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Abstract: For the B-operator B[P(z)| where P(z) is a polynomial of degree n, a problem has been considered
of investigating the dependence of |B[P(Rz)| — aB[P(rz)]| on the maximum modulus of P(z) on |z| = 1 for
every real or complex number o with |a] < 1, R > r > 1 in order to establish some new operator preserving

inequalities between polynomials.
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1 Introduction

Let P, (z) denote the space of all complex polynomi-
als of degree n. If P € P, then

max | P'(2)] < nmax |P(2)] (1)

and
P(z)| < R" max |P 2
Jnax [P(2)] < BY max|P(z)) )

Inequality (1) is an immediate consequence of S.
Bernstein’s Theorem (see [11,16]) on the derivative of
a trigonometric polynomial. Inequality (2) is a simple
deduction from the maximum modulus principle (see
[11] or [13]). If we restrict ourselves to the class of
polynomials P € P, having no zero in |z| < 1, then
inequalities (1) and (2) can be respectively replaced
by

max | P'(2)| < = max |P(2)] 3)
|z|=1 2 |z|=1
and
R +1

P(2)| < P(z)|. @
Jpax [P()] < —5—max|PG)l. ()

Inequality (3) was conjectured by P. Erdos and
later verified by P.D.Lax [9] (see also [2]). Ankeny
and Rivilin [1] used (3) to prove inequality (4). As
a compact generalization of inequalities (1) and (2),
Aziz and Rather [7] have shown that, if P € P, ,then
for every real or complex o with |o| < 1, R > 1 and
2 > 1,

|P(Rz) — aP(z)] < (R" - 1)\Z|”g1|g>l<lp(2)| - (5

The result is sharp and equality in (5) holds for
P(z) =Xz",A#0
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As a corresponding compact generalization of in-
equalities (3) and (4), they [7] have also shown that if
P € P, and P(z) does not vanish in |z| < 1, then for
every real or complex number o with |a| <1, R > 1
and |z| > 1,

|P(Rz) — aP(2)
R"—allz|"+|1—«
< | H2| [1—cf

(6)
maxy, = |P(2)].

Equality in (6) holds for P(z) = az" + b, and |a| =
|bj =1.

Inequalities of the type (3)and (4) were further
generalized among others by jain [8], Aziz and Da-
wood [3], Aziz and Rather [4] and extended to L,
norm by Aziz and Rather [5,6].

Consider a class B,, of operator B that carries
polynomial P € P, into

BIP(2)] = AoP(2) + M1 (”) P'(z)

2/ 1
nz\* P"(z)
+ (2) - ™)

where \g, A1 and A, are real or complex numbers such
that all the zeros of

u(z) = Ao+ MC(n, 1)z + AaC(n,2)2%,  (8)
lie in half the plane
|2 < |z = n/2]. ©)
Note that for 0 < r < n,

C(n,r) =nl/rl(n —r)l
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It was proposed by Q.I. Rahman to study inequal-
ities concerning the maximum modulus of B[P](z)
for P € P,. As an attempt to this, Q.I.Rahman [14]
(see also [15,16]) extended inequalities (1), (2), (3)
and (4) to the class of operators B € B,, by showing
that that if P € P,, then

P()] < max|P(2)| for | =1

implies

IBIPI(2)] < [Bl="]|max |[P(z)] for |2[ =1 (10)
and if P(z) # 0in |z| < 1, then

BIPI(z)| < BEILE ol

< 5 max | P(z)]

1L
|z[=1
for |z| > 1.

In this paper an attempt has been made to investi-
gate the dependence of |B[P(Rz)] — aB[P(rz)]| on
the maximum modulus of P(z) on |z| = 1 for ev-
ery real or complex number o with |o| < 1, R >
r > 1 and develop a unified method for arriving at
various results simultaneously. In this direction, we
first present the following interesting result which is a
compact generalization of the inequalities (1), (2), (5)
and (10).

