (a1, a4), (a2, a4), (a2, a5), (a4, a5) and
(a5, a1) satisfy the relation “IR(1,1)”,

3. (a2, a3), (a3, a6) and (a6, a2) satisfy the relation
“IR(1,1)”. (a1, a5), (a1, a4) and (a4, a5) satisfy
the relation “IR(1,1)”,

then (92) implies that ξ = 0, so, the controlled net-
work (90) is asymptotically stable.

Proof We only prove the condition (3), because the
conditions (1) and (2) can be analyzed similarly. From
Lemma 20 and the assumption that (a2, a3), (a3, a6)
and (a6, a2) satisfy the relation “IR(1,1)”, it follows
that ξ2 = ξ3 = ξ6 = 0. So, (92) can be reduce to
sin(θak)

√
ρkξk = 0, k ∈ {1, 4, 5},

cos(θa4)
√
ρ4ξ4 =

√
ρ1ξ1 +

√
ρ5ξ5,

cos(θa1)
√
ρ1ξ1 + cos(θa5)

√
ρ5ξ5=

√
ρ4ξ4.

(93)

From Lemma 20 and the assumption that (a1, a5),
(a1, a4) and (a4, a5) satisfy the relation “IR(1,1)”, it
follows that ξ1 = ξ4 = ξ5 = 0.

Hence, ξ = 0 under the condition (3). �
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5.2 A network with multiple circuits and
without boundary

Let us consider a network of shape shown as fig-
ure 2, where p5 be a fixed point and the boundary
∂G = ∅. The Dirichlet set D = {p5}, the vertex set
V = {p1, . . . , p5}, the edge set E = {s1, . . . , s8} and
the length of the edge sk is ℓk, k = 1, . . . , 8. The out-

Figure 2: A network with multiple circuits and with-
out boundary

going incidence matrix Ψ+ and incoming incidence
matrix Ψ− are respectively

Ψ+ =


1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0


and

Ψ− =


0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1

 ,

and corresponding index sets are

J +
Ψ = {j+1 , j

+
2 , j

+
3 , j

+
4 , j

+
5 , j

+
6 , j

+
7 , j

+
8 }

= {1, 2, 3, 1, 5, 2, 5, 4} (94)

and

J −
Ψ = {j−1 , j

−
2 , j

−
3 , j

−
4 , j

−
5 , j

−
6 , j

−
7 , j

−
8 }

= {2, 3, 4, 4, 1, 5, 3, 5}. (95)

The motion of the controlled network is governed by
partial differential equations

yk,xx(x, t) = yk,tt(x, t), x ∈ (0, ℓk), t > 0,
y1(0, t) = y4(0, t) = y5(ℓ5, t),
y2(0, t) = y6(0, t) = y1(ℓ1, t),
y3(0, t) = y2(ℓ2, t) = y7(ℓ7, t),
y8(0, t) = y3(ℓ3, t) = y4(ℓ4, t),
y5(0, t) = y7(0, t) = y6(ℓ6, t) = y8(ℓ8, t) = 0,
y5,x(ℓ5, t)− y1,x(0, t)− y4,x(0, t)

= −β1yt(p1, t),
y1,x(ℓ1, t)− y2,x(0, t)− y6,x(0, t)

= −β2yt(p2, t),
y2,x(ℓ2, t) + y7,x(ℓ7, t)− y3,x(0, t)

= −β3yt(p3, t),
y3,x(ℓ3, t) + y4,x(ℓ4, t)− y8,x(0, t)

= −β4yt(p4, t),
yk(x, 0) = yk,0(x), yk,t(x, 0) = yk,1(x),
k = 1, 2, . . . , 8.

(96)

By the variable change xk := ℓkxk, k = 1, 2, . . . , 8,
the network (96) can be rewritten as (90), where
y(v, t) = (y(p1, t), y(p2, t), y(p3, t), y(p4, t), 0 )

T,
v = (p1, p2, p3, p4, p5)

T, T = M−1, M =
diag{ℓ1, ℓ2, . . . , ℓ8}, β = diag{β1, . . . , β4}, the
Dirichlet projection matrix PD = (I4, 0) and I4 is the
identity matrix of order 4.

