Classical theorems for a Gould type integral

ALINA GAVRILUȚ
Faculty of Mathematics
University "Al.I. Cuza" Iași
Romania
gavrilut@uaic.ro

ANCA CROITORU
Faculty of Mathematics
University "Al.I. Cuza" Iași,
Romania
croitoru@uaic.ro

Abstract: In this paper, we continue the study of the Gould type integral introduced in [30] which generalizes the results of [12, 13, 17, 28] and [29]. We obtain various classical properties, such as a mean type theorem, a Lebesgue (Fatou respectively) type theorem, Hölder and Minkowski inequalities etc. Other results concerning measurability, semi-convexity, diffusion and atoms are also established.

Key–Words: (multi)(sub)measure, semi-convex, Darboux property, diffused, atom, totally-measurable, Gould integral, Lebesgue theorem, Fatou lemma.

1 Introduction

In [20] G. G. Gould introduced an integral for bounded real functions with respect to finitely additive set functions taking values in a Banach space, integral which is more general that the Lebesgue one.

In the last years, the non-additive case and the set-valued case received a special attention because of their applications in mathematical economics, decision theory, artificial intelligence, statistics or theory of games.

A. Precupanu and A. Croitoru generalized Gould’s results [20], studying in [28] a Gould type integral for multimeasures with values in $P_{bc}(X)$, the family of all compact convex nonempty subsets of a real Banach space X. Also, Gould type integrals with respect to a (multi)submeasure were studied in [12]–[19]. In [30], A. Precupanu, A. Gavriluț and A. Croitoru introduced and studied a Gould type integral for bounded real functions with respect to a set multifunction of finite variation with values in $P_{bf}(X)$, the family of all bounded closed nonempty subsets of a real Banach space X.

On the other hand, notions as atoms, pseudo-atoms, Darboux property, non-atomicity (with different nonequivalent variants - see, for instance, [8, 9]), (finitely) purely atomicity, semi-convexity, diffusion were extensively studied in recent years, due to their applications in many classical measure theory problems, physics and convex analysis (see [1, 3, 4, 5, 6, 8, 9, 10, 11, 21, 23, 24, 25, 26]).

That is why, in this paper, we study these notions for the Gould type integral introduced in [30]. We prove that the Lebesgue theorem, Hölder and Minkowski inequalities, Fatou lemma have here a correspondent and our integral preserves properties like semi-convexity or diffusion. Results regarding measurability are also established.

2 Basic notions

Let $(X, \| \cdot \|)$ be a real normed space, $P_{0}(X)$ the family of all nonvoid subsets of X, $P_{b}(X)$ the family of all nonvoid bounded subsets of X, $P_{f}(X)$ the family of all nonvoid closed subsets of X, $P_{bf}(X)$ the family of all nonvoid compact convex subsets of X and h the Hausdorff pseudometric on $P_{f}(X)$, which becomes a metric on $P_{bf}(X)$.

It is known that $h(M, N) = \max\{e(M, N), e(N, M)\}$, where $e(M, N) = \sup_{d(x, N)} d(x, N)$, for every $M, N \in P_{f}(X)$ is the excess of M over N and $d(x, N)$ is the distance from x to N with respect to the distance induced by the norm of X.

We denote $|M| = h(M, \{0\}) = \sup_{x \in M} d(x, N)$, for every $M \in P_{0}(X)$, where 0 is the origin of X.

For every $M, N \in P_{0}(X)$ and every $\alpha \in \mathbb{R}$, let $M + N = \{x + y | x \in M, y \in N\}$ and $\alpha M = \{\alpha x | x \in M\}$. We denote by \mathcal{M} the closure of M with respect to the topology induced by the norm of X.

On $P_{0}(X)$ we consider the Minkowski addition $\cdot + $ [18], defined by:

$M \cdot + N = \mathcal{M} + \overline{N}$, for every $M, N \in P_{0}(X)$.

Let T be an abstract nonvoid set, $\mathcal{P}(T)$ the family of all subsets of T and C a ring of subsets of T.

By $i = \frac{\pi}{\sum_n}$ we mean $i \in \{1, 2, \ldots, n\}$, for $n \in \mathbb{N}^*$, where \mathbb{N} is the set of all naturals and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. We also denote $\mathbb{R}_+ = [0, +\infty)$ and $\mathbb{R}_+ = [0, +\infty]$.

Some properties of h are presented in the following proposition (see Hu and Papageorgiu [22], Petrușel and Moț [27]).

Proposition 1 Let $A, B, C, D, A_n, B_n \in \mathcal{P}_0(X)$, for every $n \in \mathbb{N}^*$. Then:

I) $(\alpha + \beta)A = \alpha A + \beta A$, for every $\alpha, \beta \in \mathbb{R}_+$ and convex A.

II) $(A + B) + C = A + (B + C)$.

III) $(A + B) + (C + D) = (A + C) + (B + D)$.

IV) $h(A, B) = h(A, B)$.

V) $e(A, B) = 0$ if and only if $A \subseteq B$.

VI) $h(A, B) = 0$ if and only if $A = B$.

VII) $h(\alpha A, A) = |\alpha| h(A, B)$, for all $\alpha \in \mathbb{R}$.

VIII) $h(\sum_{i=1}^n A_i, \sum_{i=1}^n B_i) \leq \sum_{i=1}^n h(A_i, B_i)$.

IX) $h(\alpha A, \beta A) \leq |\alpha - \beta| \cdot |A|$, for every $\alpha, \beta \in \mathbb{R}$.

X) $h(\alpha A + \beta B, \gamma A + \delta B) \leq |\alpha - \gamma| \cdot |A| + |\beta - \delta| \cdot |B|$, for all $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

XI) $h(A + C, B + C) = h(A, B)$, for every $A, B \in \mathcal{P} \mathcal{F}(X)$ and $C \subseteq \mathcal{P} \mathcal{F}(X)$.

XII) If $A, A_n \in \mathcal{P} \mathcal{F}(X)$ and $\alpha, \alpha_n \in \mathbb{R}$, for every $n \in \mathbb{N}^*$, are so that $h(A_n, A) \to 0$ and $\alpha_n \to \alpha$, then $h(\alpha_n A_n, \alpha A) \to 0$.

We now recall some classical notions:

Definition 2 A set function $m : C \to \mathbb{R}_+$, with $m(\emptyset) = 0$, is said to be:

I) monotone if $m(A) \leq m(B)$, for every $A, B \in C$, with $A \subseteq B$.

II) superadditive if $m(\bigcup_{i \in I} A_i) \geq \sum_{i \in I} m(A_i)$, for every sequence of pairwise disjoint sets $(A_i)_{i \in I} \subseteq C$, with $\bigcup_{i \in I} A_i \subseteq C$, $I \subseteq \mathbb{N}$.

III) additive if $m(A \cup B) = m(A) + m(B)$, for every $A, B \in C$, with $A \cap B = \emptyset$.

IV) a submeasure (in Drewnowski’s sense [7]) if m is monotone and subadditive.

Example 3 I) If $\nu : C \to \mathbb{R}_+$ is a finitely additive set function, then $m : C \to [0, 1]$ defined for every $A \in C$ by $m(A) = \frac{\nu(A)}{\nu(\mathcal{P}(A))}$ is a submeasure.

II) ([8,9]) Let $m_n : C \to \mathbb{R}_+$ be a submeasure for every $n \in \mathbb{N}$. Then the set function $m : C \to \mathbb{R}_+$ defined by $m(A) = \sup_{n} m_n(A)$, for every $A \in C$, is a submeasure, too.

Remark 4 Suppose $m : C \to \mathbb{R}_+$ is a submeasure of finite variation. If $\overline{\mu}$ denotes the variation of m on $\mathcal{P}(T)$, then:

I) $\overline{\mu}$ is finitely additive on C.

II) The following statements are equivalent:

i) m is o-continuous;

ii) m is σ-subadditive;

iii) μ is σ-additive on C;

iv) μ is o-continuous on C.

Definition 5 For a set multifunction $\mu : C \to \mathcal{P}(X)$, with $\mu(\emptyset) = \{0\}$, we consider:

I) the extended real valued set function $|\mu|$ defined by $|\mu|(A) = |\mu(A)|$, for every $A \in C$.

II) the variation of μ defined by $\overline{\mu}(A) = \sup\{\sum_{i=1}^n |\mu(A_i)|\}$, for every $A \in \mathcal{P}(T)$, where the supremum is extended over all finite families of pairwise disjoint sets $\{A_i\}_{i=1}^{\infty} \subseteq A$, with $A_i \subseteq A$, for every $i \in \{1, \ldots, n\}$.

μ is said to be of finite variation on C if $\overline{\mu}(A) < \infty$, for every $A \in C$.

Definition 6 Let $\mu : C \to \mathcal{P}(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$, μ is said to be:

I) monotone if $\mu(A) \subseteq \mu(B)$, for every $A, B \in C$, with $A \subseteq B$.

II) a multimeasure if $\mu(A \cup B) = \mu(A) + \mu(B)$, for every $A, B \in C$, with $A \cap B = \emptyset$.

III) a multiasubmeasure if μ is monotone and $\mu(A \cup B) \leq \mu(A) + \mu(B)$, for every $A, B \in C$, with $A \cap B = \emptyset$.

IV) h-σ-subadditive if $|\mu(\bigcup_{n=1}^{\infty} A_n)| \leq \sum_{n=1}^{\infty} |\mu(A_n)|$, for every sequence of pairwise disjoint sets $(A_n)_{n \in \mathbb{N}^*} \subseteq C$, with $\bigcup_{n=1}^{\infty} A_n \subseteq C$.

V) null-additive if $\mu(A \cup B) = \mu(A)$, for every $A, B \in C$, with $\mu(B) = \{0\}$.

VI) null–null-additive if $\mu(A \cup B) = 0$, for every $A, B \in C$, with $\mu(A) = \mu(B) = \{0\}$.