Theorem 1 If P € P,, then for every real or complex
number o with || < 1, R > r > 1 and for |z| > 1,

|B[P(Rz)] — aB[P(rz)]]

(12)
< |R" ~ ar"| | B2 maxi.iy |P(2)]
where B € B,,. The result is best possible and equal-
ity in (12) holds for P(z) = \z", A # 0.

Substituting for B[P](z), one gets from (12) for every
real or complex o with |a] < 1, R > r > 1 and for
2l = 1,

2 nz\J (P(j)(Rz)—aP(j)(rz))
S () )

R"™ — ar™| |z|" x

2 N\ .
];Aj <2> C(n,J)Ifni)lc\P(zn

2|

IN

13)

where g, A1 and A9 are such that all the zeros of u(z)
defined by (8) lie in the half plane (9).
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Remark 2 For o = 0, from inequality (12), we ob-
tain for |z| > 1and R > 1,

[BIPI(B2)| < |BR""]|max |P()] (14)

where B € By, which contains inequality (10) as a
special case.

By taking Ag = A2 = 0 in (13) and noting that in
this case all the zeros of u(z) defined by (8) lie in the
half-plane (9), we get:

Corollary 3 If P € P,, then for every real or com-
plex number a with |o| <1, R >r > 1land |z| > 1,

|RP'(Rz) — arP'(rz)|

< n|R" — ar™| |z|" ! max), 1 |P(2)].

5)

The result is sharp and equality in (15) holds for
P(z) = X", A #0.

If we divide the two sides of (15) by R — r with
a=1landlet R — r,we getforr > land |z| > 1,

|P'(rz) + rzP"(rz)|
< n2pnlignel max | |P(2)]

The result is best possible.

By setting Ay = Ay = 0 in (13), it follows that
if P € P,, then for every real or complex number «
with |a] < 1,R >r > land |z] > 1,

|P(Rz) — aP(rz)]

< |R" — ar"| |#]" max;.j-y | P(2)].

(16)

Equality in (16) holds for P(z) = A\z", A # 0.

Inequality (16) is equivalent to inequality (5) for
r = 1. For o = 0, inequality (16) includes inequality
(2) as a special case. If we divide the two sides of the
inequality (17) by R—r with « = 1 and make R — r,
we getforr > 1,|z| > 1,

[P/(r2)] < nr el max| P(2)].
2=

which, in particular, yields inequality (1) as a special
case.

Next we use Theorem 1 to prove the following
result.

Theorem 4 [If P € P,, then for every real or complex
number o with |o| < 1, R > r > 1 and for |z| > 1,

|BIP(Rz)] — aB[P(rz)]|+|B[Q(R2)] — aB[Q(rz)]]
< (|R" — ar™||B[2"]]

+1 = afdo)Maz =y | P(2)]
a7
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where QQ(z) = z"P(1/z) and B € B,,.The result is
best possible and equality in (17) holds for P(z) =
2" A #£NO.

Remark 5 Theorem 4 includes some well known
polynomial inequalities as special cases. For exam-
ple, inequality (17) reduces to a result due to Q. I
Rahman (see [ 14, inequality (5.2)]) for a = 0.

If we choose Ay = A9 = 0in (17), we obtain:

Corollary 6 If P € P,, then for every real or com-
plex number a with |o| <1, R >r > 1and |z| > 1,

arQ'(rz) |
(13)

|RP'(Rz) — arP'(rz)| + |RQ'(Rz) —

<n|R" —ar"||z|"” 1rnaXHD( )| -

l2l=1
Equality in (18) holds for P(z) = Az", A # 0.

If we divide the two sides of (18) by R — r with
a = 1andlet R — r, we get:

Corollary 7 If P € P,, then for every o with |a| <
LR>r>1land|z| > 1,

|P(rz) + rzP"(rz)| +|Q'(rz) + rzQ" (rz)|
< n?r" 2" Maxy, 2y | P(2)]

where Q(z) = 2" P(1/2).

For A\ = Ay = 0 and o = 1, Theorem 4 includes
aresult due to A. Aziz and Rather [7] as a special case.

For the class of polynomials P € P, having no
zero in |z| < 1, inequality (12) can be improved. In
this direction, we present the following result which
is a compact generalization of the inequalities (3), (4),
(6) and (12).