According to Theorem 8 and assumpation (26), if
βi (i = 1, . . . , 4) satisfy

βi ≥ 0 and βi ̸= 3, i = 1, 2, 3, 4, (97)

then the spectrum determined growth assumption
holds.

Next, we discuss the stability of the network (96)
under the assumption that β1, β2, β3 > 0, β4 = 0, and
(97) holds. Thus, JP = {1, 2, 3, 4}, Iβ = {1, 2, 3},
JD = {5} and the network is non-completely con-
trolled one. From (85), (94) and (95) it follows that

ωk = 0, k ∈ {1, 2, 3, 4, 5, 6, 7},
sin(θℓk)ξk = 0, k ∈ {1, 2, 5, 6, 7},
sin(θℓ8)ξ8 + cos(θℓ8)ω8 = 0,

T
−1/2
3 sin(θℓ3)ξ3 = T

−1/2
4 sin(θℓ4)ξ4

= T
−1/2
8 ω8 = f(p4),

cos(θℓ5)
√
ℓ5ξ5 =

√
ℓ1ξ1 +

√
ℓ4ξ4,

cos(θℓ1)
√
ℓ1ξ1 =

√
ℓ2ξ2 +

√
ℓ6ξ6,

cos(θℓ2)
√
ℓ2ξ2 + cos(θℓ7)

√
ℓ7ξ7=

√
ℓ3ξ3,

cos(θℓ3)
√
ℓ3ξ3 + cos(θℓ4)

√
ℓ4ξ4=

√
ℓ8ξ8.

(98)

Thus, Theorem 16 claims that the network (96) is
asymptotically stable if and only if (98) implies that
ξ = ω = 0. Concretely, we can present a sufficient
condition as follows.

Corollary 24. Let the network be given as (96). As-
sume that Iβ = {1, 2, 3} and β satisfies (97). If the
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following three conditions are fulfilled, then the con-
trolled network is asymptotically stable.

(1) The pairs (ℓ1, ℓ2), (ℓ2, ℓ6), (ℓ6, ℓ1) and (ℓ5, ℓ7)

satisfy the relation “IR(1,1)”;

(2) one of (ℓ4, ℓ5), (ℓ5, ℓ8) and (ℓ8, ℓ4) satisfies the
relation “IR(1,1)”;

(3) one of (ℓ3, ℓ7), (ℓ7, ℓ8) and (ℓ8, ℓ3) also satisfies
the relation “IR(1,1)”.

Proof Since the pairs (ℓ1, ℓ2), (ℓ2, ℓ6) and (ℓ6, ℓ1)

satisfy the relation “IR(1,1)”, from Lemma 20 and the
equalities in the second and sixth lines of (98), it fol-
lows that

ωk = 0, k∈{1, 2, . . . , 7}, ξ1=ξ2=ξ6=0,
sin(θℓk)ξk = 0, k ∈ {1, 2, 5, 6, 7},
ℓ5ξ

2
5 = ℓ4ξ

2
4 , ℓ7ξ

2
7 = ℓ3ξ

2
3 ,

sin(θℓ8)ξ8 + cos(θℓ8)ω8 = 0,

sin(θℓ3)ξ3 = T
1/2
3 T

−1/2
8 ω8,

sin(θℓ4)ξ4 = T
1/2
4 T

−1/2
8 ω8,

cos(θℓ3)
√
ℓ3ξ3 + cos(θℓ4)

√
ℓ4ξ4 =

√
ℓ8ξ8.

(99)

Assume that ξ5 ̸= 0, then sin(θℓ5) = 0 as
sin(θℓ5)ξ5 = 0. So, the assumption that (ℓ5, ℓ7) sat-
isfies the relation “IR(1,1)” asserts that sin(θℓ7) ̸= 0,
which implies that ξ7 = 0. Therefore, (99) can be
reduced to

ωk = 0, k ∈ {1, 2, . . . , 8},
ξ1 = ξ2 = ξ3 = ξ6 = ξ7 = 0,
sin(θℓk)ξk = 0, k ∈ {1, 2, . . . , 8},
ℓ4ξ

2
4 = ℓ5ξ

2
5 = ℓ8ξ

2
8 .