VII) order-continuous (shortly, σ-continuous) if $\lim_{n \to \infty} h(\mu(A_n), \mu(A)) = 0$, for every decreasing sequence of sets $(A_n)_{n \in \mathbb{N}^*} \subseteq C$, with $\bigcup_{n=1}^{\infty} A_n = \emptyset$ (denoted by $A_n \searrow \emptyset$).

VIII) increasing convergent if $\lim_{n \to \infty} h(\mu(A_n), \mu(A)) = 0$, for every increasing se-
quence of sets \((A_n)_{n \in \mathbb{N}} \subset C\), with \(\bigcap_{n=1}^{\infty} A_n = A \in C\) (denoted by \(A_n \nearrow A\)).

Remark 7 If \(\mu\) is \(\mathcal{P}_f(X)\)-valued, then in Definition 6-II, III it usually appears the Minkowski addition instead of the classical addition because the sum of two closed sets is not, generally, a closed set.

Remark 8. I) \(\overline{\mu}\) is monotone and superadditive on \(\mathcal{P}(T)\). Also (see [12]), if \(\mu : C \rightarrow \mathcal{P}_f(X)\) is a multi(sub)measure, then \(\overline{\mu}\) is finitely additive on \(C\) and \(|\mu|\) is a submeasure.

II) Every monotone multimeasure is, particularly, a multisubmeasure. Also, any multisubmeasure is null-additive. Any null-additive set multifunction is null-null-additive. The converses are not valid.

III) Let \(\mu : A \rightarrow \mathcal{P}_f(X)\) be a multisubmeasure of finite variation. The following statements are equivalent:

i) \(\mu\) is \(h\)-\(\sigma\)-subadditive;

ii) \(\mu\) is order-continuous;

iii) \(\overline{\mu}\) is \(\sigma\)-additive on \(C\).

3 Semi-convexity, Darboux property, diffusion and atoms of set multifunctions

We present some properties regarding semi-convexity, Darboux property, diffusion and atoms for set multifunctions. These properties will be discussed in section 5 in relation with the Gould type set-valued integral.

The following notions are classical in measure theory, but they are extended to the set valued case (see for instance [2, 3, 4, 15, 16]).

Definition 9 Let \(\mu : C \rightarrow \mathcal{P}_0(X)\) be a set multifunction, with \(\mu(\emptyset) = \{0\}\).

I) We say that \(\mu\)

i) is semi-convex if for every \(A \in C\), with \(\mu(A) \supseteq \{0\}\), there is a set \(B \in C\) such that \(B \subseteq A\) and \(\mu(B) = \frac{1}{2} \mu(A)\).

ii) has the Darboux property if for every \(A \in C\), with \(\mu(A) \supseteq \{0\}\) and every \(p \in (0, 1)\), there exists a set \(B \in C\) such that \(B \subseteq A\) and \(\mu(B) = p \mu(A)\).

iii) is diffused if for every \(t \in T\), with \(\{t\} \in C\), we have \(\mu(\{t\}) = \{0\}\).

II) A set \(A \in C\) is said to be an atom of \(\mu\) if \(\mu(A) \supseteq \{0\}\) and for every \(B \in C\), with \(B \subseteq A\), we have \(\mu(B) = \{0\}\) or \(\mu(A \setminus B) = \{0\}\).

III) We say that \(\mu\)

i) finitely purely atomic if there is a finite disjoint family \((A_i)_{i=1}^{n} \subset C\) of atoms of \(\mu\) so that \(T = \bigcup_{i=1}^{n} A_i\).

ii) purely atomic if there is at most a countable number of atoms \((A_n)_n \subset C\) of \(\mu\) so that \((T \setminus \bigcup_{n=1}^{\infty} A_n) = \{0\}\) (evidently, here \(C\) must be a \(\sigma\)-algebra).

iii) non-atomic if it has no atoms.

IV) We say that \(\mu : C \rightarrow \mathcal{P}_{bc}(\mathbb{R})\) is induced by a set function \(m : C \rightarrow \mathbb{R}_{+}\), with \(m(\emptyset) = 0\), if \(\mu(A) = [0, m(A)]\), for every \(A \in C\).

Remark 10 I) The Lebesgue measure \(\mu\) is diffused. Also, the set functions \(m_1, m_2 : C \rightarrow \mathbb{R}_{+}\) defined for every \(A \in C\) by \(m_1(A) = \sqrt{\mu(A)}\) and \(m_2(A) = \frac{\mu(A)}{1+\mu(A)}\) are diffused submeasures. The same are the multisubmeasures induced by them.

II) If \(\mu_1, \mu_2 : C \rightarrow \mathcal{P}_0(X)\) are diffused submeasures, then the same is the multimeasure \(\mu_1 + \mu_2\) defined by \((\mu_1 + \mu_2)(A) = \mu_1(A) + \mu_2(A)\), for every \(A \in C\).

III) Let \(\mu : C \rightarrow \mathcal{P}_0(X)\) be a set multifunction, with \(\mu(\emptyset) = \{0\}\). Then the following statements are equivalent:

a) \(\mu\) is diffused;

b) \(|\mu|\) is diffused;

c) \(\overline{\mu}\) is diffused on \(C\).

The following result is obviously true.

Proposition 11 If the set multifunction \(\mu : C \rightarrow \mathcal{P}_0(X)\), with \(\mu(\emptyset) = \{0\}\), has the Darboux property, then it is semi-convex.

Under some assumptions, the converse of Proposition 11 is also valid, as shown below:

Theorem 12 Let \(C\) be a \(\sigma\)-ring and \(\mu : C \rightarrow \mathcal{P}_{bc}(X)\) a monotone increasing convergent multimeasure. Then \(\mu\) has the Darboux property if and only if \(\mu\) is semi-convex.

Proof. The "only if" part results from Proposition 11. The "if" part. Every \(p \in (0, 1)\) has an expansion \(p = \sum_{n=1}^{\infty} a_n p^n\), where \(a_n \in \{0, 1\}\), for every \(n \in \mathbb{N}\). Let \(A \in C\), so that \(\mu(A) \supseteq \{0\}\) and let \(p \in (0, 1)\).

By the semi-convexity of \(\mu\), there is \(B_1 \subset C\) so that \(B_1 \subseteq A\) and \(\mu(B_1) = \frac{a_1}{p} \mu(A)\).

Analogously, there is \(B_2 \subset C\) so that \(B_2 \subseteq A \setminus B_1\) and \(\mu(B_2) = \frac{a_2}{p^2} \mu(A)\) and so on. Consider \(B = \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} B_k \subset C\). We have
\(\mu(B) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} a_k \mu(A) \) (with respect to \(h \)). By Proposition 1-I and XII, it follows \(\mu(B) = p \mu(A) \), as claimed. \(\square \)

Remark 13 I) If \(\mu \) is monotone, then \(\mu \) is non-atomic if and only if for every \(A \in \mathcal{C} \), with \(\mu(A) \geq \{0\} \), there exists \(B \in \mathcal{C} \), with \(B \subseteq A \), \(\mu(B) \geq \{0\} \) and \(\mu(A \setminus B) \geq \{0\} \).

II) Let \(\nu : \mathcal{C} \to \mathbb{R}_+ \) be a set function, with \(\nu(\emptyset) = 0 \) and \(\mu \) the set multifunction induced by \(\nu \). Then \(\mu \) has the Darboux property if and only if \(\nu \) has it.

III) [15] Suppose \(T \) is a locally compact Hausdorff space. \(B \) is the Borel \(\delta \)-ring generated by the compact subsets of \(T \) and \(\mu : \mathcal{B} \to \mathcal{P}(X) \) is a multisubmeasure. Then \(\mu \) is non-atomic if and only if it is diffused.

4 \(\tilde{\mu} \)-totally-measurability

In this section we present some properties of \(\tilde{\mu} \)-totally-measurable functions. In the sequel, \(\mathcal{A} \) is an algebra of subsets of \(T \), \(\mu : \mathcal{A} \to \mathcal{P}(X) \) is a set multifunction so that \(\mu(\emptyset) = \{0\} \) and \(f : T \to \mathbb{R} \) an arbitrary function.

Definition 14 I) A partition of a set \(A \in \mathcal{A} \) is a finite family \(P = \{A_i\}_{i=1}^{n} \) of pairwise disjoint sets of \(\mathcal{A} \) such that \(\bigcup_{i=1}^{n} A_i = A \).

We denote by \(\mathcal{P} \) the class of all partitions of \(T \) and if \(A \in \mathcal{A} \) is fixed, by \(\mathcal{P}_A \), the class of all partitions of \(A \).

II) For a set multifunction \(\mu : \mathcal{A} \to \mathcal{P}(X) \), we consider the extended real valued set function \(\tilde{\mu} \) defined by \(\tilde{\mu}(A) = \inf \{\pi(B) ; A \subseteq B, B \in \mathcal{A} \} \) for every \(A \in \mathcal{P}(T) \).

Remark 15 I) \(\tilde{\mu}(A) = \mu(A) \), for every \(A \in \mathcal{A} \), \(\tilde{\mu} \) is monotone and if \(\pi \) is subadditive, then \(\tilde{\mu} \) is also subadditive.

II) Suppose \(\mu : \mathcal{A} \to \mathcal{P}(X) \) is a multisubmeasure of finite variation. Then:

i) \(\tilde{\mu} \) is a submeasure.

ii) If, moreover, \(\mu \) is \(h \)-\(\sigma \)-subadditive, then \(\tilde{\mu} \) is \(\sigma \)-subadditive.