Theorem 8 If P € P, and P(z) does not vanish in
|z| < 1, then for every real or complex number o with
lo| <1, R>r>1and|z| > 1,

|B[P(Rz)] — aB[P(rz)]|

e (19)
< [B—ar HB[Z2 JI+[1=a|Ao] max|,—1 | P(2)]

where B € B,,. The result is best possible and equal-
ity in (19) holds for P(z) = az" 4+ b, |a| = [b| = 1.

Substituting for B[P(z)] (19), we get for every real or
complex a with |a] <1, R > r > 1 and for |z| > 1,

> (%)

J=0

J (P(j)(Rz) — aP(j)(rz))
j!
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IN

SR - ar“uZA (Y e pler
ol x| P2 0)

where g, A1 and A9 are such that all the zeros of u(z)
defined by (8) lie in the half-plane (9).

Remark 9 For o = 0, inequality (11) is a special
case of inequality (20). If we choose A\y = Ao = 0
in (20) and note that in this case all the zeros of u(z)
defined by (8) lie in the half-plane defined by (9), it
follows that if P(z) # 0in |z| < 1, then for R > r >
land|z| > 1,

|RP'(Rz) — arP'(rz)|

- (21)
S n|R _20”’ |‘z|n71

max |- |P(2)]

Setting o = 0 in (21), we obtain for |z| > 1 and
R>1,

[P/(R2)| < Rl max| P2)

which, in particular, gives inequality (3).
Next choosing A1 = Ay = 0in (7), we get
|P(Rz) — aP(rz)|

) — P 22)
< |R—ar ||22\ t1-af max|,— |P(z)].

for R > r > 1 and |z| > 1. The result is sharp and
equality in (22) holds for P(z) = az" +b,|a| = |b] =
1.

Inequality (22) is a compact generalization of the
inequalities (3), (4) and (6).

A polynomial P € P, is said to be self- inver-
sive if P(z) = Q(z) where Q(z) = n"P(1/z). I
is known [12,20] that if P € P, is a self-inversive
polynomial, then

<3 maXIP( |-

(23)
2 |z|=1

maX|P’
|z|=1

Here we also establish the following result for self-
inversive polynomials.

Theorem 10 If P € P, is a self-inversive polyno-
mial, then for every real or complex number o with
la] <1, R>r>1land|z| > 1,

|B[P(Rz)] — aB[P(rz)]|

N ) 24)
< [Br=ar HB[Zz JI+[1=a|Ao] max | |P(z)]

where B € B,,. The result is best possible and equal-
ity in (24) holds for P(z) = 2" + 1.
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The following result immediately follows from of
Theorem 10 by taking o = 0.

Corollary 11 If P € P, is a self-inversive polynomi-
al, then for R > 1 and |z| > 1

|B[ann]| + |)\0| max\P(z)] 25)

BIPI(R2)] < 5

where B € B,,. The result is sharp as shown by the
polynomial P(z) = 2" + 1.

Corollary 11 includes a result due to Shah and Li-
man [21] as a special case.

Next choosing A\ = Ay = 0 in (24), we immedi-
ately get

Corollary 12 If P € P, is a self-inversive polyno-
mial, then for every real or complex number o with
la] <1, R>r>1land|z| > 1,

|P(Rz) — aP(rz)]

< IR —ar"|s" +1=a] (26)
— 2

max|,|— |P(z)

The result is sharp and equality in (26) holds for
P(z) =az" 4+ b,|a| = |b| = 1.

