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Abstract: In this paper we analyze the dynamic behavior of a two unit parallel system with warm standby and
common-cause failure. By the semigroup theory of linear operators on the Banach space, we give the wellposed-
ness of the system and then prove the existence of the nonnegative dynamic solution and the steady solution of
system. By spectral analysis of the system operator, we show that all the spectrum points of system operator be-
sides 0 are in the left half-plane, hence we obtain the asymptotic stability of the system. Further we prove that 0
is a dominant eigenvalue of the system. Especially we discuss the essential spectral bound of the system operator
and the radius of the essential spectrum of the semigroup associated with the system. Those results show that
the dynamic solution of the system converges exponentially to the steady solution. Finally, we analyze the some
reliability indic of the system.
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1 Introduction
One of the methods of increasing reliability of an item
is to introduce redundancy. Several types of redun-
dant configurations are used to increase reliability of
engineering systems. In the usual analysis of such re-
dundant configurations, the occurrence of common-
cause failures is not considered. This may or may
not represent the real life conditions under which such
systems have to operate. In [1], by supplementary
variables, the author had established the mathematic
model of two units parallel system with warm standby
and common-cause failure (see the system described
in section 2), and by using Laplace transforms, the
steady solution of system was studied. However, the
results are based on following two assumptions:

1) The system has unique dynamic solution;
2) The limit of the dynamic solution exists, and

converges to steady solution.
Whether these assumptions is true or not, i.e.

whether the dynamic solution is unique and the dy-
namic solution does converge to steady solution? So
far, these problems are not solved. In [2], the authors
proved that the solution of the system exists and is u-
nique.

In this paper, under more normal assumptions, we
will prove the existence of rigorous dominant eigen-
value. Further we analyze the essential spectrum of

the semigroup associated with the system. We will
prove the dynamic solution of the system converges
exponentially to the steady solution.

The rest is organized as follows. In section 2, we
recall the mathematical model and basic assumptions
of the system under consideration. In section 3, we
study the steady solution of the system. In section 4,
we discuss the asymptotic convergence of the solu-
tion. We will prove that the dynamic solution of the
system converges asymptotically to the steady solu-
tion. In section 5, we investigate the exponential con-
vergence. by some technique we prove that the dy-
namic solution converges exponentially to the steady
solution.

2 The basic assumptions and mathe-
matic model of the system

Suppose that a system consists of working part and
the service part in where the failed system will be re-
paired.

The following assumptions were made on this
system:

i) The system is composed of three identical unit-
s(two in parallel and one on standby).

ii) The standby and or its switching mechanisms
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may fail.
iii) The units are operating and one unit is on war-

m standby (it means the standby unit is active to a cer-
tain degree).

As soon as both the operating units fail, the stand-
by unit goes into operation.

iv) All failure rates associated with the system are
constant.

v) Common-cause and other failures are statisti-
cally independent.

vi) The occurrence of a common-cause failure
causes the total system failure.

vii) A common-cause failure may occur when on-
ly one unit is operating normally.For example fire in
a room containing the system will cause the total sys-
tem failure irrespective of whether one or all units are
good.

viii) At least one of the three units must operate
normally for the system success.

ix) The repaired system is as good as new.
x) The failed system repair times are arbitrarily

distributed.
xi) The system fails either due to a common-cause

failure or when all of its units fail.
This system undergoes seven states 0, 1, 2, 3, 4,

5, 6 which stand for the following meaning
0: Two units working, one on standby;
1: One unit working, other failed, one on standby;
2: Two units working, standby failed;
3: One unit working, other failed, standby failed;
4: Two units failed, standby working;
5: System failed other than due to common cause

failures;
6: System failed due to common cause failures.
The diagram of the system state transition is

shown as in Figure 1.

Figure 1 System state-space diagram

The following symbols are used in this article:
t time.
Pi(x, t) Probability density(with respect to re-

pair time)that the failed system is in state iand has an
elapsed repair time of x;i=5,6.

µi(x) repair rate and probability density func-
tion of repair time, respectively, when the failed sys-
tem is in state i and has an elapsed repair time of x;
for i=5,6.

Pi(t) The probability that the system is in state
i at time t; for i=0,1,2,3,4,5,6.

