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Abstract: For the B-operator B[P (z)] where P(z) is a polynomial of degree n, a problem has been considered
of investigating the dependence of |B[P (Rz)] − αB[P (rz)]| on the maximum modulus of P (z) on |z| = 1 for
every real or complex number α with |α| ≤ 1, R > r ≥ 1 in order to establish some new operator preserving
inequalities between polynomials.
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1 Introduction
Let Pn(z) denote the space of all complex polynomi-
als of degree n. If P ∈ Pn, then

max
|z|=1

∣∣P ′(z)
∣∣ ≤ nmax

|z|=1
|P (z)| (1)

and
max

|z|=R>1
|P (z)| ≤ Rnmax

|z|=1
|P (z)| (2)

Inequality (1) is an immediate consequence of S.
Bernstein’s Theorem (see [11,16]) on the derivative of
a trigonometric polynomial. Inequality (2) is a simple
deduction from the maximum modulus principle (see
[11] or [13]). If we restrict ourselves to the class of
polynomials P ∈ Pn having no zero in |z| < 1, then
inequalities (1) and (2) can be respectively replaced
by

max
|z|=1

∣∣P ′(z)
∣∣ ≤ n

2
max
|z|=1

|P (z)| (3)

and

max
|z|=R>1

|P (z)| ≤ Rn + 1

2
max
|z|=1

|P (z)| . (4)

Inequality (3) was conjectured by P. Erdös and
later verified by P.D.Lax [9] (see also [2]). Ankeny
and Rivilin [1] used (3) to prove inequality (4). As
a compact generalization of inequalities (1) and (2),
Aziz and Rather [7] have shown that, if P ∈ Pn,then
for every real or complex α with |α| ≤ 1, R > 1 and
|z| ≥ 1,

|P (Rz)− αP (z)| ≤ (Rn − 1)|z|nmax
|z|=1

|P (z)| . (5)

The result is sharp and equality in (5) holds for
P (z) = λzn, λ ̸= 0

As a corresponding compact generalization of in-
equalities (3) and (4), they [7] have also shown that if
P ∈ Pn and P (z) does not vanish in |z| < 1 , then for
every real or complex number α with |α| ≤ 1, R > 1
and |z| ≥ 1,

|P (Rz)− αP (z)|

≤ |Rn−α||z|n+|1−α|
2 max|z|=1 |P (z)| .

(6)

Equality in (6) holds for P (z) = azn + b, and |a| =
|b| = 1 .

Inequalities of the type (3)and (4) were further
generalized among others by jain [8], Aziz and Da-
wood [3], Aziz and Rather [4] and extended to Lp

norm by Aziz and Rather [5,6].
Consider a class Bn of operator B that carries

polynomial P ∈ Pn into

B[P (z)] = λ0P (z) + λ1

(
nz

2

)
P ′(z)

1!

+ λ2

(
nz

2

)2 P ′′(z)

2!
(7)

where λ0, λ1 and λ2 are real or complex numbers such
that all the zeros of

u(z) = λ0 + λ1C(n, 1)z + λ2C(n, 2)z
2, (8)

lie in half the plane

|z| ≤ |z − n/2|. (9)

Note that for 0 ≤ r ≤ n,

C(n, r) = n!/r!(n− r)!.
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It was proposed by Q.I. Rahman to study inequal-
ities concerning the maximum modulus of B[P ](z)
for P ∈ Pn. As an attempt to this, Q.I.Rahman [14]
(see also [15,16]) extended inequalities (1), (2), (3)
and (4) to the class of operators B ∈ Bn by showing
that that if P ∈ Pn, then

|P (z)| ≤ max
|z|=1

|P (z)| for |z| = 1

implies

|B[P ](z)| ≤ |B[zn]|max
|z|=1

|P (z)| for |z| ≥ 1 (10)

and if P (z) ̸= 0 in |z| < 1, then

|B[P ](z)| ≤ |B[zn]|+ |λ0|
2

max
|z|=1

|P (z)| (11)

for |z| ≥ 1.
In this paper an attempt has been made to investi-

gate the dependence of |B[P (Rz)] − αB[P (rz)]| on
the maximum modulus of P (z) on |z| = 1 for ev-
ery real or complex number α with |α| ≤ 1, R >
r ≥ 1 and develop a unified method for arriving at
various results simultaneously. In this direction, we
first present the following interesting result which is a
compact generalization of the inequalities (1), (2), (5)
and (10).