Inequality (26) contains inequality (23) as special
case. If we divide the two sides of (26) by R — r with
a = 1landlet R — r, we get

[P/(r2)] < 5o 2" max | P(2)]

2 B
forr > 1and |z| > 1.

Above inequality reduces to inequality (23) for
r = 1. Further for a = 0, inequality (26) gives

R"+1
- max|[P(2)]

max |P(z)| <
|z|=R>1

Setting \y = A1 = 0 in (24) and note that in
this case all the zeros of u(z) defined by (8) lie in the
half-plane |z| < |z — z/n|, it follows that if P € P,
is a self-inversive polynomial, then for every real or
complex number « with |o| < 1, R > r > 1 and

2| = 1,

]R2P"(RZ) _ arzP”(TZ)‘
< %|Rn _ oﬂ‘nHZ‘n_Q max|,|=1 |P(Z)’

For ao = 0, this inequality gives, for self-inversive
polynomials P € P,,

(n—1)
2

|P"(Rz)] < © R"2|2[" % max | P(2)|

|21=1

for R > 1 and |z| > 1. The result is best possible and
equality holds for P(z) = 2" 4 1.
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Remark 13 Many other interesting results can be de-
duced from Theorem 10 in the same way as have been
deduced from Theorem I and Theorem 4.

For the class of polynomials P € P,, having all
their zeros in |z| < 1, we have

|H|117ri |P'(z)] >n |H|113 |P(2)| (27)
and
min |P(z)] > R" min |P(z)]. (28)

|z|=R>1
Inequalities (27) and (28) are due to A. Aziz and Q. M.
Dawood [3]. Both the results are sharp and equality in
(27) and (28) holds for P(z) = Az™, X\ # 0.

As a compact generalization of inequalities (27)
and (28), Rather [17] proved that if P(z) is a polynomi-
al of degree n having all its zeros in |z| < 1, then for
every real or complex number a with |o| < 1,R > 1
and |z| > 1,

[P(R2) = aP ()] > |R" = of min [P(2).

|z|=1

(29)

The result is sharp and equality in (29) holds for
P(z) = A", A # 0.

Finally in this paper we present the following re-
sult.

Theorem 14 If P € P,, and P(z) has all its zeros in
|z| <1, then for every real or complex number o with
la] <1,R>r>1land|z| > 1,

|BIP(Rz)] — aB[P(rz)]|

> [R" — ar™|| B[2"]| minj,1—y [P(2)] .

where B € B,,.The result is best possible and equality
in (30) holds for P(z) = Az", X # 0.

(30)

Substituting for B[P](z), we get, from (30), for
every real or complex a with |a| < 1, R > r > 1 and
for |z| > 1,

2 nz
PR (2
7=0
R"™ — ar™| |z|" x

2 j
PR (Z) C(n,j) fr‘liq\P(Z)l (31)
7=0 =

>j (P9 (R2)

4!

Y

where Ao, A1 and Ay are such that all the zeros of u(z)
defined by (8) lie in the half plane (9).

Remark 15 For a = 0, from inequality (30), we have
for|z| >1and R > 1,

[BIPI(R2)| = |BIE""]| min [P()] (2)

where B € By,.The result is best possible.
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Taking A\g = A2 = 0 in (31) and noting that all
the zeros of u(z) defined by (8) lie in the half plane
(9), we get

Corollary 16 If P € P, and P(z) has all its zeros in
|z| <1, then for every real or complex number o with
la] <1,R>r>1land|z| > 1,
|RP'(Rz)
>n|R"

— arP'(rz)|
(33)
— ar| 2" ming o [P(2)] .

The result is sharp and extremal polynomial is P(z) =
Az A #£ Q.

If we divide the two sides of (33) by R — r with
a=1landlet R — r, we getforr > 1and |z| > 1,

|P'(rz) +rzP"(rz)|

> n2r" 2" ming, 2y [P(2)].

The result is best possible.
Next setting A\; = A2 = 0in (31), we obtain

Corollary 17 If P € P,, and P(z) has all its zeros in
|z| <1, then for every real or complex number o with
la| <1,R>r>1land|z| > 1,

|P(Rz) — aP(rz)]

(34)
> |R" -

ar™| |z|™ min,—; |P(2)].

The result is best possible and equality in (34) holds
for P(z) = Az", A #0.

Inequality (34) includes inequality (29) as a spe-

cial case.

2 Lemmas

For the proofs of these theorems, we need the follow-
ing lemmas.

Lemma 18 If P € P, and P(z) has all its zeros in
|z| <1, thenfor R >r > 1and |z| =1,

|P(Rz)| > |P(rz)|.