Definition 16 I) \(f \) is said to be \(\tilde{\mu} \)-totally-measurable on \((T, \mathcal{A}, \mu) \) if for every \(\varepsilon > 0 \) there exists a partition \(P_{\varepsilon} = \{A_i\}_{i=1}^{n} \) of \(T \) such that:

\[
\begin{align*}
(\ast) & \quad \tilde{\mu}(A_0) < \varepsilon \quad \text{and} \\
& \quad \sup_{t, s \in A_i} |f(t) - f(s)| = \text{osc}(f, A_i) < \varepsilon, \\
& \quad \text{for every } i = 1, \ldots, n.
\end{align*}
\]

II) \(f \) is said to be \(\tilde{\mu} \)-totally-measurable on \(B \in \mathcal{A} \) if the restriction \(f|_B \) of \(f \) to \(B \) is \(\tilde{\mu} \)-totally measurable on \((B, \mathcal{A}_B, \mu_B) \), where \(\mathcal{A}_B = \{A \cap B ; A \in \mathcal{A} \} \) and \(\mu_B = \mu|_{\mathcal{A}_B} \).

One can easily observe that if \(f \) is \(\tilde{\mu} \)-totally-measurable on \(T \), then \(f \) is \(\tilde{\mu} \)-totally-measurable on every \(A \in \mathcal{A} \).

Definition 17 We say that a property \((P)\) holds \(\mu \)-almost everywhere (shortly, \(\mu \)-ae) if there is \(A \in \mathcal{P}(T) \), with \(\mu(A) = 0 \), so that the property \((P)\) is valid on \(T \setminus A \).

Definition 18 Let \(f_n : T \to \mathbb{R} \) be a real function for every \(n \in \mathbb{N} \). One says that the sequence \((f_n) \)

I) converges in submeasure to \(f \) (denoted by \(f_n \xrightarrow{\mu} f \)) if for every \(\varepsilon > 0 \), \(\lim_{n \to \infty} \mu(B_n(\varepsilon)) = 0 \), where

\(B_n(\varepsilon) = \{t \in T ; |f_n(t) - f(t)| \geq \varepsilon \}. \)

II) converges almost everywhere to \(f \) (denoted by \(f_n \xrightarrow{\text{a.e.}} f \)) if there is \(A \in \mathcal{P}(T) \) so that \(\mu(A) = 0 \) and \((f_n) \) pointwise converges to \(f \) on \(T \setminus A \).

III) \((\text{Li}[23, 24])\) is almost uniformly convergent on \(T \) (with respect to \(\tilde{\mu} \)), denoted by \(f_n \xrightarrow{\text{au}} f \), if there exists \((A_k)_{k \in \mathbb{N}^*} \subseteq \mathcal{A} \), with \(\lim_{k \to \infty} \mu(A_k) = 0 \), such that \(f_n \) converges to \(f \) on \(T \setminus A_k \) uniformly for any fixed \(k \in \mathbb{N}^* \).

From now on, \(\mu \) is supposed to be of finite variation.

Theorem 19 Let \(\mu : \mathcal{A} \to \mathcal{P}(X) \) be a multisubmeasure.

I) \((\text{Li})\) If \(f, g : T \to \mathbb{R} \) are bounded \(\tilde{\mu} \)-totally-measurable functions, then:

i) \(f + g \) is \(\tilde{\mu} \)-totally-measurable;

ii) \(\lambda f \) is \(\tilde{\mu} \)-totally-measurable, for every \(\lambda \in \mathbb{R} \);

iii) \(f^2 \) and \(f g \) are \(\tilde{\mu} \)-totally-measurable;

iv) \(|f|^p \) is \(\tilde{\mu} \)-totally-measurable, for every \(p \in [1, +\infty] \);

v) If \(\text{inf}_{t \in T} f(t) > 0 \), then \(\frac{1}{f} \) is \(\tilde{\mu} \)-totally-measurable.

II) Suppose \(f, g : T \to \mathbb{R} \) are bounded functions. If \(|f|^p \) and \(|g|^p \) are \(\tilde{\mu} \)-totally-measurable for an arbitrary \(p \in [1, +\infty] \), then \(|f + g|^p \) is \(\tilde{\mu} \)-totally-measurable.

III) \((\text{Li}[13])\) If for every \(n \in \mathbb{N} \), \(f_n : T \to \mathbb{R} \) is bounded \(\tilde{\mu} \)-totally-measurable and \((f_n) \) is convergent in submeasure to a bounded function \(f : T \to \mathbb{R} \), then \(f \) is \(\tilde{\mu} \)-totally-measurable.
Remark 20 If \(\varphi : \mathbb{R} \to \mathbb{R} \) is Lipschitz, then \(\varphi \circ f \) is \(\tilde{\mu} \)-totally-measurable.

Proposition 21 Let \(\mu : \mathcal{A} \to \mathcal{P}_{f}(X) \) be a (multi)(sub)measure, \(f : T \to \mathbb{R} \) a bounded function and \(A, B \in \mathcal{A} \), with \(A \cap B = \emptyset \). Then \(f \) is \(\tilde{\mu} \)-totally-measurable on \(A \cup B \) if and only if it is \(\tilde{\mu} \)-totally-measurable on \(A \) and \(\tilde{\mu} \)-totally-measurable on \(B \).

Proof. The if part is straightforward. For the only if part, by the \(\tilde{\mu} \)-totally-measurability of \(f \) on \(A \) and \(B \), there are \(P_{\varepsilon}^{A} = \{ A_{i} \}_{i=0}^{\infty} \in \mathcal{P}_{A} \) and \(P_{\varepsilon}^{B} = \{ B_{j} \}_{j=0}^{\infty} \in \mathcal{P}_{B} \) satisfying the condition (*). Since \(\tilde{\mu} \) is additive on \(A \), then \(P_{\varepsilon}^{A \cup B} = \{ A_{0} \cup B_{0}, A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{q} \} \in \mathcal{P}_{A \cup B} \) also satisfies condition (*), so \(f \) is \(\tilde{\mu} \)-totally-measurable on \(A \cup B \). \(\Box \)

Remark 22 I) In the above proposition, \(A \) and \(B \) need not to be disjoint. Indeed, if we take arbitrary \(A, B \in \mathcal{A} \), since \(A \cup B = (A \setminus B) \cup B \) and \(\tilde{\mu} \)-totally-measurability is hereditary, the statement follows.

II) Under the assumptions of the above proposition, if \(\{ A_{i} \}_{i=1}^{n} \subseteq \mathcal{A} \), then \(f \) is \(\tilde{\mu} \)-totally-measurable on \(\bigcup_{i=1}^{n} A_{i} \), if and only if the same is \(f \) on every \(A_{i} \), \(i = 1, \ldots, n \).

Proposition 23 If \(\mathcal{A} \) is a \(\sigma \)-algebra, \(\mu : \mathcal{A} \to \mathcal{P}_{f}(X) \) is an \(\sigma \)-continuous (multi)(sub)measure, \(f : T \to \mathbb{R} \) is a bounded function and \((A_{n})_{n} \subseteq \mathcal{A} \) are pairwise disjoint, then \(f \) is \(\tilde{\mu} \)-totally-measurable on every \(A_{n}, n \in \mathbb{N} \) if and only if the same is \(f \) on \(A = \bigcup_{n=1}^{\infty} A_{n} \).

Proof. The only if part immediately follows. The if part: Since \(\mu \) is an \(\sigma \)-continuous (multi)(sub)measure of finite variation, then \(\tilde{\mu} \) is additive on \(\mathcal{A} \), so \(\tilde{\mu} \) is also \(\sigma \)-continuous on \(\mathcal{A} \). We observe that \(A \setminus \bigcup_{k=1}^{n} A_{k} \neq \emptyset \), so for every \(\varepsilon > 0 \), there is \(n_{0} \in \mathbb{N} \), with \(\tilde{\mu}(A \setminus \bigcup_{k=1}^{n_{0}} A_{k}) < \varepsilon \).

Since for every \(l = \bigcup_{k=1}^{n_{0}} A_{k} \), \(f \) is \(\tilde{\mu} \)-totally-measurable on \(A_{l} \), let \(\{ B_{j}^{l} \}_{i=1}^{\infty} \subseteq \mathcal{P}_{A_{l}}(\mathbb{R}) \) be the corresponding partitions satisfying (*).

The partition \(P_{\varepsilon}^{A_{l}} = \{ (A \setminus \bigcup_{k=1}^{n_{0}} A_{k}), \{ B_{j}^{l} \}_{j=1}^{\infty} \subseteq \mathcal{P}_{A_{l}}(\mathbb{R}) \} \subseteq \mathcal{P}_{A} \) satisfies (*), so \(f \) is \(\tilde{\mu} \)-totally-measurable on \(A = \bigcup_{n=1}^{\infty} A_{n} \). \(\Box \)

Theorem 24 Suppose \(\mathcal{A} \) is a \(\sigma \)-algebra, \(\mu : \mathcal{A} \to \mathbb{R}_{+} \) is an \(\sigma \)-continuous submeasure of finite variation and \((f_{n})_{n \in \mathbb{N}^{+}} \) is a sequence of uniformly bounded \(\tilde{\mu} \)-totally-measurable functions \(f_{n} : T \to \mathbb{R} \). Then \(g \) defined for every \(t \in T \) by \(g(t) = \inf_{n \in \mathbb{N}^{+}} f_{n}(t) \), is \(\tilde{\mu} \)-totally-measurable.