Theorem 1 If P ∈ Pn, then for every real or complex
number α with |α| ≤ 1, R > r ≥ 1 and for |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|

≤ |Rn − αrn||B[zn]|max|z|=1 |P (z)| .
(12)

where B ∈ Bn. The result is best possible and equal-
ity in (12) holds for P (z) = λzn, λ ̸= 0.

Substituting forB[P ](z), one gets from (12) for every
real or complex α with |α| ≤ 1, R > r ≥ 1 and for
|z| ≥ 1, ∣∣∣∣∣∣

2∑
j=0

λj

(
nz

2

)j

(
P (j)(Rz)− αP (j)(rz)

)
j!

∣∣∣∣∣∣
≤ |Rn − αrn| |z|n×∣∣∣∣∣∣

2∑
j=0

λj

(
n

2

)j

C(n, j)

∣∣∣∣∣∣max
|z|=1

|P (z)| (13)

where λ0, λ1 and λ2 are such that all the zeros of u(z)
defined by (8) lie in the half plane (9).

Remark 2 For α = 0, from inequality (12), we ob-
tain for |z| ≥ 1 and R > 1 ,

|B[P ](Rz)| ≤ |B[Rnzn]|max
|z|=1

|P (z)| (14)

where B ∈ Bn, which contains inequality (10) as a
special case.

By taking λ0 = λ2 = 0 in (13) and noting that in
this case all the zeros of u(z) defined by (8) lie in the
half-plane (9), we get:

Corollary 3 If P ∈ Pn, then for every real or com-
plex number α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|RP ′(Rz)− αrP ′(rz)|

≤ n |Rn − αrn| |z|n−1max|z|=1 |P (z)| .
(15)

The result is sharp and equality in (15) holds for
P (z) = λzn, λ ̸= 0.

If we divide the two sides of (15) by R − r with
α = 1 and let R→ r, we get for r ≥ 1 and |z| ≥ 1,

|P ′(rz) + rzP ′′(rz)|

≤ n2rn−1|z|n−1max|z|=1 |P (z)|

The result is best possible.
By setting λ1 = λ2 = 0 in (13), it follows that

if P ∈ Pn, then for every real or complex number α
with |α| ≤ 1,R > r ≥ 1 and |z| ≥ 1,

|P (Rz)− αP (rz)|

≤ |Rn − αrn| |z|nmax|z|=1 |P (z)| .
(16)

Equality in (16) holds for P (z) = λzn, λ ̸= 0 .
Inequality (16) is equivalent to inequality (5) for

r = 1 . For α = 0, inequality (16) includes inequality
(2) as a special case. If we divide the two sides of the
inequality (17) byR−r with α = 1 and makeR→ r,
we get for r ≥ 1, |z| ≥ 1,∣∣P ′(rz)

∣∣ ≤ nrn−1|z|n−1max
|z|=1

|P (z)| ,

which, in particular, yields inequality (1) as a special
case.

Next we use Theorem 1 to prove the following
result.

Theorem 4 If P ∈ Pn, then for every real or complex
number α with |α| ≤ 1, R > r ≥ 1 and for |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|+|B[Q(Rz)]− αB[Q(rz)]|

≤ (|Rn − αrn||B[zn]|

+|1− α||λ0|)Max|z|=1 |P (z)|
(17)
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where Q(z) = znP (1/z̄) and B ∈ Bn.The result is
best possible and equality in (17) holds for P (z) =
λzn, λ ̸= 0.

Remark 5 Theorem 4 includes some well known
polynomial inequalities as special cases. For exam-
ple, inequality (17) reduces to a result due to Q. I.
Rahman (see [14, inequality (5.2)]) for α = 0.