λ Constant failure rate of a unit.
λs Constant failure rate of the warm standby

and/or switching mechanism.
λcci Constant common cause failure rate of the

system form state i, for i=0,1,2,3,4.
Base on the preceding assumptions, by the

method of supplementary variables, the dynamic be-
havior of the system can be expressed as the following
the integral and differential equation groups [1].

dp0(t)
dt = −(2λ+ λs + λcc0)p0(t)
+
∫∞
0 µ5(x)p5(x, t)dx+

∫∞
0 µ6(x)p6(x, t)dx,

dp1(t)
dt = −(λ+ λs + λcc1)p1(t) + 2λp0(t),

dp2(t)
dt = −(2λ+ λcc2)p2(t) + (λs)p0(t),

dp3(t)
dt = −(λ+ λcc3)p3(t) + λsp1(t),

dp4(t)
dt = −(λ+ λcc4)p4(t) + λp1(t),

∂p5(x,t)
∂x + ∂p5(x,t)

∂t = −µ5(x)p5(x, t),
∂p6(x,t)

∂x + ∂p6(x,t)
∂t = −µ6(x)p6(x, t)

(1)
with the boundary conditions

p5(0, t) = λ(p3(t) + p4(t)),

p6(0, t) =
4∑

i=0
λccipi(t)

(2)

and the initial condition

(p0(0), p1(0), p2(0), p3(0), p4(0), p5(x, 0), p6(x, 0))
= (1, 0, 0, 0, 0, 0, 0)

(3)
In the present paper, we will consider problem un-

der the following conditions

0 < ci = infx∈R+ µi(x),
M = supx∈R+ µi(x) <∞,

supξ≥0

∫∞
ξ e−

∫ x
ξ µi(s)dsdx <∞, i = 5, 6.

(4)

Let state space X be

X = C5 × (L1(R+))2

For y = (y0, y1, y2, y3, y4, y5(x), y6(x)) ∈ X, the
norm of y is defined

||y|| = |y0|+|y1|+|y2|+|y3|+|y4|+||y5||L1+||y6||L1 .

Obviously, (X, || · ||) is a Banach space.
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Set
a0 = 2λ+ λs + λcc0,
a1 = λ+ λs + λcc1,
a2 = 2λ+ λcc2,
a3 = λ+ λcc3,
a4 = λ+ λcc4.

In space X, we define the operator A by

A = −diag(a0, a1, a2, a3, a4,
d

dx
+µ5(x),

d

dx
+µ6(x))

with domain

D(A) =

p ∈ X
∣∣∣

dpi(x)
dx ∈ L1(R+), i = 5, 6

p5(0) = λ(p3 + p4),

p6(0) =
4∑

i=0
λccipi


and define operator B : X → X

B =

(
0 0 0 B1

B2 B3 B4 0

)
where

B1 = (0, 0,
∫∞
0 µ5(x) · dx,

∫∞
0 µ6(x) · dx),

B2 = (2λ, λs, 0, 0, 0, 0)
T ,

B3 = (0, 0, λs, λ, 0, 0)
T ,

B4 = (0, 0, 2λ, 0, 0, 0)T .

By the definition of the operatorsA andB, the system
(1) can be written as an abstract Cauchy problem in X:

dp(t)
dt = (A+B)p(t),
p(0) = (1, 0, 0, 0, 0, 0, 0),
p(t)=(p0(t),p1(t),p2(t),p3(t),p4(t),p5(x, t),p6(x, t))

(5)

3 The steady solution of the system
In this section we will discuss the steady state of the
system (1). Similar to [2]-[5] we can prove that the
system (1) is well posed. We begin with studying the
eigenvalue problem of system operator.

Suppose that γ ∈ C is an eigenvalue of the
operator A + B, and P is an eigenvector associ-
ated with γ, i.e. (γI − A − B)P = 0, where
P = (p0, p1, p2, p3, p4, p5(x), p6(x)). The eigenval-
ue problem is equivalent to existence of nonzero of

the following equations

(γ + a0)p0 −
∫∞
0 p5(x)µ5(x)dx

−
∫∞
0 p6(x)µ6(x)dx = 0,

2λp0 − (γ + a1)p1 = 0,
λsp0 − (γ + a2)p2 = 0,
λsp1 + 2λp2 − (γ + a3)p3 = 0,
λp1 − (γ + a4)p4 = 0,
dpi(x)
dx + (γ + µi(x))pi(x) = 0,
i = 5, 6

p5(0) = λ(p3 + p4),

p6(0) =
4∑

i=0
λccipi.