Proof. One can easily check that for every \(t, s \in T \), the following inequality holds:

\[
\left| g(t) - g(s) \right| \leq \sup_{n \in \mathbb{N}^{+}} \left| f_{n}(t) - f_{n}(s) \right|.
\]

Since for every \(n \in \mathbb{N}^{+} \), \(f_{n} \) is \(\tilde{\mu} \)-totally-measurable, then for every \(\varepsilon > 0 \), there is a partition \(P_{\varepsilon}^{n} = \{ A_{j}^{n} \}_{j=0}^{\infty} \subseteq \mathcal{P} \) so that \(\tilde{\mu}(A_{0}^{n}) < \frac{\varepsilon}{2n+1} \) and

\[
\sup_{t,s \in A_{j}^{n}} \left| f_{n}(t) - f_{n}(s) \right| < \frac{\varepsilon}{2n+1}, \text{ for every } j = 1, 2, \ldots, p_{n}.
\]

Let \(A_{0} = \bigcup_{n=1}^{\infty} A_{n}^{n} \in \mathcal{A} \). Because \(\mu \) is an \(\sigma \)-continuous submeasure of finite variation, then, by Remark 4-II, \(\tilde{\mu} \) is \(\sigma \)-additive on \(\mathcal{A} \), so,

\[
\tilde{\mu}(A_{0}) \leq \sum_{n=1}^{\infty} \tilde{\mu}(A_{n}^{n}) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2n+1} < \frac{\varepsilon}{2}.
\]

On the other hand,

\[
c_{A_{0}} = \sum_{n=1}^{\infty} c_{A_{n}^{n}} = \sum_{n=1}^{\infty} (A_{1}^{n} \cup A_{2}^{n} \cup \ldots \cup A_{p_{n}}^{n}) = (A_{1}^{1} \cup A_{2}^{1} \cup \ldots \cup A_{p_{1}}^{1}) \cap (A_{1}^{2} \cup A_{2}^{2} \cup \ldots \cup A_{p_{2}}^{2}) \cap \ldots = \bigcup_{(i_{n}) \in \prod_{n=1}^{\infty} I_{n}} (A_{i_{1}}^{1} \cap A_{i_{2}}^{2} \cap \ldots \cap A_{i_{n}}^{n}, \ldots),
\]

where \(I_{n} = \{1, 2, \ldots, p_{n}\} \), for every \(n \in \mathbb{N}^{+} \). Denote the last reunion by \(\bigcup_{n=1}^{\infty} B_{n} \). Now let \(C_{n} = \bigcup_{k=1}^{n} B_{k} \) and \(D_{n} = c_{A_{0}} \setminus C_{n} \), for every \(n \in \mathbb{N}^{+} \). We observe that \(B_{n} \cap B_{m} = \emptyset \) whenever \(n \neq m \), \(\bigcup_{n=1}^{\infty} C_{n} = \bigcup_{n=1}^{\infty} B_{n} = c_{A_{0}} \) and \(D_{n} \neq \emptyset \).

Since \(\tilde{\mu} \) is \(\sigma \)-continuous, there is \(n_{0}(\varepsilon) = n_{0} \in \mathbb{N}^{+} \) such that \(\tilde{\mu}(c_{A_{0}} \setminus \bigcup_{i=1}^{n_{0}} B_{i}) < \frac{\varepsilon}{2} \). Because \(\tilde{\mu}(A_{0}) < \frac{\varepsilon}{2} \), we get \(\tilde{\mu}(c_{A_{0}} \setminus \bigcup_{i=1}^{n_{0}} B_{i}) < \varepsilon \).

From (1) and (2), we have:

\[
\sup_{t,s \in B_{i}} \left| f_{n}(t) - f_{n}(s) \right| \leq \sup_{t,s \in B_{i}} \left| f_{n}(t) - f_{n}(s) \right| < \frac{\varepsilon}{2}, \quad \forall i \in \{1, \ldots, n_{0}\}.
\]

If we now consider the partition \(P_{\varepsilon} = \{ c_{\bigcup_{i=1}^{n_{0}} B_{i}}, B_{1}, \ldots, B_{n_{0}} \} \), we obtain that \(g \) is \(\tilde{\mu} \)-totally-measurable. \(\Box \)
Corollary 25 Under the assumptions of Theorem 24, the function \(h \) defined for every \(t \in T \) by \(h(t) = \sup_{n \in \mathbb{N}^*} f_n(t) \), is \(\tilde{\mu} \)-totally-measurable. Moreover, supposing there exists \(\lim_{n \to \infty} f_n(t) = f(t) \), for every \(t \in T \), then \(f \) is \(\tilde{\mu} \)-totally-measurable on \(T \).

Theorem 26 Suppose \((T, \rho) \) is a compact metric space, \(B \) is the Borel \(\sigma \)-ring generated by the compact subsets of \(T \), \(f : T \to \mathbb{R} \) is continuous on \(T \) and \(\mu : B \to \mathcal{P}_f(X) \) is a finitely purely atomic multimeasure. Then \(f \) is \(\tilde{\mu} \)-totally-measurable on \(T \).

Proof. According to Remark 22, it is sufficient to establish the \(\tilde{\mu} \)-totally-measurability of \(f \) on an arbitrary, fixed atom \(A_0 \) of \(\mu \). Since \(\mu \) is a multimeasure, by [15], there is an unique \(a_0 \in A_0 \) so that \(\mu(A_0 \setminus \{a_0\}) = 0 \).

Let \(\varepsilon > 0 \). Since \(f \) is continuous in \(a_0 \), there is \(\delta_\varepsilon > 0 \) so that for every \(t \in A_0 \), with \(\rho(t, a_0) < \delta_\varepsilon \), we have \(|f(t) - f(a_0)| < \frac{\varepsilon}{2} \).

Let \(B_\varepsilon = \{ t \in A_0 \mid \rho(t, a_0) < \delta_\varepsilon \} \) and \(B_0(a_0, \delta_\varepsilon) \) be the open ball of center \(a_0 \) and radius \(\delta_\varepsilon \). It results \(B_\varepsilon \in \mathcal{B} \). Since \(A_0 \) is an atom, we have \(\mu(B_\varepsilon) = \{0\} \) or \(\mu(A_0 \setminus B_\varepsilon) = \{0\} \).

If \(\mu(B_\varepsilon) = \{0\} \), then \(a_0 \in B_\varepsilon \), we get \(\mu(A_0 \setminus \{a_0\}) = 0 \). But \(\mu(A_0 \setminus \{a_0\}) = 0 \), so \(\mu(A_0) = \{0\} \), a contradiction. So, we have \(\mu(A_0 \setminus B_\varepsilon) = \{0\} \).

Now, one can easily observe that the partition \(P_{A_0} = A_0 \setminus B_\varepsilon \), assures the \(\tilde{\mu} \)-totally-measurability of \(f \).

5 Semi-convexity, diffusion, atoms and purely atomicity for a Gould type set-valued integral

In this section, we establish results concerning semi-convexity, diffusion, atoms and purely atomicity for the Gould type set-valued integral introduced and studied in [30].

In what follows, without any special assumptions, we suppose \(A \) is an algebra of subsets of \(T \), \(X \) is a Banach space, \(\mu : A \to \mathcal{P}_f(X) \) is a set multifunction of finite variation, with \(\mu(\emptyset) = \{0\} \) and \(f : T \to \mathbb{R} \) is a bounded function. We now recall the following notions and results (see [12, 13, 28, 29]).

Remark 27 If \(\mu : A \to \mathcal{P}_f(X) \) is of finite variation, then \(\mu \) takes its values in \(\mathcal{P}_0f(X) \).

Definition 28 I) Let \(P = \{A_i\}_{i=1}^{\infty} \) and \(P' = \{B_j\}_{j=1}^{\infty} \) be two partitions of \(T \). \(P' \) is said to be finer than \(P \), denoted \(P \leq P' \) (or \(P' \geq P \)) if for every \(j = 1, \ldots, m \), there exists \(i_j = 1, \ldots, m \) so that \(B_j \subseteq A_{i_j} \).

II) The common refinement of two partitions \(P = \{A_i\}_{i=1}^{\infty} \) and \(P' = \{B_j\}_{j=1}^{\infty} \) is the partition \(P \land P' = \{A_i \cap B_j\}_{i=1}^{\infty} \).

Definition 29 ([30]) For every partition \(P = \{A_i\}_{i=1}^{\infty} \) of \(T \) and every \(t_i \in A_i \), let \(\sigma_{t_i}(P) \) (or, if there is no doubt, \(\sigma_f(P), \sigma_{\mu}(P), \sigma(P) \)) be:

\[
\sigma_f(P) = \sum_{i=1}^n f(t_i)\mu(A_i) = f(t_1)\mu(A_1) + \ldots + f(t_n)\mu(A_n).
\]

I) \(f \) is said to be \(\mu \)-integrable on \((T, A, \mu) \) if the net \(\sigma_f(P) \) is convergent in \(\mathcal{P}_f(X) \), where \(P \) is ordered by the relation \(\leq \) given in Definition 4.2.

II) For an arbitrary \(B \subseteq A \), \(f \) is said to be \(\mu \)-integrable on \(B \) if the restriction \(f |_B \) is \(\mu \)-integrable on \((B, A_B, \mu_B) \).

Remark 30 I) \(f \) is \(\mu \)-integrable on \(T \) if and only if there exists a set \(I \subseteq \mathcal{P}_f(X) \) such that for every \(\varepsilon \), there exists a partition \(P_{\varepsilon} \) of \(T \), so that for every other partition of \(T \), \(P = \{A_i\}_{i=1}^{\infty} \), with \(P \geq P_{\varepsilon} \) and every choice of points \(t_i \in A_i \), we have \(h(\sigma_f(P), I) < \varepsilon \).

II) If \(\mu \) is a measure (multimeasure, submeasure, monotone set multifunction, respectively), we obtain the corresponding definitions of [28, 12, 17, 29], respectively.

III) If \(\mu \) is a multimeasure and \(f = 1 \), then \(\int_T f \, d\mu = \mu(T) \).

IV) If \(\mu : A \to \mathcal{P}_{kc}(X) \), then \(\int_T f \, d\mu \in \mathcal{P}_{kc}(X) \).