If we choose λ0 = λ2 = 0 in (17), we obtain:

Corollary 6 If P ∈ Pn, then for every real or com-
plex number α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,∣∣RP ′(Rz)− αrP ′(rz)

∣∣+ ∣∣RQ′(Rz)− αrQ′(rz)
∣∣

≤ n |Rn − αrn| |z|n−1max
|z|=1

|P (z)| . (18)

Equality in (18) holds for P (z) = λzn, λ ̸= 0.

If we divide the two sides of (18) by R − r with
α = 1 and let R→ r, we get:

Corollary 7 If P ∈ Pn, then for every α with |α| ≤
1, R > r ≥ 1 and |z| ≥ 1,

|P ′(rz) + rzP ′′(rz)|+ |Q′(rz) + rzQ′′(rz)|

≤ n2rn−1|z|n−1Max|z|=1 |P (z)|

where Q(z) = znP (1/z̄).

For λ1 = λ2 = 0 and α = 1, Theorem 4 includes
a result due to A. Aziz and Rather [7] as a special case.

For the class of polynomials P ∈ Pn having no
zero in |z| < 1, inequality (12) can be improved. In
this direction, we present the following result which
is a compact generalization of the inequalities (3), (4),
(6) and (12).

Theorem 8 If P ∈ Pn and P (z) does not vanish in
|z| < 1, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|

≤ |Rn−αrn||B[zn]|+|1−α||λ0|
2 max|z|=1 |P (z)|

(19)

where B ∈ Bn. The result is best possible and equal-
ity in (19) holds for P (z) = azn + b, |a| = |b| = 1.

Substituting for B[P (z)] (19), we get for every real or
complex α with |α| ≤ 1, R > r ≥ 1 and for |z| ≥ 1,∣∣∣∣∣∣

2∑
j=0

λj

(
nz

2

)j

(
P (j)(Rz)− αP (j)(rz)

)
j!

∣∣∣∣∣∣

≤ 1

2
[|Rn − αrn| |

2∑
j=0

λj

(
n

2

)j

C(n, j)||z|n

+|1− α||λ0|]max
|z|=1

|P (z)| , (20)

where λ0, λ1 and λ2 are such that all the zeros of u(z)
defined by (8) lie in the half-plane (9).

Remark 9 For α = 0, inequality (11) is a special
case of inequality (20). If we choose λ0 = λ2 = 0
in (20) and note that in this case all the zeros of u(z)
defined by (8) lie in the half-plane defined by (9), it
follows that if P (z) ̸= 0 in |z| < 1, then for R > r ≥
1 and |z| ≥ 1,

|RP ′(Rz)− αrP ′(rz)|

≤ n |Rn−αrn|
2 |z|n−1max|z|=1 |P (z)|

(21)

Setting α = 0 in (21), we obtain for |z| ≥ 1 and
R > 1, ∣∣P ′(Rz)

∣∣ ≤ n

2
Rn−1|z|n−1max

|z|=1
|P (z)|

which, in particular, gives inequality (3).

Next choosing λ1 = λ2 = 0 in (7), we get

|P (Rz)− αP (rz)|

≤ |Rn−αrn||z|n+|1−α|
2 max|z|=1 |P (z)| .

(22)

for R > r ≥ 1 and |z| ≥ 1. The result is sharp and
equality in (22) holds for P (z) = azn+ b, |a| = |b| =
1.

Inequality (22) is a compact generalization of the
inequalities (3), (4) and (6).

A polynomial P ∈ Pn is said to be self- inver-
sive if P (z) = Q(z) where Q(z) = nnP (1/z̄). It
is known [12,20] that if P ∈ Pn is a self-inversive
polynomial, then

max
|z|=1

∣∣P ′(z)
∣∣ ≤ n

2
max
|z|=1

|P (z)| . (23)

Here we also establish the following result for self-
inversive polynomials.