(100)

Thus, the assumption (2) and the equalities in the sec-
ond and third lines of (100) imply that ξ5 = 0, which
is a contradiction. Therefore, ξ5 = 0. From (99), it
follows that ξ4 = 0. Thus, (99) can be reduced to

ωk = 0, k ∈ {1, 2, . . . , 8},
ξ1 = ξ2 = ξ5 = ξ4 = ξ6 = 0,
sin(θℓk)ξk = 0, k ∈ {1, 2, . . . , 8},
ℓ3ξ

2
3 = ℓ7ξ

2
7 = ℓ8ξ

2
8 .

(101)

Thus, the assumption (3) and the equalities in the last
line of (101) imply that ξ3 = ξ7 = ξ8 = 0.

Therefore, the assumptions (1),(2) and (3) claim
that ξ = ω = 0, which shows that the controlled net-
work is asymptotically stable. �

Actually, there are other sufficient conditions for
the stability of the controlled network. In what fol-
lows, we give a nonstable case.

Assume that (ℓ1, ℓ2), (ℓ2, ℓ6) and (ℓ6, ℓ1) satisfy
the relation “IR(1,1)”, ℓ5 = ℓ7 = ℓ8 = ℓ, ℓ3 = r3ℓ/c3,

ℓ4 = r4ℓ/c4, where c3, r3, c4 and r4 are integers. Let
ω8 = 0, then from (99) it follows that

ω = 0, ξ1 = ξ2 = ξ6 = 0,
sin(θℓj)ξj = 0, j ∈ {3, 4, 5, 7, 8},
c4ξ

2
5 = r4ξ

2
4 , c3ξ

2
7 = r3ξ

2
3 ,

cos(θℓ3)
√
r3/c3ξ3 + cos(θℓ4)

√
r4/c4ξ4 = ξ8.

Let θk = ℓ−12kcπ, k ∈ Z, where c is the least com-
mon multiple of c3 and c4 , then

ω = 0, ξ1 = ξ2 = ξ6 = 0,
sin(θkℓj) = 0, j ∈ {3, 4, 5, 7, 8},
ξ5 = ±

√
r4/c4ξ4, ξ7 = ±

√
r3/c3ξ3,

ξ8 =
√
r3/c3ξ3 +

√
r4/c4ξ4,

where ξ3 and ξ4 are any constants for each k ∈ Z and
ξ3ξ4 ̸= 0. So, λk = iℓ−12kcπ (k ∈ Z), is the purely
imaginary eigenvalue of the controlled network (96).
According to (84), for each k ∈ Z, the corresponding
eigenfunctions is

φ(k)(x) =(
0, 0,

√
r3ℓ

c3
sin(θkℓ3x)ξ3,

√
r4ℓ

c4
sin(θkℓ4x)ξ4,

± sin(θkℓx)

√
r4ℓ

c4
ξ4, 0,± sin(θkℓx)

√
r3ℓ

c3
ξ3,

sin(θkℓx)

(√
r3ℓ

c3
ξ3 +

√
r4ℓ

c4
ξ4

))T

.

So, the four linear independent eigenfunctions are

(0, 0, sin(θkℓ3x), 0, 0, 0,± sin(θkℓx), sin(θkℓx))
T

and

(0, 0, 0, sin(θkℓ4x),± sin(θkℓx), 0, 0, sin(θkℓx))
T .

Therefore the controlled network (96) is not sta-
ble when (ℓ1, ℓ2), (ℓ2, ℓ6) and (ℓ6, ℓ1) satisfy the re-
lation “IR(1,1)”, ℓ5 = ℓ7 = ℓ8 = ℓ, ℓ3 = r3ℓ/c3,
ℓ4 = r4ℓ/c4, where c3, r3, c4 and r4 are integers.

From the above examples we can see that the four
conditions in Theorem 16 have the strict logicality and
regularity although they look like very complex. Once
we know the connection manner of the network, we
can determine sets J+