V) Suppose \(m : A \to \mathbb{R}_+ \) is an arbitrary set function of finite variation with \(m(\emptyset) = 0 \) and consider the set multifunction \(\mu : A \to \mathcal{P}_f(\mathbb{R}) \) defined by \(\mu(A) = \{m(A)\} \) for every \(A \subseteq A \). Then, by II), \(f \) is \(m \)-integrable on \(T \) if and only if there is \(I \subseteq \mathbb{R} \) such that for every \(\varepsilon \), there exists a partition \(P_{\varepsilon} \) of \(T \), so that for every other partition of \(T \), \(P = \{A_i\}_{i=1}^{\infty} \), with \(P \geq P_{\varepsilon} \) and every choice of points \(t_i \in A_i \), we have \(|\sigma_f(P) - I| = |\sum_{i=1}^n f(t_i)m(A_i) - I| < \varepsilon \).

Here, \(I = \int_T f \, dm \).

Moreover, if \(m \) is finitely additive and \(f = 1 \), then \(\int_T f \, dm = m(T) \).

VI) Our integral, if it exists, is unique and has the following properties: homogeneity and additivity with
respect to the function \(f \) and the set multifunction \(\mu \), additivity with respect to the set, monotonicity with respect to the function \(f \), to the set multifunction \(\mu \), and to the set (see [28]–[30] for details). The assumption of monotonicity is not necessary in [29], as observed in [30]).

VII Let \(m : A \to [0, 1] \) be a submeasure of finite variation. One can easily check that the set function \(m_1 : A \to [0, 1] \) defined for every \(A \in \mathcal{A} \) by \(m_1(A) = \sin m(A) \) is also a submeasure of finite variation (since \(\overline{\mu}(A) \leq \mu(A) \), for every \(A \subseteq T \)).

Suppose \(f : T \to \mathbb{R} \) is bounded. Since, according to [17], \(\mu \)-integrability of \(f \) is equivalent to its \(\overline{m} \)-totally-measurability and because \(\frac{2}{\pi} t \leq \sin t \leq t \), for every \(t \in [0, \frac{\pi}{2}] \), then \(f \) is \(m \)-integrable if and only if \(f \) is \(m_1 \)-integrable.

Theorem 31
I Let \(f : T \to \mathbb{R} \) be a \(\mu \)-integrable function. Then

\[
\left| \int_T f \, d\mu \right| \leq \sup_{t \in T} (f(t)) \cdot \overline{\mu}(T).
\]

II Let \(f : T \to \mathbb{R} \) and \(A, B \in \mathcal{A} \), with \(A \cap B = \emptyset \). If \(f \) is \(\mu \)-integrable on \(A \) and \(\mu \)-integrable on \(B \), then \(f \) is \(\mu \)-integrable on \(A \cup B \) and \(\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu \).

III Suppose \(\mu : A \to \mathcal{P}_{\mathcal{K}}(X) \). If \(f : T \to \mathbb{R} \) is \(\mu \)-integrable on \(T \), then \(f \) is \(\mu \)-integrable on every \(B \in \mathcal{A} \).

IV If \(f : T \to \mathbb{R} \) is \(\mu \)-integrable on every \(A \in \mathcal{A} \), then the set multifunction \(M : A \to \mathcal{P}(X) \), defined by

\[
(*) M(A) = \int_A f \, d\mu, \text{ for every } A \in \mathcal{A},
\]

is a monotone multimeasure, \(M \ll \mu \) and \(M \) is strongly absolutely continuous with respect to \(\mu \).

V If \(f, g : T \to \mathbb{R} \) are bounded functions so that \(f \) is \(\mu \)-integrable on \(T \) and \(f = g \) \(\mu \)-a.e., then \(g \) is \(\mu \)-integrable on \(T \) and \(\int_T f \, d\mu = \int_T g \, d\mu \).

Remark 32 By Theorem 31-1 and Remark 10-III, we immediately get that if \(\mu : A \to \mathcal{P}_{\mathcal{K}}(X) \) is diffused, then the same is \(M \) defined in (**). Also, by Remark 30-I, if \(\inf_{t \in T} f(t) > 0 \), then the converse is also valid.

So, in this case, \(\mu \) is diffused if and only if the same is \(M \).

Proposition 33 Let \(m_1, m_2 : A \to \mathbb{R}_+ \) be set functions of finite variation, so that \(m_1 \leq m_2 \) and \(m_1(\emptyset) = m_2(\emptyset) = 0 \), \(f : T \to \mathbb{R} \) and \(\mu : A \to \mathcal{P}_{\mathcal{K}}(\mathbb{R}) \) the set multifunction defined by \(\mu(A) = [m_1(A), m_2(A)] \), for every \(A \in \mathcal{A} \). Then \(f \) is \(\mu \)-integrable on \(T \) if and only if \(f \) is \(m_1 \)-integrable on \(T \) and \(m_2 \)-integrable on \(T \) and, in this case,

\[
\int_T f \, d\mu = \left[\int_T f \, dm_1, \int_T f \, dm_2 \right].
\]

Proof. \(f \) is \(m_1 \)-integrable on \(T \) and \(m_2 \)-integrable on \(T \) if and only if for every \(\varepsilon > 0 \), there exists a partition \(P_\varepsilon \) of \(T \) so that for every other partitions of \(T \), \(P' = \{ A_i \}_{i=\overline{1,n}}, P'' = \{ B_j \}_{j=\overline{1,p}} \), so that \(P' \geq P_\varepsilon \), \(P'' \geq P_\varepsilon \) and every \(t_i \in A_i, i = \overline{1,n}, s_j \in B_j, j = \overline{1,p} \), we have

\[
\left| \sum_{i=1}^n f(t_i)m_k(A_i) - \sum_{j=1}^p f(s_j)m_k(B_j) \right| < \varepsilon, \quad k = 1, 2.
\]

Since

\[
h\left(\sum_{i=1}^n f(t_i)m_1(A_i), \sum_{j=1}^p f(s_j)m_1(B_j) \right) = h\left(\sum_{i=1}^n f(t_i)m_1(A_i), \sum_{i=1}^n f(t_i)m_2(A_i) \right),
\]

\[
\left\| \sum_{j=1}^p f(s_j)m_1(B_j) \cdot \sum_{j=1}^p f(s_j)m_2(B_j) \right\| = \max \left\{ \left| \sum_{i=1}^n f(t_i)m_1(A_i) - \sum_{j=1}^p f(s_j)m_1(B_j) \right|, \right.
\]

\[
\left. \left| \sum_{i=1}^n f(t_i)m_2(A_i) - \sum_{j=1}^p f(s_j)m_2(B_j) \right| \right\}
\]

it follows that for every \(\varepsilon > 0 \), there exists a partition \(P_\varepsilon \) of \(T \) so that for every other partitions of \(T \), \(P' = \{ A_i \}_{i=\overline{1,n}}, P'' = \{ B_j \}_{j=\overline{1,p}} \), so that \(P' \geq P_\varepsilon \), \(P'' \geq P_\varepsilon \) and every \(t_i \in A_i, i = \overline{1,n}, s_j \in B_j, j = \overline{1,p} \), we have

\[
h\left(\sum_{i=1}^n f(t_i)m(A_i), \sum_{j=1}^p f(s_j)m(B_j) \right) < \varepsilon,
\]

which means that \(f \) is \(\mu \)-integrable on \(T \).

Now, let us prove that \(\int_T f \, d\mu = \left[\int_T f \, dm_1, \int_T f \, dm_2 \right] \).

Since \(f \) is \(\mu \)-integrable on \(T \), \(m_1 \)-integrable on \(T \) and \(m_2 \)-integrable on \(T \), it results that for every \(\varepsilon > 0 \), there exists a partition \(\{ C_k \}_{k=\overline{1,T}} \) of \(T \) so that for every...
\[s_k \in C_k, k = 1, \ldots, n, \text{ we have} \]

\[h(\int_T f \, d\mu, \sum_{k=1}^l f(s_k)\mu(C_k)) < \frac{\varepsilon}{2} \quad \text{and} \]

\[\left| \int_T f \, d\mu_m - \sum_{k=1}^l f(s_k)m_i(C_k) \right| < \frac{\varepsilon}{2}, \quad i = 1, 2. \]

Then

\[h(\int_T f \, d\mu, [\int_T f \, d\mu_1, \int_T f \, d\mu_2]) \leq \]

\[\leq h(\int_T f \, d\mu, \sum_{k=1}^l f(s_k)\mu(C_k)) \]

\[+ h(\sum_{k=1}^l f(s_k)\mu(C_k), [\int_T f \, d\mu_1, \int_T f \, d\mu_2]) = \]

\[= h(\int_T f \, d\mu, \sum_{k=1}^l f(s_k)\mu(C_k)) \]

\[+ \max \left\{ \left| \int_T f \, d\mu_1 - \sum_{k=1}^l f(s_k)m_1(C_k) \right|, \right. \]

\[\left. \left| \int_T f \, d\mu_2 - \sum_{k=1}^l f(s_k)m_2(C_k) \right| \right\} < \varepsilon, \]

for every \(\varepsilon > 0 \) and this implies \(\int_T f \, d\mu = [\int_T f \, d\mu_1, \int_T f \, d\mu_2] \).

Taking \(m_1 = 0 \) in Proposition 33, we obtain the following result.

Corollary 34 Let \(m : A \to \mathbb{R}_+ \) be a set function of finite variation with \(m(\emptyset) = 0 \), \(\mu : C \to \mathcal{P}_{kc}(\mathbb{R}) \) the set multifunction defined by \(\mu(A) = [0, m(A)] \), for every \(A \in C \) and \(f : T \to \mathbb{R} \). Then \(f \) is \(\mu \)-integrable on \(T \) if and only if \(f \) is \(m \)-integrable on \(T \) and, in this case,

\[\int_T f \, d\mu = [0, \int_T f \, d\mu]. \]

Theorem 35 Let \(\mu : A \to \mathcal{P}_{kc}(X) \) be a semi-convex multifunction and \(f : T \to \mathbb{R} \) a \(\tilde{\mu} \)-totally-measurable bounded function on \(T \). Then \(M \) defined in (**) is also semi-convex.