Theorem 10 If P ∈ Pn is a self-inversive polyno-
mial, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|

≤ |Rn−αrn||B[zn]|+|1−α||λ0|
2 max|z|=1 |P (z)|

(24)

where B ∈ Bn. The result is best possible and equal-
ity in (24) holds for P (z) = zn + 1.
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The following result immediately follows from of
Theorem 10 by taking α = 0.

Corollary 11 If P ∈ Pn is a self-inversive polynomi-
al, then for R > 1 and |z| ≥ 1

|B[P ](Rz)| ≤ |B[Rnzn]|+ |λ0|
2

max
|z|=1

|P (z)| (25)

where B ∈ Bn. The result is sharp as shown by the
polynomial P (z) = zn + 1.

Corollary 11 includes a result due to Shah and Li-
man [21] as a special case.

Next choosing λ1 = λ2 = 0 in (24), we immedi-
ately get

Corollary 12 If P ∈ Pn is a self-inversive polyno-
mial, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|P (Rz)− αP (rz)|

≤ |Rn−αrn||z|n+|1−α||
2 max|z|=1 |P (z)|

(26)

The result is sharp and equality in (26) holds for
P (z) = azn + b, |a| = |b| = 1.

Inequality (26) contains inequality (23) as special
case. If we divide the two sides of (26) by R− r with
α = 1 and let R→ r, we get

|P ′(rz)| ≤ n

2
rn−1|z|n−1max

|z|=1
|P (z)|

for r ≥ 1 and |z| ≥ 1.
Above inequality reduces to inequality (23) for

r = 1. Further for α = 0, inequality (26) gives

max
|z|=R>1

|P (z)| ≤ Rn + 1

2
max
|z|=1

|P (z)| .

Setting λ0 = λ1 = 0 in (24) and note that in
this case all the zeros of u(z) defined by (8) lie in the
half-plane |z| < |z − z/n| , it follows that if P ∈ Pn

is a self-inversive polynomial, then for every real or
complex number α with |α| ≤ 1, R > r ≥ 1 and
|z| ≥ 1,

|R2P ′′(Rz)− αr2P ′′(rz)|

≤ n(n−1)
2 |Rn − αrn||z|n−2max|z|=1 |P (z)|.

For α = 0, this inequality gives, for self-inversive
polynomials P ∈ Pn,

|P ′′(Rz)| ≤ n(n− 1)

2
Rn−2|z|n−2max

|z|=1
|P (z)|

for R ≥ 1 and |z| ≥ 1. The result is best possible and
equality holds for P (z) = zn + 1.

Remark 13 Many other interesting results can be de-
duced from Theorem 10 in the same way as have been
deduced from Theorem 1 and Theorem 4.

For the class of polynomials P ∈ Pn, having all
their zeros in |z| ≤ 1, we have

min
|z|=1

∣∣P ′(z)
∣∣ ≥ nmin

|z|=1
|P (z)| (27)

and
min

|z|=R>1
|P (z)| ≥ Rn min

|z|=1
|P (z)| . (28)

Inequalities (27) and (28) are due to A. Aziz and Q. M.
Dawood [3]. Both the results are sharp and equality in
(27) and (28) holds for P (z) = λzn, λ ̸= 0.

As a compact generalization of inequalities (27)
and (28), Rather [17] proved that if P(z) is a polynomi-
al of degree n having all its zeros in |z| ≤ 1, then for
every real or complex number α with |α| ≤ 1, R > 1
and |z| ≥ 1,

|P (Rz)− αP (z)| ≥ |Rn − α|min
|z|=1

|P (z)| . (29)

The result is sharp and equality in (29) holds for
P (z) = λzn, λ ̸= 0.

Finally in this paper we present the following re-
sult.

Theorem 14 If P ∈ Pn and P(z) has all its zeros in
|z| ≤1, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|

≥ |Rn − αrn||B[zn]|min|z|=1 |P (z)| .
(30)

whereB ∈ Bn.The result is best possible and equality
in (30) holds for P (z) = λzn, λ ̸= 0.