(6)

Solving the differential equation in (6) yields

pi(x) = pi(0)e
−

∫ x
0 (γ+µi(ξ))dξ, i = 5, 6. (7)

Inserting (7) into the first equation in (6) yields

(γ + a0)p0 − p5(0)µ5,γ − p6(0)µ6,γ = 0 (8)

where

µi,γ =

∫ ∞

0
µi(x)e

−
∫ x
0 (γ+µi(ξ)dξdx, i = 5, 6

Combining the equation (8) and the other equa-
tion in (6), we get an algebraic equations

(γ + a0)p0 − p5(0)µ5,γ
−p6(0)µ6,γ = 0,

2λp0 − (γ + a1)p1 = 0,
λsp0 − (γ + a2)p2 = 0,
λsp1 + 2λp2 − (γ + a3)p3 = 0,
λp1 − (γ + a4)p4 = 0,
λ(p3 + p4)− p5(0) = 0,
4∑

j=0
λccjpj − p6(0) = 0,

(9)

Let detD(γ) be the determinant of coefficien-
t matrix in (9), i.e.,

detD(γ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 0 0 0 a16 a17
2λ a22 0 0 0 0 0
λs 0 a33 0 0 0 0
0 λs 2λ a44 0 0 0
0 λ 0 0 a55 0 0
0 0 0 λ λ −1 0
λcc0 λcc1 λcc2 λcc3 λcc4 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where a11 = γ + a0, a22 = γ + a1, a33 = γ + a2,
a44 = γ + a3, a55 = γ + a4, a16 = −µ5,γ , a17 =
−µ6,γ .
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Clearly, γ ∈ C is an eigenvalue of A + B in
and only if the algebraic equations (9) has nonzero
solution. Therefore, γ is an eigenvalue of A + B,
then detD(γ) = 0. Conversely, if γ ∈ C makes
detD(γ) = 0, the algebraic equations (9) has at least
one nonzero solution (p0, p1, p2, p3, p4, p5(0), p6(0)).
Then we can define functions pi(x) according to (7)
and hence (p0, p1, p2, p3, p4, P5, P6, ) ∈ D(A + B)
and it also is a solution of (6). In particular, when
γ = 0, we have

µi,γ =

∫ ∞

0
µi(x)e

−
∫ x
0 µi(ξ)dξdx = 1, i = 5, 6

A direct computation gives detD(γ) = 0. So γ =
0 is an eigenvalue of A + B, and corresponding an
eigenvector P is given by

P = (p0, p1, p2, p3, p4, p5(x), p6(x)),

where

p1 =
2λ
a1
p0,

p2 =
λs
a2
p0,

p3 = 2λλs(
1

a1a3
+ 1

a2a3
)p0,

p4 =
2λ2

a1a4
p0,

p5(x) = [2λ2λs(
a2+a1
a1a3a2

) + 2λ3

a1a4
]

×p0e−
∫ x
0 µ5(ξ)dξ

p6(x) = [λcc0 +
2λλcc1

a1
+ λsλcc2

a2
+2λλsλcc3(

a2+a1
a1a3a2

) + 2λ2λcc4]

×p0e−
∫ x
0 µ6(ξ)dξ

(10)

Let Q = (1, 1, 1, 1, 1, 1, 1). For p0 > 0, we have

⟨P,Q⟩ =
4∑

j=0

pj +
6∑

j=5

∫ ∞

0
pj(x)dx > 0.

A straightforward calculation gives that for any P ∈
D(A+B),

⟨(A+B)P,Q⟩ = ⟨P, (A+B)∗Q⟩ = 0,

which implies that (A + B)∗Q = 0, this means that
0 also is an eigenvalue of (A+ B)∗ and Q is a corre-
sponding eigenvector. Note that the fact ⟨P,Q⟩ ̸= 0,
so 0 is a simple eigenvalue of A+B.

Now we take P̂0:

P̂0 =
P

||P ||
=

1

||P ||
(p0, p1, p2, p3, p4, p5(x), p6(x))

(11)
where p1, p2, p3, p4, pi(x)(i = 5, 6) are given as in
(10). Then P0 is the steady positive solution of the
system (1) and satisfies ⟨P̂0, Q⟩ = 1.