Proof. The following statements, even they are established for \(T \), remain valid for any arbitrary set \(A \in \mathcal{A} \). Also, according to [28], \(f \) is \(\mu \)-integrable on \(T \) and on every \(A \in \mathcal{A} \). Consider arbitrary \(\varepsilon > 0 \) and let

\[M = \max_{T \in \mathcal{T}} |\tilde{\mu}(T)|, \quad \text{sup}_{T \in \mathcal{T}} |f(t)|. \]

By the \(\mu \)-integrability of \(f \) on \(T \), there is a partition \(\{A_i\}_{i=1}^{n, q} \) of \(T \) such that for every \(s_i \in A_i \),

\[i = 1, n, \text{ we have} \]

\[h(\int_T f \, d\mu, \sum_{i=1}^n f(s_i)\mu(A_i)) < \frac{2\varepsilon}{3}, \]

so \(h(\frac{1}{2} \int_T f \, d\mu, \sum_{i=1}^n f(s_i)\frac{1}{2}\mu(A_i)) < \frac{\varepsilon}{3} \).

Because \(\mu \) is semi-convex, for every \(i = 1, n \), there is \(B_i \subset A_i \) so that \(B_i \in A \) and \(\mu(B_i) = \frac{1}{2}\mu(A_i) \), which implies

\[h(\frac{1}{2} \int_T f \, d\mu, \sum_{i=1}^n f(s_i)\mu(B_i)) < \frac{\varepsilon}{3}. \]

Since \(f \) is \(\mu \)-integrable on \(B = \bigcup_{i=1}^n B_i \), there exists a partition \(\tilde{\mu} = \{D_k\}_{k=1}^\infty \in \mathcal{P}_B \) so that for every partition \(P \in \mathcal{P}_B \), with \(P \geq \tilde{\mu} \), we have

\[h(f \, d\mu, \sigma(P)) < \frac{\varepsilon}{3}. \]

On the other hand, because \(f \) is \(\tilde{\mu} \)-totally-measurable on \(B \), there is a partition \(\tilde{\mu} = \{E_i\}_{i=0}^\infty \in \mathcal{P}_B \) such that \(|\tilde{\mu}(E_0)| < \frac{\varepsilon}{2|\mathcal{M}|} \) and

\[\sup_{t \in \mathcal{T}, s \in E_l} |f(t) - f(s)| < \frac{\varepsilon}{6|\mathcal{M}|}, \text{ for every } l = 1, m. \]

Consider \(\{D_k \cap E_i\}_{k=1}^\infty \), \(\{l, m\} \in \mathcal{P}_B \) and denote it by \(\{C_j\}_{j=1}^{12} \). For instance, \(C_1 = D_1 \cap E_0, C_2 = D_2 \cap E_0, \ldots, C_{12} = D_1 \cap E_0, C_{13} = D_1 \cap E_1 \) etc. We observe that

\[\tilde{\mu}(\bigcup_{j=1}^{12} C_j) = \tilde{\mu}(E_0) < \frac{\varepsilon}{12|\mathcal{M}|} \quad \text{and} \]

\[\sup_{t \in \mathcal{T}, s \in C_j} |f(t) - f(s)| < \frac{\varepsilon}{6|\mathcal{M}|}, \text{ for every } j = s + 1, q. \]

Let \(\mu_B = \{B_i \cap C_j\}_{i=1}^{1, n}, j=1, m \in \mathcal{P}_B \). Since \(\mu_B \geq \tilde{\mu} \), then \(h(f \, d\mu, \sigma(\mu_B)) < \frac{\varepsilon}{3}. \)

Now, we have:

\[h(\frac{1}{2} \int_T f \, d\mu, \int_B f \, d\mu) \leq h(\frac{1}{2} \int_T f \, d\mu, \sum_{i=1}^n f(s_i)\mu(B_i)) \]

\[+ h(\int_B f \, d\mu, \sigma(\mu_B)) \]

\[+ h(\sigma(\mu_B), \sum_{i=1}^n f(s_i)\mu(B_i)) < \frac{2\varepsilon}{3}. \]

It only remains to prove that for every \(\theta_{ij} \in B_i \cap C_j \), \(i = 1, n, j = 1, q. \)

\[h(\sigma(\mu_B), \sum_{i=1}^n f(s_i)\mu(B_i)) \]

\[= h(\sum_{i=1}^n f(\theta_{ij})\mu(B_i \cap C_j), \sum_{i=1}^n f(s_i)\mu(B_i)) < \frac{\varepsilon}{3}. \]
Indeed, we have:

\[h(\sum_{i=1}^{n} \sum_{j=1}^{q} f(\theta_{ij}) \mu(B_i \cap C_j), \sum_{i=1}^{n} f(s_i) \mu(B_i)) = \]

\[= h(\sum_{i=1}^{n} \sum_{j=1}^{q} f(\theta_{ij}) \mu(B_i \cap C_j), \sum_{i=1}^{n} f(s_i) \mu(B_i)) \leq \]

\[\leq \sum_{i=1}^{n} \sum_{j=1}^{q} |f(s_i) - f(\theta_{ij})| \cdot |\mu(B_i \cap C_j)| = \]

\[= \sum_{i=1}^{n} \sum_{j=1}^{q} |f(s_i) - f(\theta_{ij})| \cdot |\mu(B_i \cap C_j)| + \]

\[+ \sum_{i=1}^{n} \sum_{j=s+1}^{q} |f(s_i) - f(\theta_{ij})| \cdot |\mu(B_i \cap C_j)| \leq \]

\[\leq 2M \sum_{j=1}^{s} \overline{P}(C_j) + \sum_{j=s+1}^{q} |f(s_i) - f(\theta_{ij})| \cdot \overline{P}(C_j) < \]

\[< 2M \overline{P}(\bigcup_{j=1}^{s} C_j) + \frac{\varepsilon}{6M} \overline{P}(\bigcup_{j=s+1}^{q} C_j) \]

\[< 2M \frac{\varepsilon}{12M} + \frac{\varepsilon}{6M} = \frac{\varepsilon}{3}. \]

Consequently, \(h(\frac{1}{2} \int_{T} f \, d\mu, \int_{B} f \, d\mu) < \varepsilon, \) for every \(\varepsilon > 0, \) so \(\frac{1}{2} \int_{T} f \, d\mu = \int_{B} f \, d\mu. \) Therefore, \(M \) is semi-convex. \(\square \)

Theorem 36 Suppose \(\mu : A \to \mathcal{P}_f(X) \) is monotone, null-additive and finitely purely atomic. If \(f \) is \(\mu \) -totally-measurable on \(T, \) then \(f \) is \(\mu \) -integrable on \(T. \)

Proof. According to Theorem 31-II, it will be sufficient to prove that \(f \) is \(\mu \) -integrable on every atom \(A \) of \(\mu. \) First, we observe that, if \(A \) is an atom of \(\mu \) and if \(\{A_i\}_{i=1}^{n} \in \mathcal{P}_A, \) then, there exists only one set, for instance, without any loss of generality, \(A_1, \) so that \(\mu(A_1) \geq \{0\} \) and \(\mu(A_2) = \ldots = \mu(A_n) = \{0\}. \)

Let \(A \in \mathcal{A} \) be an atom of \(\mu. \)

Since \(f \) is \(\mu \) -totally-measurable on \(A, \) then for every \(\varepsilon > 0 \) there exists a partition \(P_{\varepsilon} = \{A_i\}_{i=1}^{n} \) of \(A \) such that:

\[(*) \]

\[i) \ \mu(A_0) < \frac{\varepsilon}{2M} \text{ (where } M = \sup_{t \in T} |f(t)| \text{ and } \)

\[ii) \sup_{t \in A_i} |f(t) - f(s)| < \frac{\varepsilon}{M \overline{P}(T)}, \text{ for every } i = 1, n. \]

Let \(\{B_j\}_{j=1}^{k}, \{C_p\}_{p=1}^{s} \in \mathcal{P}_A \) be two arbitrary partitions which are finer than \(P_{\varepsilon} \) and consider \(s_j \in B_j, j = 1, k, \theta_p \in C_p, p = 1, s. \)

We prove that

\[h(\sum_{j=1}^{k} f(s_j) \mu(B_j), \sum_{p=1}^{s} f(\theta_p) \mu(C_p)) < \varepsilon. \]

We have two cases:

I. \(\mu(A_0) \geq \{0\}. \) Then \(\mu(A_1) = \ldots = \mu(A_n) = \{0\}. \)

Suppose, without any loss of generality that \(\mu(B_1) \geq \{0\}, \mu(C_1) \geq \{0\} \) and \(\mu(B_2) = \ldots = \mu(B_k) = \{0\}, \mu(C_2) = \ldots = \mu(C_s) = \{0\}. \) Then \(B_1 \subset A_0 \) and \(C_1 \subset A_0. \) Consequently,

\[h(\sum_{j=1}^{k} f(s_j) \mu(B_j), \sum_{p=1}^{s} f(\theta_p) \mu(C_p)) \]

\[= h(f(s_1) \mu(B_1), f(\theta_1) \mu(C_1)) \leq \]

\[\leq |f(s_1)| |\mu(B_1)| + |f(\theta_1)| |\mu(C_1)| \leq \]

\[\leq 2M \overline{P}(A_0) < \varepsilon. \]