Ψ , J−
Ψ , I+

E (p), I−
E (p), Iβ , D, and

write down concrete conditions, e.g. (92) and (98).
Then, by Lemma 20 we can judge the stability of a
concrete network. Therefore the conditions in Theo-
rem 16 are very efficient in analysis of asymptotical
stability of networks. These conditions are also the
criterions for designing the 1-D wave networks with
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circuits and parallel edges. In elastic strings network,
these conditions reflect whether there exists resonance
between any two strings with fixed ends, according
to Remark 19. In addition, when an 1-D wave net-
work contain self-loops, we can add a virtual vertex
pj and a virtual controller on every self-loop. The vir-
tual controller means that the corresponding parame-
ter βj and γj in the feedback control law (15) vanish,
i.e., βj = γj = 0. So, these self-loops become the
parallel edges and this modified network has no self-
loop. Thus, these results obtained in this paper can
also be applied to the 1-D wave networks with self-
loops, which is very interesting problem. Finally we
remark that the process of the stability analysis pro-
posed in the present paper can be coded by any com-
puter language, which will be our further work. So it
can be applied easily to analysis of the concrete net-
works. In addition, we remark that the condition (26)
is a necessary condition for the controlled network to
form a Riesz basis system, but when it dose not hold,
the system may still be stable. This also will be con-
tent of our discussion further.

6 Appendix

In this appendix, we introduce some notions of graph
and basic results used in the paper.

Definition 25. The number of edges joining pi and
pj is called the degree of pi and pj , denoted by
deg(pi, pj), the set defined by

IE(pi, pj) = {k ∈ IE | ϵk joins pi and pj , ϵk ∈ E},

is called the index set of incident between pi and pj .

Obviously, deg(pi, pj) = #IE(pi, pj) and

IE(pi) = I −
E (pi) ∪ I+

E (pi) =
∪

j∈IV

IE(pi, pj).

Definition 26. Let G = (V,E) be a connected di-
graph without loops. The adjacency matrix ofG is the
m×m matrix AG = (ai,j), where ai,j = deg(pi, pj)
is the number of edges in G joining pi and pj .

From the definition it follows that

ΨΨT = DG −AG (102)

where DG = diag{deg(p1),deg(p2), . . . , deg(pm)}.

Proposition 27. Let G be a connected digraph with-
out loops, Ψ and AG = (ai,j) be the incidence matrix
and the adjacency matrix, respectively. Then each col-
umn (or row) of AG has at least a nonzero element,
and ΨΨT is an irreducible and diagonal predominant
symmetrical matrix.

Proof If ak,j = 0 for all j ∈ {1, 2, . . . ,m}, then pk is
not incident with the other vertexes, which contradicts
G is a connected digraph. So, each column of AG has
at least one nonzero element.

Since G is connected graph, for any two vertices,
pi and pj , there exists a sequence of edges that joins
pi and pj , that is, there exists a sequence consisting of
nonzero numbers:

ai,i1 , ai1,i2 , . . . , aik,j .

Thus, according to (102) and [33, Theorem 2.3.5 ],
ΨΨT is irreducible. From (102) and the definition of
AG, it follows that ΨΨT is a diagonal predominant
symmetrical matrix. �
Lemma 28. Let G be a connected graph without
loops, and Ψ be its incidence matrix. Let W =
diag{w1, . . . , wn}, wk > 0, k = 1, 2, . . . , n. Thus,

a the m×m matrix ΨWΨT is irreducible and diag-
onal predominant;

b the m × m matrix γ + ΨWΨT is symmet-
ric and positive definite matrix, where γ =
diag{γ1, γ2, . . . , γm} ≥ 0 with

∑m
k=1 γk > 0;

c Let J = {j1, j2, . . . , jr}, r < m, where
j1, j2, . . . , jr distinguish indices in IV , and PJ

be a linear transformation from Cm to Cr de-
fined by PJ = (eTj1 , e

T
j2
, . . . , eTjr)

T, where ejk is
the jk-th column of the identity matrix of order
m, k = 1, 2, . . . , r. Then PJΨWΨTP T

J is a
r × r symmetric positive definite matrix.

Proof Let

Ψ =


ψ1,1 ψ1,2 . . . ψ1,n

ψ2,1 ψ2,2 . . . ψ2,n
...

...
...

...
ψm,1 ψm,2 . . . ψm,n

 ,

then the (i, j) entry of the matrix ΨWΨT is
n∑

k=1

ψi,kwkψj,k. We note that the sum of entries of

each column (or row) of ΨWΨT is zero, so
n∑

k=1

ψj,kwkψj,k = −
m∑

i=1,i̸=j

n∑
k=1

ψi,kwkψj,k.