Substituting for B[P ](z), we get, from (30), for
every real or complex α with |α| ≤ 1, R > r ≥ 1 and
for |z| ≥ 1,∣∣∣∣∣∣

2∑
j=0

λj

(
nz

2

)j

(
P (j)(Rz)− αP (j)(rz)

)
j!

∣∣∣∣∣∣
≥ |Rn − αrn| |z|n×∣∣∣∣∣∣

2∑
j=0

λj

(
n

2

)j

C(n, j)

∣∣∣∣∣∣min
|z|=1

|P (z)| (31)

where λ0, λ1 and λ2 are such that all the zeros of u(z)
defined by (8) lie in the half plane (9).

Remark 15 For α = 0, from inequality (30), we have
for |z| ≥ 1 and R > 1 ,

|B[P ](Rz)| ≥ |B[Rnzn]|min
|z|=1

|P (z)| (32)

where B ∈ Bn.The result is best possible.
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Taking λ0 = λ2 = 0 in (31) and noting that all
the zeros of u(z) defined by (8) lie in the half plane
(9), we get

Corollary 16 If P ∈ Pn and P (z) has all its zeros in
|z| ≤1, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|RP ′(Rz)− αrP ′(rz)|

≥ n |Rn − αrn| |z|n−1min|z|=1 |P (z)| .
(33)

The result is sharp and extremal polynomial isP (z) =
λzn, λ ̸= 0.

If we divide the two sides of (33) by R − r with
α = 1 and let R→ r, we get for r ≥ 1 and |z| ≥ 1,

|P ′(rz) + rzP ′′(rz)|

≥ n2rn−1|z|n−1min|z|=1 |P (z)| .

The result is best possible.
Next setting λ1 = λ2 = 0 in (31), we obtain

Corollary 17 If P ∈ Pn and P (z) has all its zeros in
|z| ≤1, then for every real or complex number α with
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|P (Rz)− αP (rz)|

≥ |Rn − αrn| |z|nmin|z|=1 |P (z)| .
(34)

The result is best possible and equality in (34) holds
for P (z) = λzn, λ ̸= 0 .

Inequality (34) includes inequality (29) as a spe-
cial case.

2 Lemmas
For the proofs of these theorems, we need the follow-
ing lemmas.

Lemma 18 If P ∈ Pn and P (z) has all its zeros in
|z| ≤ 1, then for R > r ≥ 1 and |z| = 1,

|P (Rz)| > |P (rz)| .

Proof: Since all the zeros of P (z) lie in |z| ≤ 1, we
can write

P (z) = C
n∏

j=1

(z − rje
iθj )

where rj ≤ 1. Now for 0 ≤ θ < 2π and R ≥ r ≥ 1,
we have∣∣∣∣Reiθ−rje

iθj

reiθ−rje
iθj

∣∣∣∣2
=

{
R2+r2j−2RrjCos(θ−θj)

r2+r2j−2rrjCos(θ−θj)

}
≥
(
R+rj
r+rj

)2
if

R2+r2j−2Rrj cos(θ−θj)

r2+r2j−2rrj cos(θ−θj)
≥ R2+r2j−2Rrj

r2+r2j−2rrj
,

or, if(
R2 + r2j − 2Rrj cos(θ − θj)

) (
r2 + r2j − 2rrj

)
≥
(
r2 + r2j − 2rrj cos(θ − θj)

) (
R2 + r2j − 2Rrj

)
,

that is ,if{
2rrj(R

2 + r2j )− 2Rrj(r
2 + r2j )

}
cos(θ − θj)

≥ 2Rrj(r
2 + r2j )− 2rrj(R

2 + r2j ).

Equivalently,if

(R−r)(R2−rrj) cos(θ−θj) ≥ −(R−r)(R2−rrj).