Proof: Since all the zeros of P(z) lie in |z| < 1, we
can write

n
CIIG—mre
J=1
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where r; < 1. Now for 0 < 0 <2mand R > r > 1,

we have
Rewfr]eH

10
rett - e’

_ {R2+7’J2.—2RT]-COS(9—9]-)} S (RHJ,)Q

J

r2+r§—2rrj003(9—0j) T+
if
R2+7"]2-—2R7"j cos(0—6;) R2+T]2—2RTj
r2+T]2—2TTj cos(6—6;) — T2+7"j2~—27“7"j ’
or, if

(R2 + 7“]2 — 2Rrj cos(f — Oj)> (7“2 + 7“? - 27“7“j)
> <7“2 + 75 — 2rrj cos(f — 0j)) <R2 + 77— 2Rrj) ,
that is ,if
{27“rj(R2 + 7']2) — 2Rr;(r* + 7"]2)} cos(6 — 0;)
> 2Rrj(r? 4+ r3) — 2rrj(R* 4+ r3).
Equivalently,if
(R—7)(R*—rrj)cos(0—0;) > —(R—r)(R*—rr;).

That is, if
cos(f —0;) > —1,

which is true. Hence for 0 < 6§ < 2mrand R > r > 1,

which implies

e (242)' e

(35)

for0 < 6§ < 2mand R > r > 1. Since f(Re") # 0
for R >r >1and R+ 1 > r + 1, it follows from
(35) that

r+1
R+1

P(Re?)| > < > P(Re™)| = [P(re?)]
for 0 < 6 < 27w and R > r > 1. This implies
|P(Rz)| > [P(rz)|

for every R > r > 1 and |z| = 1, which completes
the proof of the Lemma 18.

The next lemma follows from Corollary 18.3 of
[10, p. 86].
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Lemma 19 If P € P, and P(z) has all its zeros in
|z| <1, then all the zeros of B[P(z)] also lie in |z| <
1.

Lemma 20 [f P € P, and P(z) does not vanish in

|z| < 1, then for every real or complex number o with

o] <land R >r > 1,.
|B[P(Rz)] — aB[P(rz
< [BIQ(Rz

)|

36
)|~ aBIQ(r e

)|

where Q(z) = 2"P(1/z). The result is sharp and
equality in (36) holds for P(z) = 2" + 1.

Proof: Since the polynomial P(z) has all its zeros in
|z| > 1, therefore, for every real or complex number /3
with | 3| > 1, the polynomial f(z) = P(z) — fQ(z)
where Q(z) = z"P(1/Z), has all its zeros in |z| <
1. Applying Lemma 18 to the polynomial f(z), we
obtain for every R > r > 1,

|f(rz)] <|f(Rz)| for |z|=1.

Using Rouche’s theorem and noting that all the zeros
of f(Rz) lie in |z] < (1/R) < 1, we conclude that
the polynomial

9(2)

has all its zeros in |z| < 1 for every real or complex
number « with |a] < 1. Applying Lemma 19 to the
polynomial g(z) and noting that B is a linear operator,
it follows that all the zeros of polynomial

= f(Rz) — af(rz)

T(z) = Blgl(z)
= (B[P(Rz)] — aB[P(rz)])
—B(B[Q(Rz)] — aB[Q(rz)]) (37)

lie in |z| < 1 for all real or complex numbers «, 3
with || <1,|5| > 1and R > r > 1. This implies

)|
)] —aB[Q(rz

|B[P(Rz)] — aB[P(rz

38
< |BlQ(R= oY

)|

for |z| > 1. If inequality (38) is not true, then there is
a point z = w with |w| > 1 such that