4 The asymptotic stability of the sys-
tem

In this section we will study the asymptotic stability
of the system (1). Note that 0 is a simple eigenvalue
of the operator A+ B, P̂0 is corresponding an eigen-
vector, which is the steady solution of the system. We
will prove that the dynamic solution of the system (1)
converges the steady solution under the condition (4).

It is well known that if the condition (4) is
fulfilled, for any y ∈ L1(R+), it holds that∫ x
0 e

−
∫ ξ
s µi(s)dsy(ξ)dξ ∈ L1(R+) and∫ ∞

0
e
∫ ξ
0 µi(s)ds|y(ξ)|dξ

∫ ∞

ξ
e−

∫ x
0 µi(s)dsdx <∞,

(12)
So, the functions defined by

pi(x) = pi(0)e
−

∫ x
0 µi(s)ds +

∫ x

0
e−

∫ ξ
0 µi(s)dsyi(ξ)dξ

(13)
also satisfy pi(x) ∈ L1(R+), i = 5, 6.

Using this fact, we can prove the following theo-
rem.

Theorem 1 The spectra of A+B are in the left half-
plane, and all points but 0 on the imaginary axis are
in resolvent set.

Proof. For any P ∈ D(A+B) = D(A), taking Q =
(sgnp0,sgnp1,sgnp2,sgnp3,sgnp4,sgnp5(x),sgnp6(x))
∈ X∗, a straightforward computation gives
ℜ⟨AP,Q⟩ ≤ 0, and for any γ ∈ C with ℜγ > 0,
we have γ ∈ ρ(A). Therefore, we only need to
prove the imaginary axis but 0 are in the resol-
vent set ρ(A). Let γ ∈ R with γ ̸= 0. For any
y = (y0, y1, y2, y3, y4, y5(x), y6(x)) ∈ X, we con-
sider the resolvent equation (iγ − A − B)p = y,
namely

(iγ + a0)p0 −
∫∞
0 p5(x)µ5(x)dx

−
∫∞
0 p6(x)µ6(x)dx = y0,

−2λp0 + (iγ + a1)p1 = y1,
−λsp0 + (iγ + a2)p2 = y2,
−λsp1 − 2λp2 + (iγ + a3)p3 = y3,
−λp1 + (iγ + a4)p4 = y4,
dpi(x)
dx + (iγ + µi(x))pi(x) = yi(x), i = 5, 6

p5(0) = λ(p3 + p4),

p6(0) =
4∑

i=0
λccipi.

(14)
Solving the differential equation in (14), we get

pi(x) = pi(0)e
−

∫ x
0 (iγ+µi(ξ))dξ +

∫ ∞

0
pi(x)µi(x)dx

(15)
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where i = 5, 6. From (13), we know that
pi(x) ∈ L1(R+), i = 5, 6. Inserting (15)
in (14) we we get an algebraic equations about
(p0, p1, p2, p3, p4, p5(0), p6(0)):

(iγ + a0)p0 − p5(0)µ5,iγ − p6(0)µ6,iγ
= y0 +G5 +G6,

−2λp0 + (iγ + a1)p1 = y1,
−2λp0 + (iγ + a2)p2 = y2,
−λsp1 − 2λp2 + (iγ + a3)p3 = y3,
−λp1 + (iγ + a4)p4 = y4
λ(p3 + p4)− p5(0) = 0,
4∑

i=0
λccipi − p6(0) = 0

(16)

where

Gi =

∫ ∞

0
µi(x)dx

∫ x

0
e−

∫ x
t (iγ+µi(ξ))dξyi(t)dt

µi,iγ =

∫ ∞

0
µi(x)e

−
∫ x
0 (iγ+µi(ξ))dξdx, i = 5, 6.

Let D(iγ) be the coefficient matrix in (16), i.e.,

D =



b11 0 0 0 0 b16 b17
2λ b22 0 0 0 0 0
λs 0 b33 0 0 0 0
0 λs 2λ b44 0 0 0
0 λ 0 0 b55 0 0
0 0 0 λ λ −1 0
λcc0 λcc1 λcc2 λcc3 λcc4 0 −1


where b11 = iγ + a0, b22 = iγ + a1, b33 = iγ +
a2, b44 = iγ+a3, b55 = iγ+a4, b11 = iγ+a0, b16 =
−µ5,γ , b17 = −µ6,γ .

Now, we prove the D(iγ) is nonsingular matrix.
By definition of ai, i = 0, 1, 2, 3, 4, we have

a0 = 2λ+ λs + λcc0 < |iγ + a0|,
a1 = λ+ λs + λcc1 < |iγ + a1|,
a2 = 2λ+ λcc2 < |iγ + a2|,
a3 = λ+ λcc3 < |iγ + a3|,
a4 = λ+ λcc4 < |iγ + a4|

and

|µi,iγ | = |
∫∞
0 µi(x)e

−
∫ x
0 (iγ+µi(ξ)dξdx|

<
∫∞
0 µi(x)e

−
∫ x
0 µi(ξ)dξdx = 1, i = 5, 6.

Hence the matrix D(iγ) is strictly diagonally domi-
nant by columns , which implies detD(iγ) ̸= 0 (see,
[6]). Therefore the algebraic equations (16) has u-
nique a solution for given y ∈ X, denote by

(p̂0, p̂1, p̂2, p̂3, p̂4, p̂5(0), p̂6(0)).

Define functions by

pi(x) = p̂i(0)e
−

∫ x
0 (iγ+µi(ξ))dξ

+
∫∞
0 pi(x)µi(x)dx, i = 5, 6.

Thus the vector

(p̂0, p̂1, p̂2, p̂3, p̂4, p5(x), p6(x))

belongs to D(A) and satisfies the resolvent equation
(14). So γ ∈ ρ(A + B). Therefore, the all point but
0 on the imaginary axis are in the resolvent set of A.
The proof is then complete. ⊓⊔

According to stability theorem of linear operator
semigroup (see,[7]), we have the following conclu-
sions.

Theorem 2 Let X and A,B be defined as before. Let
T (t) be the C0 contraction semigroup generated by
A + B. Then for any initial value P (0), the dynamic
solution of system (5) is given by P (t) = T (t)P (0).
In particular, if P (0) is non-negative, the dynamic so-
lution is also negative for all t ≥ 0.

Let P̂0 = (p0, p1, p2, p3, p4, p5(x), p6(x)) be the
negative steady state of the system (1) with ||P̂0|| = 1.
Then we have

lim
t→∞

P (t) = lim
t→∞

T (t)P (0) = (P (0), Q)P̂0,

where Q = (1, 1, 1, 1, 1, 1, 1).

Proof The first assertion can be proved similar to [3]
and [4]. The second assertion is a direct consequence
of Theorem 1 and stability Theorem of semigroup (see
[7]). ⊓⊔

5 Exponential convergence of the so-
lution of system

In this section, we prove that the system converges
exponentially to the steady state of the system (5) or
(1) under the condition (4).

Theorem 3 Let A be defined as before and ci be de-
fined as in (4). Denote

c = min
0≤j≤4

{min
i=5,6

{ci}, λ, λs, λccj}.

Then when ℜγ > −c, we have γ ∈ ρ(A) and

||(γI −A)−1|| ≤ 2

ℜγ + c
.
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Proof Let γ ∈ C with ℜγ > −c. For any given
y = (y0, y1, y2, y3, y4, y5(x), y6(x)) ∈ X, we con-
sider the resolvent equation (γI − A)P = y where
P = (p0, p1, p2, p3, p4, p5(x), p6(x)) ∈ D(A). That
is (p0, p1, p2, p3, p4, p5(x), p6(x)) satisfying the fol-
lowing equations

(γ + a0)p0 = y0,
(γ + θ)p1 = y1,
(γ + a2)p2 = y2,
(γ + a3)p3 = y3,
(γ + a4)p3 = y4,
dpi(x)
dx + (γ + µi(x))pi(x) = yi(x),
i = 5, 6,

p5(0) = λ(p3 + p4),

p6(0) =
4∑

i=0
λccipi.

(17)

When ℜγ > −c, we have ℜγ + ai ̸= 0(i =
0, 1, 2, 3, 4). Solving the differential equations in (17),
we get

pi =
yi

γ+ai
, i = 0, 1, 2, 3, 4.

p5(x) = ( λy3
γ+a3

+ λy4
γ+a4

)e−γx−
∫ x
0 µ5(ξ)dξ

+
∫ x
0 e

−γ(x−τ)−
∫ x
τ µ5(ξ)dξy5(τ)dτ,

p6(x) =
4∑

i=0

λcciyi
γ+ai

e−γx−
∫ x
0 µ6(ξ)dξ

+
∫ x
0 e

−γ(x−τ)−
∫ x
τ µ6(ξ)dξy6(τ)dτ.

(18)

Since

||P || =
4∑

i=0

|pi|+ ||p5||+ ||p6||

≤
4∑

i=0

∣∣∣∣ yi
γ + ai

∣∣∣∣
+ (

∣∣∣∣ λy3
γ + a3

+
λy4
γ + a4

∣∣∣∣)∫ ∞

0
e−ℜγx−

∫ x
0 µ5(ξ)dξdx

+

∫ ∞

0
dx

∫ x

0
e−ℜγ(x−τ)−

∫ x
τ µ5(ξ)dξ|y5(τ)|dτ

+
4∑

i=0

∣∣∣∣ λcciyiγ + ai

∣∣∣∣ ∫ ∞

0
e−ℜγx−

∫ x
0 µ6(ξ)dξdx

+

∫ ∞

0
dx

∫ x

0
e−ℜγ(x−τ)−

∫ x
τ µ6(ξ)dξ|y6(τ)|dτ

≤
4∑

i=0

∣∣∣∣ yi
γ + ai

∣∣∣∣
+

∣∣∣∣ λy3
γ + a3

+
λy4
γ + a4

∣∣∣∣ ∫ ∞

0
e−(ℜγ+c)xdx

+

∫ ∞

0
| y5(τ) | dτ

∫ ∞

τ
e−(ℜγ+c)(x−τ)dx

+

4∑
i=0

∣∣∣∣ λcciyiγ + ai

∣∣∣∣ ∫ ∞

0
e−(ℜγ+c)xdx

+

∫ ∞

0
| y6(τ) | dτ

∫ ∞

τ
e−(ℜγ+c)(x−τ)dx

=
4∑

i=0

∣∣∣∣ yi
γ + ai

∣∣∣∣+ 1

ℜγ + c

∣∣∣∣ λy3
γ + a3

+
λy4
γ + a4

∣∣∣∣
+

1

ℜγ + c

4∑
i=0

∣∣∣∣ λcciyiγ + ai

∣∣∣∣
+

1

ℜγ + c
(||y5||+ ||y6||)

≤ 1

ℜγ + c

(ℜγ + c+ λcc0)

|γ + a0|
|y0|

+
1

ℜγ + c

(ℜγ + c+ λcc1)

|γ + a1|
|y1|

+
1

ℜγ + c

(ℜγ + c+ λcc2)

|γ + a2|
|y2|

+
1

ℜγ + c

(ℜγ + c+ a3)

|γ + a3|
|y3|

+
1

ℜγ + c

(ℜγ + c+ a4)

|γ + a4|
|y4|

+
1

ℜγ + c
(||y5||+ ||y6||),

while

ℜγ + c+ λcci ≤ |γ + ai|, i = 0, 1, 2

and
|γ + ai| ≥ c, i = 3, 4,

so we have

||p|| < 2

ℜγ + c
(

4∑
i=0

|yi|+||y5||+||y6||) =
2

ℜγ + c
||y||.

This shows that ℜγ + c > 0, (γI − A)−1 : X → X
are bounded linear operators, hence γ ∈ ρ(A), and

||(γI −A)−1|| ≤ 2

ℜγ + c
.

This completes the proof. ⊓⊔
Above Theorem shows that the spectra of A are

in the half-plane ℜγ ≤ −c. The following theorem
shows that the spectrum of the semigroup S(t) gener-
ated by A is in the disc {z ∈ C

∣∣ |z| ≤ e−ct}.

Theorem 4 Let A and c be defined as before,and let
S(t) be the C0 semigroup generated by operator A.
Then for any c > ω > 0, there is a positive constant
M such that ||S(t)|| ≤Me−ωt, t ≥ 0.
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Proof. Firstly let us define a new operator A0 by

A0 = −diag(a0, a1, a2, a3, a4,
d

dx
+µ5(x),

d

dx
+µ6(x))

with domain

D(A0) =

{
p ∈ X

∣∣∣ dpi(x)
dx ∈ L1(R+), i = 5, 6

p5(0) = 0, p6(0) = 0

}

we define a linear operator L by

Lf = f − (0, 0, 0, 0, e−xλ(f3 + f4), e
−x

4∑
j=0

λccjfj)

for any f ∈ X. Clearly, L is bounded invertible.
For any P = (p0, p1, p2, p3, p4, p5, p6) ∈ D(A) ,

we have LP ∈ D(A0) and

A0LP = −(a0p0, a1p1, a2p2, a3p3, a4p4,

p′5 + µ5p5, p
′
6 + µ6p6)