That is, if
cos(θ − θj) ≥ −1,

which is true. Hence for 0 ≤ θ < 2π and R > r ≥ 1,∣∣∣∣∣P (Reiθ)P (reiθ)

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣Reiθ − rje
iθj

reiθ − rjeiθj

∣∣∣∣∣
≥

(
R+ rj
r + rj

)n

≥
(
R+ 1

r + 1

)n

,

which implies∣∣∣P (Reiθ)∣∣∣ ≥ (
R+ 1

r + 1

)n ∣∣∣P (reiθ)∣∣∣ (35)

for 0 ≤ θ < 2π and R > r ≥ 1. Since f(Reiθ) ̸= 0
for R > r ≥ 1 and R + 1 > r + 1, it follows from
(35) that∣∣∣P (Reiθ)∣∣∣ > ( r + 1

R+ 1

)n ∣∣∣P (Reiθ)∣∣∣ ≥ ∣∣∣P (reiθ)∣∣∣
for 0 ≤ θ < 2π and R > r ≥ 1. This implies

|P (Rz)| > |P (rz)|

for every R > r ≥ 1 and |z| = 1, which completes
the proof of the Lemma 18.

The next lemma follows from Corollary 18.3 of
[10, p. 86].
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Lemma 19 If P ∈ Pn and P (z) has all its zeros in
|z| ≤ 1, then all the zeros of B[P (z)] also lie in |z| ≤
1.

Lemma 20 If P ∈ Pn and P (z) does not vanish in
|z| < 1, then for every real or complex number α with
|α| ≤ 1 and R > r ≥ 1,.

|B[P (Rz)]− αB[P (rz)]|

≤ |B[Q(Rz)]− αB[Q(rz)]|
(36)

where Q(z) = znP (1/z̄). The result is sharp and
equality in (36) holds for P (z) = zn + 1.

Proof: Since the polynomial P (z) has all its zeros in
|z| ≥ 1, therefore, for every real or complex number β
with |β| > 1, the polynomial f(z) = P (z) − βQ(z)

where Q(z) = znP (1/z̄), has all its zeros in |z| ≤
1. Applying Lemma 18 to the polynomial f(z), we
obtain for every R > r ≥ 1,

|f(rz)| < |f(Rz)| for |z| = 1.

Using Rouche’s theorem and noting that all the zeros
of f(Rz) lie in |z| ≤ (1/R) < 1, we conclude that
the polynomial

g(z) = f(Rz)− αf(rz)

has all its zeros in |z| < 1 for every real or complex
number α with |α| ≤ 1. Applying Lemma 19 to the
polynomial g(z) and noting thatB is a linear operator,
it follows that all the zeros of polynomial

T (z) = B[g](z)
= (B[P (Rz)]− αB[P (rz)])

−β(B[Q(Rz)]− αB[Q(rz)]) (37)

lie in |z| < 1 for all real or complex numbers α, β
with |α| ≤ 1, |β| > 1 and R > r ≥ 1. This implies

|B[P (Rz)]− αB[P (rz)]|

≤ |B[Q(Rz)]− αB[Q(rz)]|
(38)

for |z| ≥ 1. If inequality (38) is not true, then there is
a point z = w with |w| ≥ 1 such that

| {B[P (Rz)]− αB[P (rz)]}z=w |

> | {B[Q(Rz)]− αB[Q(rz)]}z=w |.

But all the zeros of Q(z) lie in |z| ≤ 1, therefore,
it follows (as in case of f(z)) that all the zeros of
Q(Rz)−αQ(rz) lie in |z| < 1. Hence by Lemma 19,

all the zeros of B[Q(Rz)]−αB[Q(rz)] lie in |z| < 1
so that B[Q(Rz)]− αB[Q(rz)]z=w ̸= 0. We take

β =
{B[P (Rz)]− αB[P (rz)]}z=w

{B[Q(Rz)]− αB[Q(rz)]}z=w

,

then β is a well defined real or complex number with
|β| > 1 and with this choice of β, from (37), we obtain
T (w) = 0 where |w| ≥ 1. This contradicts the fact
that all the zeros of T (z) lie in |z| < 1. Thus

|B[P (Rz)]− αB[P (rz)]|

≤ |B[Q(Rz)]− αB[Q(rz)]|

for every α with |α| ≤ 1 and R > r ≥ 1. This proves
Lemma 20.

3 Proofs of the Theorems
Proof of Theorem 1: LetM = max|z|=1 |P (z)|, then

|P (z)| ≤M for |z| = 1.

By Rouche’s theorem, it follows that all the zeros of
polynomial F (z) = P (z) − λznM lie in |z| < 1
for every real or complex number λ with |λ| > 1.
Therefore, by Lemma 18, we have for R > r ≥ 1,

|F (rz)| < |F (Rz)| for |z| = 1.

Since all the zeros of polynomial F (Rz) lie in |z| ≤
(1/R) < 1, applying Rouche’s theorem again, we
conclude that all the zeros of polynomial G(z) =
F (Rz) − αF (rz) lie in |z| < 1 for every real or
complex α with |α| ≤ 1. Hence by Lemma 19, the
polynomial

L(z) = B[G(z)]
= B[F (Rz)]− αB[F (rz)]
= (B[P (Rz)]− αB[P (rz)])
− λ(Rn − αrn)B[zn]M (39)

has all its zeros in |z| < 1 for every real or complex
number λ with |λ| > 1. This implies

|B[P (Rz)]− αB[P (rz)]|

≤ |Rn − αrn||B[zn]|M
(40)

for |z| ≥ 1 and R > r ≥ 1. If inequality (40) is not
true, then there is a point z = w with |w| ≥ 1 such
that

| {B[P (Rz)]− αB[P (rz)]}z=w |

> |Rn − αrn|| {B[zn]}z=w |M
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for |z| ≥ 1. Since (B[zn])z=w ̸= 0. we take

λ =
{B[P (Rz)]− αB[P (rz)]}z=w

(Rn − αrn) {B[zn]}z=w

,

so that λ is a well defined real or complex number
with |λ| > 1 and with this choice of λ, from (39),
we get L(w) = 0 where |w| ≥ 1, which is clearly a
contradictions to the fact that all the zeros of L(z) lie
in |z| < 1. Thus for every real or complex number α
with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]| ≤ |Rn − αrn||B[zn]|M

This completes the proof of Theorem 1.

Proof of Theorem 4: LetM = max|z|=1 |P (z)|, then

|P (z)| ≤M for |z| = 1.

If µ is any real or complex number with |µ| > 1, then
by Rouche’s theorem, the polynomial

F (z) = P (z)− µM

does not vanish in |z| < 1. Applying Lemma 20 to
the polynomial F (z) and noting the fact that B is a
linear operator, it follows that for every real or com-
plex number α with |α| ≤ 1, R > r ≥ 1,

|B[F (Rz)]− αB[F (rz)]|

≤ |B[H(Rz)]− αB[H(rz)]|

for |z| ≥ 1 where

H(z) = znF (1/z̄) = znP (1/z̄)− µ̄znM
= Q(z)− µ̄znM.

Using the fact that B[1] = λ0, we obtain

|B[P (Rz)]−αB[P (rz)]− µ(1− α)λ0M |

≤ |B[Q(Rz)]−αB[Q(rz)]− µ̄(Rn−αrn)B[zn]M |
(41)

for all real or complex numbers α, µ with |α| ≤
1, |µ| > 1, R > r ≥ 1 and |z| ≥ 1. Now choosing the
argument of µ such that

|B[Q(Rz)]−αB[Q(rz)]− µ̄(Rn−αrn)B[zn]M |

= |µ||Rn − αrn||B[zn]|M

− |B[Q(Rz)]− αB[Q(rz)]| ,

which is possible by Theorem 1, we get from (41), for
|µ| > 1, and |z| ≥ 1.

|B[P (Rz)]−αB[P (rz)]|+|B[Q(Rz)]−αB[Q(rz)]|

≤ |µ|(|Rn − αrn||B[zn]|

+|1− α||λ0|)max|z|=1 |P (z)| .

Letting |µ| → 1, we obtain

|B[P (Rz)]− αB[P (rz)]|+|B[Q(Rz)]−αB[Q(rz)]|

≤ (|Rn − αrn||B[zn]|

+|1− α||λ0|)max|z|=1 |P (z)| .

This proves of Theorem 4.

Proof of Theorem 8: Lemma 20 and Theorem 4 to-
gether yields, for every real or complex numberαwith
|α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

2 |B[P (Rz)]− αB[P (rz)]|

≤ |B[P (Rz)]−αB[P (rz)]|+|B[Q(Rz)]−αB[Q(rz)]|

≤ (|Rn − αrn||B[zn]|

+|1− α||λ0|)max|z|=1 |P (z)| ,

which is equivalent to (19) and this completes the
proof of Theorem 8.

Proof of Theorem 10: By hypothesis P ∈ Pn is a
self-inversive polynomial, therefore, for all z ∈ C.

|B[P (Rz)]−αB[P (rz)]| = |B[Q(Rz)]−αB[Q(rz)]| .

Combining this with Theorem 4, we get for every real
or complex number α with |α| ≤ 1, R > r ≥ 1 and
|z| ≥ 1,

2 |B[P (Rz)]− αB[P (rz)]|

= |B[P (Rz)]−αB[P (rz)]|+|B[Q(Rz)]−αB[Q(rz)]|

≤ (|Rn − αrn||B[zn]|

+|1− α||λ0|)max|z|=1 |P (z)| ,

which immediately leads to the desired result and this
completes the proof of Theorem 10.

Proof of Theorem 14: Let m = min|z|=1 |P (z)|,
then

m|z|n ≤ |P (z)| for |z| = 1.

We first show that the polynomial F (z) = P (z) −
δmzn has all its zeros in |z| ≤ 1 for every real or
complex number δ with |δ| < 1. This is clear if m =
0. Henceforth we assume that all the zeros of P (z) lie
in |z| < 1, then m > 0 and it follows by Rouche’s
theorem that the polynomial F (z) = P (z) − βmzn

has all its zeros in |z| < 1 for every real or complex
number δ with |δ| < 1. Applying Lemma 18 to the
polynomial F (z), we get

|F (rz)| < |F (Rz)|

for |z| = 1 and R > r ≥ 1. Using Rouche’s theorem,
we conclude that all the zeros of polynomial

G(z) = F (Rz)− αF (rz)

WSEAS TRANSACTIONS on MATHEMATICS Nisar A. Rather, Mushtaq A. Shah

E-ISSN: 2224-2880 373 Issue 5, Volume 11, May 2012



lie in |z| < 1 for every real or complex number α
with |α| ≤ 1 and R > r ≥ 1. Applying Lemma 19
to the polynomial G(z) and noting that B is a linear
operator, it follows that all the zeros of the polynomial

T (z) = B[G(z)] = B[F (Rz)]− αB[F (rz)]

= B[P (Rz)]− αB[P (rz)]− δ (Rn− αrn)B[zn]
(42)

lie in |z| < 1 for every real or complex number δ with
|δ| < 1 and R > r ≥ 1, which implies

|B[P (Rz)]− αB[P (rz)]| ≥ m |Rn − αrn| |B[zn]|.

for |z| ≥ 1. If above inequality is not true, then there
is a point z = w with |w| ≥ 1 such that

|{B[P (Rz)]− αB[P (rz)]}z=w|

< m |Rn − αrn| | {B[zn]}z=w |.

Since all the zeros of B[zn] lie in |z| < 1, therefore,
{B[zn]}z=w ̸= 0. We take

δ =
{B[P (Rz)]− αB[P (rz)]}z=w

m(Rn − αrn) {B[zn]}z=w

,

then δ is well defined real or complex number with
|δ| < 1 and with choice of δ, from (42) we get,
T (w) = 0 with |w| ≥ 1, which contradicts the fact
that all the zeros of T (z) lie in |z| < 1. Thus

|B[P (Rz)]− αB[P (rz)]| ≥ m |Rn − αrn| |B[zn]|

for every real or complex number α with |α| ≤ 1,
R > r ≥ 1 and |z| ≥ 1. This completes the proof of
Theorem 14.
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