From the relation
n∑

k=1

ψi,kwkψj,k =
0, if pi is not incident with pj ,
−

∑
k∈IE(pi,pj)

wk, if pi is incident with pj ,∑
k∈IE(pi)

wk, if i = j,
(103)
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it follows that ΨWΨT is a diagonal predominant ma-
trix.

Similar to the proof of Proposition 27, it can be
shown that ΨWΨT is irreducible.

Next, we shall prove (b). Since γ =
diag{γ1, γ2, . . . , γm} ≥ 0 and

∑m
k=1 γk > 0,

γ + ΨWΨT is a weak diagonal predominant ma-
trix. Thus, by [33, Theorem 2.3.10], it follows that
γ+ΨWΨT a symmetric and positive definite matrix.

To prove (c), we note at first that PJΨWΨTP T
J

is a r × r symmetrical matrix obtained by eliminat-
ing all rows and columns but j1-th, j2-th, . . . and
jr-th row and column from ΨWΨT, whose i-th di-
agonal entry is

∑
k∈IE(pji )

wk, i = 1, 2, . . . , r and

whose (i, s) entry equals to
n∑

k=1

ψji,kwkψjs,k, i, s =

1, 2, . . . , r. So according to (a) and [33, Theorem
2.3.5], PJΨWΨTP T

J also is irreducible.
By (103), for k ∈ {1, 2, . . . , r},

∑
s∈IE(pjk )

ws = −
m∑

i=1,i̸=jk

n∑
s=1

ψi,swsψjk,s

≥ −
r∑

i=1,i̸=jk

n∑
s=1

ψji,swsψjk,s,

and there is at least an inequality such that the relation
” > ” holds. Otherwise, there exists a row (column)
whose elements are all zeros and that is eliminated
from ΨWΨT. Thus, from (102), it follows that ak,j =
0,∀k ∈ I = {1, 2, . . . ,m}, which is in contradiction
to the fact thatG is a connected. Thus, PJΨWΨTP T

J
is a weak diagonal predominant symmetrical matrix.
Therefore, by [33, Theorem 2.3.10], PJΨWΨTP T

J is
a symmetric and positive definite matrix. �
Lemma 29. Assume that G is a digraph without
loop, Ψ+ and Ψ− are its outgoing incidence ma-
trix and incoming incidence matrix, respectively. Let
PJ be defined by (c) in Lemma 28 and W =
diag{w1, . . . , wn}. Then,

(1) (Ψ−)W (Ψ−)T =

diag


∑

s∈I−
E (p1)

ws, . . . ,
∑

s∈I−
E (pi)

ws, . . . ,
∑

s∈I−
E (pm)

ws

 .

(2) (Ψ+)W (Ψ+)T =

diag


∑

s∈I+
E (p1)

ws, . . . ,
∑

s∈I+
E (pi)

ws, . . . ,
∑

s∈I+
E (pm)

ws

 .

Proof Let

Ψ− =


ψ−
1,1 ψ−

1,2 . . . ψ−
1,n

ψ−
2,1 ψ−

2,2 . . . ψ−
2,n

...
...

...
...

ψ−
m,1 ψ−

m,2 . . . ψ−
m,n

 ,

then the (i, j) entry of the matrix (Ψ−)W (Ψ−)T is
n∑

k=1

ψ−
i,kwkψ

−
j,k, which satisfies

n∑
k=1

ψ−
i,kwkψ

−
j,k =


∑

k∈I−
E (pi)

wk, if i = j

0, if i ̸= j,

since each edge ϵk has one head or tail. Hence the
equality in (1) holds. The equality in (2) can be proven
similarly. �
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stability of linear differential equations in Ba-
nach spaces, Studia Mathematica, 1988, 88 :
34–37

[32] K. J. Engel and R. Nagel, One-parameter Semi-
groups for Linear Evolution Equations, Grad-
uate Texts in Math., vol. 194, Springer-Verlag,
2000.

[33] J. M. Ortega, W. C. Rheinboldt, Iterative So-
lution of Nonlinear Equations in Several Vari-
ables, Academic Press, 1970.

WSEAS TRANSACTIONS on MATHEMATICS Dongyi Liu, Genqi Xu

E-ISSN: 2224-2880 439 Issue 5, Volume 11, May 2012