−e−x
(
0, 0, 0, 0,

(1−µ5(x))λ(p3+p4),

(1−µ6(x))
4∑

j=0

λccjpj

)

Set

B1P = −e−x
(
0, 0, 0, 0,

(1−µ5(x))λ(p3+p4),

(1−µ6(x))
4∑

j=0

λccjpj

)

Then we have

A0L = A−B1

This means that A0L is two rank perturbation of A.
We shall prove that the spectrum of A0 are in the half-
plane ℜγ < c.

In fact, for any P =
(p0, p1, p2, p3, p4, p5, p6) ∈ D(A0), and
Q=(sgnp0, sgnp1, sgnp2, sgnp3, sgnp4, sgnp5, sgnp6),

we have

⟨A0P + cP,Q⟩ = −(a0 − c)|p0| − (a1 − c)|p1|
−(a2 − c)|p3| − (a4 − c)|p4|

−
∫ ∞

0
(p′5(x) + (µ5(x)− c)p5(x))sgnp5(x)dx

−
∫ ∞

0
(p′6(x) + (µ6(x)− c)p6(x))sgnp6(x)dx

= −a0|p0| − a1|p1| − a2|p3| − a4|p4|

−
∫ ∞

0
(µ5(x)− c)|p5(x)|dx+ |p5(0)|

−
∫ ∞

0
(µ6(x)− c)|p6(x)|dx+ |p6(0)|

< 0.

This implies that A0 is strictly dissipative operator in
X. So the semigroup S0(t) generated byA0 satisfying
||S0(t)|| ≤ e−ct.

Note that A is a two rank perturbation of A0. Ac-
cording to Theorem 3, there is no spectral point in
ℜγ > −c, so for any c > ω > 0, there is a posi-
tive constant M such that ||S(t)|| ≤ Me−ωt, t ≥ 0.
The desired result follows. ⊓⊔

Remark 5 Usually the perturbation Theorem only
ensures that the essential spectrum of S(t) is the same
as the one of S0(t). (e.g. see [9] and [10]). Since
we have proved Theorem 3, we can assert that the
spectrum of S(t) is in the disc σ(S(t)) ⊂ {z ∈ C

∣∣
|z| ≤ e−ct}. Since S(t) need not to be dissipative for
ℜγ + c > 0, so there is a constant M in Theorem 4.

Since B is a finite rank operator, it is a compact
operator. According to compact perturbation theorem
of operator semigroup, we have the following conclu-
sion.

Theorem 6 Suppose that A and c are defined as be-
fore.Then the C0 semigroup T (t) generated by A+B
possesses the following properties:

1). when γ ∈ C, ℜγ + c > 0, γ ∈ σ(A + B) ⇔
detD(γ) = 0.

2). Denote γ0 = 0. For any

γk ∈ {γ ∈ C
∣∣ ℜγ > −c, detD(γ) = 0}, γk ̸= γ0

where ℜγk+1 ≤ ℜγk, k = 1, 2, · · · , N, we have
ℜγk < γ0, that is γ0 = 0 is a strict dominant eigen-
value.

3). Set P̂0 = (p0, p1, p2, p3, p4, p5(x), p6(x)) be
the steady solution of the system with (P̂0, Q) = 1.
Taking ω > 0 such that ℜγ1 < −ω < γ0, then for
any P ∈ X, it holds that ||T (t)P − (P,Q)P̂0|| ≤
2e−ωt, t ≥ 0, where Q = (1, 1, 1, 1, 1, 1, 1).
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Proof 1) When ℜγ > −c, according to the theorem
3, γ ∈ ρ(A), then

(γI −A−B) = (γI −A)(I −R(γ,A)B).

Since B is a finite rank operator, R(γ,A)B is a com-
pact operator, γ ∈ ρ(A+B) if and only if 1 is not an
eigenvalue of R(γ,A)B. So when ℜγ + c > 0, we
have

γ ∈ σ(A+B) ⇔ D(γ) = 0

2) When ℜγ + c > δ > 0, detD(γ) is an an-
alytic function in this region, there are at most finite
number of zeros of detD(γ) and there is no accumu-
lation point in the finite region. Since 0 is a simple
eigenvalue of A + B, and it has positive eigenvec-
tor. According to the definition, 0 is a strict dominant
eigenvalue.

Set γ0 = 0, for any

γk ∈ {γ ∈ C
∣∣ ℜγ > −c,D(γ) = 0}, γk ̸= γ0.

where ℜγk+1 ≤ ℜγk, k = 1, 2, 3...N, then ℜγk <
γ0 = 0 due to it being a strict dominant eigenvalue of
A+B.

3) Finally, let T (t) be the semigroup generated
by A + B and S(t) the semigroup generated by A.
Applying the perturbation theorem of bounded lin-
ear operator semigroup to the semigroup T (T ) and
S(t), we have ωess(T (t)) ≤ ωess(S(t)) ≤ ω0(T (t))
(see,[9] and [10]), where ωess(T (t)) denotes the es-
sential spectrum bound of T (t).

Suppose that P̂0 is defined as in (11), and ℜγ1 <
−ω < γ0, according to the finite expansion theorem
of semigroup, for any P ∈ X , we have

∥ T (t)P − (P,Q)P̂0 ∥≤ 2e−ωt, t ≥ 0,

where Q = (1, 1, 1, 1, 1, 1, 1). The above conclusion
shows that the dynamic solution of the system (5) con-
verges exponentially the steady solution of the system.
⊓⊔

6 The reliability analysis of the sys-
tem

In this section we will analyze some indices of relia-
bility of the system (1). Set

Πi =

∫ ∞

0
e−

∫ x
0 µi(ξ))dξdx, i = 5, 6

According to the conditions satisfied by c and the ini-
tial value p(0) = (1, 0, 0, 0, 0, 0, 0), the dynamic so-
lution of the system is

p(t) = (p0(t), p1(t), p2(t), p3(t), p4(t), p5(x, t), p6(x, t))

By (11), the steady solution of system is

(P (0), Q)P̂0 = P̂0 = (p0, p1, p2, p3, p4, p5(x), p6(x))

By (10), normalizing ||P || = 1 we have p0 = 1
Z ,

where

Z = 1 +
2λ

a1
+
λs
a2

+
2λλs
a1a3

+
2λλs
a2a3

+
2λ2

a1a4

+ (
2λ2λs
a1a3

+
2λ2λs
a2a3

+
2λ3

a1a4
)Π5

+ (λcc0 +
2λλcc1
a1

+
λsλcc2
a2

+
2λλsλcc3
a1a3

+
2λλsλcc3
a2a3

+
2λ2λcc4
a1a4

)Π6

So, the asymptotic behavior of system (1) near by
the steady solution is given by

||P (t)− P̂0|| ≤ 2e−wt, ∀t > 0.

Clearly, when t = 3−ln2
w ,||P (t)− P̂0|| ≤ 0.01.

When t = 3−ln 2
w , the natural working probability

of the system (1) is

p0(t) + p1(t) + p2(t) + p3(t) + p4(t)
= p0 + p1 + p2 + p3 + p4 + (p0(t)− p0)
+(p1(t)− p1) + (p2(t)− p2) + (p3(t)− p3)
+(p4(t)− p4)
≤ p0 + p1 + p2 + p3 + p4 + 0.01

= 1
Z (1 +

2λ
a1

+ λs
a2

+2λλs
a1a3

+ 2λλs
a2a3

+ 2λ2

a1a4
) + 0.01

The failure rate of the system (1) is∫∞
0 p5(x, t)dx+

∫∞
0 p6(x, t)dx

≤
∫∞
0 p5(x)dx+

∫∞
0 p6(x)dx+ 0.01

= 1
Z

(
2λ2λs
a1a3

+ 2λ2λs
a2a3

+ 2λ3

a1a4

)
Π5

+
(
λcc0 +

2λλcc1
a1

+ λsλcc2
a2

+2λλsλcc3
a1a3

+ 2λλsλcc3
a2a3

+ 2λ2λcc4
a1a4

)
Π6 + 0.01

From the formula

Πi =

∫ ∞

0
e−

∫ x
0 µi(ξ))dξdx, i = 5, 6

we can see that the greater µi is, the smaller Πi is,
so the failure rate becomes small. Hence, the natural
working probability of the system (1) becomes larg-
er. It shows that the reliability of the system (1) is
increased.
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