II. \(\mu(A_0) = \{0\}. \) Then, without any loss of generality, \(\mu(A_1) \geq \{0\} \) and \(\mu(A_i) = \{0\}, \) for every \(i = 2, n. \) Suppose that \(\mu(B_1) \geq \{0\}, \mu(C_1) \geq \{0\} \) and \(\mu(B_2) = \ldots = \mu(B_k) = \{0\}, \mu(C_2) = \ldots = \mu(C_s) = \{0\}. \) Then \(B_1 \subset A_1 \) and \(C_1 \subset A_1, \) and, therefore,

\[h(\sum_{j=1}^{k} f(s_j) \mu(B_j), \sum_{p=1}^{s} f(\theta_p) \mu(C_p)) \]

\[= h(f(s_1) \mu(B_1), f(\theta_1) \mu(C_1)). \]

Since \(A \) is an atom of \(\mu \) and \(\mu(B_1) \geq \{0\}, \) then \(\mu(A \setminus B_1) = \{0\}, \) so \(\mu(C_1 \setminus B_1) = \{0\}. \) By the null-additivity of \(\mu, \) we get \(\mu(C_1) = \mu(B_1). \) Then

\[h(\sum_{j=1}^{k} f(s_j) \mu(B_j), \sum_{p=1}^{s} f(\theta_p) \mu(C_p)) \]

\[= h(f(s_1) \mu(B_1), f(\theta_1) \mu(B_1)). \]

By Proposition 1, we have

\[h(\sum_{j=1}^{k} f(s_j) \mu(B_j), \sum_{p=1}^{s} f(\theta_p) \mu(C_p)) \]

\[\leq |\mu(B_1)| |f(s_1) - f(\theta_1)| \leq \overline{P}(T) \frac{\varepsilon}{\overline{P}(T)} = \varepsilon. \]

Therefore, the net \((\sigma(P))_{P \in \mathcal{P}_A} \) is a Cauchy one in the complete metric space \((\mathcal{P}_f(X), h), \) hence \(f \) is \(\mu \) -integrable on \(A. \) \(\square \)

In [8, 9], submeasures of the following type are studied. Here, we investigate the relationship between their Gould integrals.
Theorem 37 Let \((m_n)_{n \in \mathbb{N}}\) be an uniformly bounded sequence of submeasures of finite variation, \(m_n : \mathcal{A} \to \mathbb{R}_+\), \(\forall n \in \mathbb{N}\) and \(m : \mathcal{A} \to \mathbb{R}_+\) defined by \(m(A) = \sup_n m_n(A)\), for every \(A \in \mathcal{A}\).

Suppose \(A_0 \in \mathcal{A}\) is an atom of \(m\) and \(f : T \to \mathbb{R}\) is \(\bar{m}\)-totally-measurable on \(T\). Then \(\int_{A_0} f dm = \sup_n \int_{A_0} f dm_n\).

Proof. By Example 3-II), \(m\) is a submeasure too. Since \(m_n(A) \leq m(A)\), for every \(A \in \mathcal{A}\), then for every \(n \in \mathbb{N}\), \(f\) is \(m_n\)-totally-measurable on \(T\). According to [17], \(f\) is \(m\)-integrable and \(m_n\)-integrable on \(T\) and on every \(A \in \mathcal{A}\). By [17], \(\int_{A_0} f dm_n \leq \int_{A_0} f dm\), for every \(n \in \mathbb{N}\).

Since \(m(A_0) = \sup_n m_n(A_0)\), we get that for every \(\varepsilon > 0\), there is \(n_0(\varepsilon, A_0) = n_0\) so that \(m(A_0) < m_{n_0}(A_0) + \frac{\varepsilon}{m(A_0)}\), where \(M = \sup\{f(t)\}\).

Because \(f\) is \(m\)-integrable and \(m_{n_0}\)-integrable on \(A_0\), we have that for every \(\varepsilon > 0\), there is a common partition \(\{B_j\}_{j=1}^{k} \in \mathcal{P}_{A_0}\) so that for every \(t_j \in B_j\),

\[
\left| \int_{A_0} f dm - \sum_{j=1}^{k} f(t_j) m(B_j) \right| < \frac{\varepsilon}{k}.
\]

Since \(\{B_j\}_{j=1}^{k} \in \mathcal{P}_{A_0}\), we observe that there can exist only one set, for instance, \(B_1\), so that \(m(B_1) > 0\) and \(m(B_j) = 0\), for every \(j = 2, \ldots, k\). Then \(m_{n_0}(B_j) = 0\), for every \(j = 2, \ldots, k\).

Consequently, because \(m(B_1) = m(A_0)\) and \(m_{n_0}(B_1) = m_{n_0}(A_0)\), we have

\[
\int_{A_0} f dm \leq \left| \int_{A_0} f dm - \sum_{j=1}^{k} f(t_j) m(B_j) \right| + \left| \int_{A_0} f dm_{n_0} - \sum_{j=1}^{k} f(t_j) m_{n_0}(B_j) \right| + |f(t_1)| \cdot |m(B_1) - m_{n_0}(B_1)| + \int_{A_0} f dm_{n_0} < \varepsilon + \frac{\varepsilon}{M} + \int_{A_0} f dm_{n_0} = \varepsilon + \int_{A_0} f dm_{n_0},
\]

so \(\int_{A_0} f dm = \sup_n \int_{A_0} f dm_n\), as claimed.

\[\Box\]

6 Classical results for the Gould type set-valued integral

In this section we obtain some classical theorems (such as Hölder inequality, Minkowski inequality, mean convergence theorem, Lebesgue theorem, Fatou lemma) for the Gould type set-valued integral introduced in [30].

Theorem 38 (Hölder Inequality) Let \(m : \mathcal{A} \to \mathbb{R}_+\) be a submeasure of finite variation and \(f, g : T \to \mathbb{R}\) \(m\)-integrable bounded functions on \(T\). Then

\[
\int_T |fg| dm \leq \left(\int_T |f|^p dm \right)^{\frac{1}{p}} \cdot \left(\int_T |g|^q dm \right)^{\frac{1}{q}},
\]

for every \(p, q \in (1, \infty)\), with \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof. Since (see [17]) for submeasures, \(m\)-integrability is equivalent to \(\bar{m}\)-totally-measurability, then by Theorem 19-I and Theorem 2.17 [17], \(|f|, |g|, |fg|, |f|^p, |g|^q,\) are also \(m\)-integrable, so, for every \(\varepsilon > 0\), there is a common partition \(P_\varepsilon = \{A_i\}_{i=1}^{n}\) such that for every \(t_i \in A_i, i = 1, \ldots, n\), we have:

\[
\left| \int_T |fg| dm - \sum_{i=1}^{n} f(t_i) g(t_i) m(A_i) \right| < \frac{\varepsilon}{3},
\]

\[
\left| \int_T |f| dm - \sum_{i=1}^{n} f(t_i) m(A_i) \right| < \frac{\varepsilon}{3}
\]

\[
\left| \int_T |g| dm - \sum_{i=1}^{n} g(t_i) m(A_i) \right| < \frac{\varepsilon}{3}.
\]

Since

\[
\sum_{i=1}^{n} |f(t_i) g(t_i)| m(A_i)
\]

\[
= \sum_{i=1}^{n} \left[|f(t_i)| m(A_i) \right]^{\frac{1}{p}} \cdot \left[|g(t_i)| m(A_i) \right]^{\frac{1}{q}}
\]

\[
\leq \left(\sum_{i=1}^{n} |f(t_i)|^p m(A_i) \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |g(t_i)|^q m(A_i) \right)^{\frac{1}{q}},
\]

we immediately have the conclusion. \(\Box\)

Using the above theorem, we obtain the Minkowski inequality, by a classical proof.

Theorem 39 (Minkowski inequality) Let \(m : \mathcal{A} \to \mathbb{R}_+\) be a submeasure of finite variation and \(f, g : T \to \mathbb{R}\) \(m\)-integrable bounded functions on \(T\). Then

\[
\left(\int_T |f + g|^p dm \right)^{\frac{1}{p}} \leq \left(\int_T |f|^p dm \right)^{\frac{1}{p}} + \left(\int_T |g|^p dm \right)^{\frac{1}{p}},
\]

for every \(p \in [1, +\infty)\).

If \(m : \mathcal{A} \to \mathbb{R}_+\) is a submeasure of finite variation, we consider the space \(\mathbb{L}^p = \{ f : T \to \mathbb{R}; f\) is bounded on \(T\) and \(|f|^p\) is \(m\)-integrable on \(T)\).
Remark 40 From Theorem 19-II, it results that if $f, g \in L^p$, then $f + g \in L^p$. So, L^p is a linear space.

Corollary 41 Let $m: A \rightarrow \mathbb{R}_+$ be a submeasure of finite variation and $p \in [1, +\infty)$. Then the function \(\| \cdot \|: L^p \rightarrow \mathbb{R}_+ \), defined for every $f \in L^p$ by \(\| f \| = (\int_T |f|^p \, dm)^{\frac{1}{p}} \), is a semi-norm.

Definition 42 Let $\mu: A \rightarrow \mathcal{P}(X)$ be a set multifunction with $\mu(\emptyset) = \{0\}$. If for every $n \in \mathbb{N}$, $f_n: T \rightarrow \mathbb{R}$ is μ-integrable on T, then the sequence (f_n) is said to be mean convergent to f on T if \(\lim_{n \to \infty} \int_T (f_n - f) \, d\mu = \{0\} \) (with respect to h).

Theorem 43 (Mean Convergence Theorem) Let $\mu: A \rightarrow \mathcal{P}(X)$ be a set multifunction of finite variation, with $\mu(\emptyset) = \{0\}$ and $f_n: T \rightarrow \mathbb{R}$, for every $n \in \mathbb{N}$. Suppose (f_n) is an uniformly bounded sequence of μ-integrable functions such that (f_n) is convergent in submeasure to a bounded function $f: T \rightarrow \mathbb{R}$. Then f is μ-integrable on T and on every $A \in \mathcal{A}$,

\[
\lim_{n \to \infty} \int_A (f_n - f) \, d\mu = \{0\}
\]

(with respect to h)

Proof. Let $M' = \pi(T)$, $M_1 = \sup_{t \in T} |f(t)|$, $M_2 = \sup_{t \in T, n \in \mathbb{N}} |f_n(t)|$ and $M = \max\{M_1, M_2\}$.