[{B[P(Rz)] — aB[P(rz)]}._,,
> [{BlQ(Rz)] — aB[Q(rz)]}.—, |-

But all the zeros of Q(z) lie in |z| < 1, therefore,
it follows (as in case of f(z)) that all the zeros of
Q(Rz)—aQ(rz) liein |z| < 1. Hence by Lemma 19,
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all the zeros of B[Q(Rz)] — aB[Q(rz)] liein |z] < 1

so that B[Q(Rz)] — aB[Q(rz)],_,, # 0. We take
g = \BIP(E2)] — aB[P(rz)]},,,
{BIQ(R2)] — aB[Q(rz)]},—,

then [ is a well defined real or complex number with
|B] > 1 and with this choice of 3, from (37), we obtain
T(w) = 0 where |w| > 1. This contradicts the fact
that all the zeros of T'(z) lie in |2| < 1. Thus

il
2)] — aB[Q(rz

|B[P(Rz)] — aB[P(rz

< |B[Q(R )|

for every a with || < 1 and R > r > 1. This proves
Lemma 20.

3 Proofs of the Theorems
Proof of Theorem 1: Let M = max,|_; |P(z)],

|P(2)] < M for |z| =1.

By Rouche’s theorem, it follows that all the zeros of
polynomial F'(z) = P(z) — Az"M lie in |z| < 1
for every real or complex number A with |A] > 1.
Therefore, by Lemma 18, we have for R > r > 1,

|F(rz)| < |F(Rz)| for |z|=1.

Since all the zeros of polynomial F'(Rz) lie in |z| <
(1/R) < 1, applying Rouche’s theorem again, we
conclude that all the zeros of polynomial G(z) =
F(Rz) — aF(rz) lie in |z| < 1 for every real or
complex « with || < 1. Hence by Lemma 19, the
polynomial

L(z) = B[G(2)]
= B[F(Rz)| — aB[F(rz)]
= (B[P(R Z)]*ozB[ (r2)])
— MR" — ar™)B[z"|M (39)

has all its zeros in |z| < 1 for every real or complex
number A\ with |[A| > 1. This implies

|BIP(Rz)] — aB[P(rz)]]

(40)
< |R™ — ar™|| B[2"]|M

for |z| > 1and R > r > 1. If inequality (40) is not
true, then there is a point z = w with |w| > 1 such

that
[{B[P(Rz)] — aB[P(rz)]},_, |
> |R" —ar|[{B[z"]}._, M
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for |z| > 1. Since (B[z"]) .= # 0. we take

) = \BIP(B2)] — aB[P(rz)]}

Z=Ww

(R — ar™) {B[z"]} ’

zZ=w

so that X is a well defined real or complex number
with |A| > 1 and with this choice of A, from (39),
we get L(w) = 0 where |w| > 1, which is clearly a
contradictions to the fact that all the zeros of L(z) lie
in |z| < 1. Thus for every real or complex number o
with o] <1, R >r >1land |z| > 1,

|BIP(Rz)] — aB[P(rz)]| < |R" — ar”||B[z"]|M
This completes the proof of Theorem 1.
Proof of Theorem 4: Let M = max,,—; |P(z)], then
|P(2)] <M for |z| =1.

If 1 is any real or complex number with |u| > 1, then
by Rouche’s theorem, the polynomial

F(z)=P(z) — uM

does not vanish in |z| < 1. Applying Lemma 20 to
the polynomial F'(z) and noting the fact that B is a
linear operator, it follows that for every real or com-
plex number o with |a| < 1,R >r > 1,

|B[F(Rz)] — aB[F(rz)]]
< |B[H(Rz)] — aB[H(rz))|

for |z| > 1 where

H(z) = 2"F(1/z)=z"P(1/z) — uz"M
— Q(z) — =" M.

Using the fact that B[1] = Ao, we obtain

|BIP(Rz)]—aB[P(rz)] = p(1 = a)ro M|

< |B[Q(R2)]—aB[Q(rz)] — ((R" —ar™)B[z"] M|

(41)

for all real or complex numbers «, p with |a] <

1,|p| > 1,R > r > 1and|z| > 1. Now choosing the
argument of x such that

|BIQ(Rz)|—aB[Q(rz)] — i(R" —ar™) B[z"| M|
= [ul|R" — ar™[|B[z"]|M
— [BIQ(R2)] — aB[Q(rz)]|,

which is possible by Theorem 1, we get from (41), for
|| > 1, and |z| > 1.

|B[P(Rz)]—aB[P(rz)]|+|B[Q(Rz)| - aB[Q(rz)]|
< |ul(|R" — ar™|[B[z"]|
+[1 = a[Aol) max; =y [P(2)].
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Letting || — 1, we obtain
|B[P(Rz)] — aB[P(rz)]|+|B[Q(Rz)] —aB[Q(rz)]]
< (|R" — ar™||B["]]
+[1 — af[Ao]) max, | [P(z)].
This proves of Theorem 4.

Proof of Theorem 8: Lemma 20 and Theorem 4 to-
gether yields, for every real or complex number o with
lo| <1, R>r>1and|z| > 1,

2|B[P(Rz)] — aB[P(rz)]|
< |B[P(Rz)|—aB[P(rz)]|+|B[Q(Rz)| —aB[Q(rz)]]
< (|R" — ar™|| B[2"]|

+[1 = af[Ao]) max|, 1 [P(2)],

which is equivalent to (19) and this completes the
proof of Theorem 8.

Proof of Theorem 10: By hypothesis P € P, is a
self-inversive polynomial, therefore, for all z € C.

|B[P(Rz)]—aB[P(rz)]| = [B[Q(Rz)]—aB[Q(rz)]|

Combining this with Theorem 4, we get for every real
or complex number « with |o| < 1,R > r > 1 and
2l > 1,

2|B[P(Rz)] — aB[P(rz)]|
=|B[P(Rz)]—aB[P(rz)][+|B[Q(Rz)]| —aB[Q(rz)]]
< (IR" — ar™||B[2"]|

+[1 — af[Ao]) max|, =1 [P(z)],

which immediately leads to the desired result and this
completes the proof of Theorem 10.

Proof of Theorem 14: Let m = min,_; [P(2)
then

B

m|z|" < |P(2)| for |z] = 1.

We first show that the polynomial F'(z) = P(z) —
dmz™ has all its zeros in |z| < 1 for every real or
complex number ¢ with |6| < 1. This is clear if m =
0. Henceforth we assume that all the zeros of P(z) lie
in |z| < 1, then m > 0 and it follows by Rouche’s
theorem that the polynomial F'(z) = P(z) — fmz"
has all its zeros in |z| < 1 for every real or complex
number § with |[§| < 1. Applying Lemma 18 to the
polynomial F'(z), we get

|F(rz)| < [F(Rz)]

for |z| = 1 and R > r > 1. Using Rouche’s theorem,
we conclude that all the zeros of polynomial

G(z) = F(Rz) — aF(rz)
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lie in |z| < 1 for every real or complex number «

with |[o| < 1 and R > r > 1. Applying Lemma 19

to the polynomial G(z) and noting that B is a linear

operator, it follows that all the zeros of the polynomial
T(z) = B[G(2)] = B[F(Rz)| — aB[F(rz)]

= B[P(Rz)|— aB[P(rz)]— 6 (R"— ar™) B[z"]
(42)
lie in |2| < 1 for every real or complex number § with
|0| < 1and R > r > 1, which implies

|B[P(Rz)] — aB[P(rz)]| > m|R" — ar"| |B[z"]].

for |z| > 1. If above inequality is not true, then there
is a point z = w with |w| > 1 such that

{B[P(Rz)] — aB[P(rz)]}
<m|R" — ar™ |{B[z"]}

_—
zZ=w |

Since all the zeros of B[z"] lie in |z| < 1, therefore,
{B[2"]},_,, # 0. We take

_ {B[P(Rz)] — aB[P(rz)]},_,
m(R™ — ar™) {B[z"]} ’

Z=w

J

then § is well defined real or complex number with
|0 < 1 and with choice of §, from (42) we get,
T(w) = 0 with |[w| > 1, which contradicts the fact
that all the zeros of T'(z) lie in | 2| < 1. Thus

|BIP(R2)] — aB[P(rz)]| =2 m[R" — ar"[|B["]]

for every real or complex number « with |a] < 1,
R > r > 1and |z| > 1. This completes the proof of
Theorem 14.
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