Since $f_n \overset{\mu}{\rightarrow} f$, it results that for every $\varepsilon > 0$, there exists $n_0(\varepsilon) \in \mathbb{N}$ so that $\mu(B_n\left(\frac{\varepsilon}{4M}\right)) < \frac{\varepsilon}{4M}$, for every $n \geq n_0$.

Particularly, $\mu(B_{n_0}\left(\frac{\varepsilon}{6M}\right)) < \frac{\varepsilon}{12M}$. By the definition of μ, there is $C_{n_0} \in \mathcal{A}$ so that $B_{n_0}\left(\frac{\varepsilon}{6M}\right) \subseteq C_{n_0}$ and $\mu(C_{n_0}) = \pi(C_{n_0}) < \frac{\varepsilon}{12M}$.

First, we prove that f is μ-integrable on C_{n_0}. Indeed, for every $\varepsilon > 0$, there is a partition $P_\varepsilon = \{C_{n_0}\} \in \mathcal{P}C_{n_0}$ so that, for every other partition $P = \{D_j\}_{j=1}^{q} \in \mathcal{P}C_{n_0}$, with $P \geq P_\varepsilon$ and every $t_i \in D_i, i = 1, q$, and $c \in C_{n_0}$, we have:

\[
h\left(\sum_{i=1}^{q} f(t_i) \mu(D_i), f(c) \mu(C_{n_0})\right) \leq \sum_{i=1}^{q} |f(t)| \cdot |\mu(D_i)| + \frac{\varepsilon}{3M} \cdot |\mu(D_i)| + \frac{\varepsilon}{4M} \cdot |\mu(C_{n_0})| < \frac{\varepsilon}{2}.
\]

Consider another partition $P' = \{E_s\}_{s=\Gamma}^{\Pi} \in \mathcal{P}C_{n_0}$, with $P' \geq P_\varepsilon$ and $r_s \in E_s, s = 1, q$, arbitrarily.

In a similar way we get

\[
h\left(\sum_{s=1}^{q} f(r_s) \mu(E_s), f(c) \mu(C_{n_0})\right) < \frac{\varepsilon}{2}, \quad \text{whence,}
\]

\[
h\left(\sum_{i=1}^{p} f(t_i) \mu(D_i), \sum_{s=1}^{q} f(r_s) \mu(E_s)\right) < \varepsilon. \quad \text{Then f is μ-integrable on C_{n_0}.}
\]

Consequently, according to Theorem 31-II, in order to prove that f is μ-integrable on T, it is sufficient to establish the μ-integrability of f on $T \setminus C_{n_0}$.

Since for every $n \in \mathbb{N}$ f_n is μ-integrable on T, then f_{n_0} is μ-integrable on $T \setminus C_{n_0}$. Consequently, there is a partition $P_{n_0} = \{A_i\}_{i=\Gamma}^{\Pi} \in \mathcal{P}C_{n_0}$ so that, for every other partition $P \in \mathcal{P}T \setminus C_{n_0}$, with $P \geq P_{n_0}$, we have $h(\sigma(P), \sigma(P_{n_0})) < \frac{\varepsilon}{2}$.

Let $P = \{D_j\}_{j=1}^{\Gamma} \in \mathcal{P}T \setminus C_{n_0}$, with $P \geq P_{n_0}$ be arbitrarily, but fixed. For every $t_j \in D_j, j = 1, l$ and every $c_i \in A_i, i = 1, m_{n_0}$, we have:

\[
h\left(\sum_{j=1}^{l} f(t_j) \mu(D_j), \sum_{i=1}^{m_{n_0}} f(c_i) \mu(A_i)\right) < \varepsilon.
\]

A similar inequality for every other partition $P' \in \mathcal{P}T \setminus C_{n_0}$, with $P' \geq P_{n_0}$, may analogously be obtained. Then, by the triangular inequality, f is μ-integrable on $T \setminus C_{n_0}$ and, according to Theorem 45-II, f is μ-integrable on T.

Now, we prove that $\lim_{n \to \infty} \int_T (f_n - f) \, d\mu = \{0\}$ with respect to h. According to Theorem 31-III, there exist $\int_A f \, d\mu$ and $\int_A f_n \, d\mu$, for every $n \in \mathbb{N}$ and every $A \in \mathcal{A}$.

We shall use the same $B_n\left(\frac{\varepsilon}{6M}\right)$, with $n \geq n_0$, as before. By the definition of μ, we get that for every $n \geq n_0$, there exists $C_n \in \mathcal{A}$ so that $B_n\left(\frac{\varepsilon}{6M}\right) \subseteq C_n$ and $\mu(C_n) = \pi(C_n) < \frac{\varepsilon}{12M}$.
Then, for every \(n \geq n_0 \), we have:
\[
\left| \int_{A} (f_n - f) \, d\mu \right| = \left| \int_{A \cap C_n} (f_n - f) \, d\mu \right| + \int_{A\setminus C_n} (f_n - f) \, d\mu \leq \\
\leq \sup_{t \in A \cap C_n} |f_n(t) - f(t)| \cdot \overline{\mu}(A \setminus C_n) + \sup_{t \in A \cap C_n} |f_n(t) - f(t)| \cdot \overline{\mu}(A \cap C_n) < \\
< \frac{\varepsilon}{6M'} \cdot M' + 2M \cdot \overline{\mu}(C_n) < \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon,
\]
so
\[
\lim_{n \to \infty} \int_{A} (f_n - f) \, d\mu = \{0\} \text{ (with respect to } h)\), for every \(A \in \mathcal{A} \).
\]

Theorem 44 (Lebesgue type Theorem) Let \(\mu : \mathcal{A} \to \mathcal{P}_{\mathcal{F}}(X) \) be a set multifunction of finite variation, with \(\mu(\emptyset) = \{0\} \) and \(f_n : T \to \mathbb{R} \), for every \(n \in \mathbb{N} \). Suppose \((f_n)_n\) is an uniformly bounded sequence of \(\mu\)-integrable functions such that \((f_n)_n\) is convergent in submeasure to a bounded function \(f : T \to \mathbb{R} \). Then, \(f \) is \(\mu \)-integrable on every \(A \in \mathcal{A} \) and
\[
\lim_{n \to \infty} \int_{A} f_n \, d\mu = \int_{A} f \, d\mu \text{ (with respect to } h)\).

Proof. By the proof of Theorem 43, it results that \(f \) is \(\mu \)-integrable on every \(A \in \mathcal{A} \). Using the same sets as before, we have for every \(n \geq n_0 \) and every \(A \in \mathcal{A} \):
\[
\begin{align*}
\int_{A} f_n \, d\mu &= \int_{A \cap C_n} f_n \, d\mu + \int_{A \cap C_n} f_n \, d\mu + \int_{A \setminus C_n} f_n \, d\mu \\
&= h(\int_{A \cap C_n} f_n \, d\mu, \int_{A \setminus C_n} f_n \, d\mu) \leq h(\int_{A \cap C_n} f_n \, d\mu, \int_{A \setminus C_n} f_n \, d\mu) \\
&\leq \sup_{t \in A \cap C_n} |f_n(t) - f(t)| \cdot \overline{\mu}(A \setminus C_n) + \sup_{t \in A \cap C_n} |f_n(t) - f(t)| \cdot \overline{\mu}(A \cap C_n) < \\
&< \frac{\varepsilon}{6M'} \cdot M' + 2M \cdot \overline{\mu}(C_n) < \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon,
\end{align*}
\]
and the conclusion follows.

Theorem 45 (Fatou Lemma) Suppose \(\mathcal{A} \) is a \(\sigma \)-algebra, \(\mu : \mathcal{A} \to \mathbb{R}_+ \) is a submeasure of finite variation so that \(\tilde{\mu} \) is \(o \)-continuous and \((f_n)_n \in \mathbb{N} \) is a sequence of uniformly bounded, \(\tilde{\mu} \)-totally-measurable functions \(f_n : T \to \mathbb{R} \). Then
\[
\int_{T} \liminf \limits_{n} f_n \, d\mu \leq \int_{T} \limsup \limits_{n} \int_{T} f_n \, d\mu.
\]

Proof. For every \(n \in \mathbb{N} \), consider \(g_n \) defined for every \(t \in T \) by \(g_n(t) = \inf_{k \geq n} f_k(t) \). Let also be \(f : T \to \mathbb{R} \), \(f(t) = \lim \limits_{n \to \infty} g_n(t) \), for every \(t \in T \). We observe that \(g_n \overset{ae}{\to} f \) and \(g_n \leq f_n \), for every \(n \in \mathbb{N} \).

According to Theorem 24, \((g_n)_n\) is also a sequence of uniformly bounded, \(\tilde{\mu} \)-totally-measurable functions, so, by Corollary 25, \(f \) is \(\tilde{\mu} \)-totally-measurable on \(T \).

By [17], \(f_n \) and \(f \) are \(\mu \)-integrable on \(T \), for every \(n \in \mathbb{N} \).

Since \(g_n \overset{ae}{\to} f \) and \(\tilde{\mu} \) is an \(o \)-continuous submeasure on \(\mathcal{P}(T) \), then, according to Li [23], \(g_n \overset{\tilde{\mu}}{\to} f \), so, by [13],
\[
\int_{T} \liminf \limits_{n} f_n \, d\mu = \int_{T} f \, d\mu = \lim_{n \to \infty} \int_{T} g_n \, d\mu.
\]

Consequently,
\[
\int_{T} \liminf \limits_{n} f_n \, d\mu = \liminf \limits_{n} \int_{T} f_n \, d\mu \\
\leq \liminf \limits_{n} \int_{T} f_n \, d\mu.
\]

This completes the proof.

References:

