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Abstract: Computer or communication networks are so designed that they do not easily get disrupted under ex-
ternal attack and, moreover, these are easily reconstructed when they do get disrupted. These desirable properties
of networks can be measured by various parameters such as connectivity, toughness, tenacity and rupture degree.
Among these parameters, rupture degree is comparatively better parameter to measure the vulnerability of net-
works. In this paper, the authors give the exact values for the rupture degree of the Cartesian product of a path and
a cycle. After that, we discuss the rupture degree of total graphs of paths and cycles. Finally, we study the values
for rupture degree of powers of paths and cycles.
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1 Introduction
Throughout this paper, a graph G = (V,E) always
means a simple connected graph with vertex set V
and edge set E. For S ⊆ V (G), let ω(G − S) and
m(G − S), respectively, denote the number of com-
ponents and the order of a largest component inG−S.
A set S ⊆ V (G) is a cut set of G, if either G − S is
disconnected or G − S has only one vertex. We shall
use ⌈x⌉ for the smallest integer not smaller than x, and
⌊x⌋ for the largest integer not larger than x. We use
Bondy and Murty [2] for terminology and notations
not defined here.

A communication network is composed of pro-
cessors and communication links. Network designers
attach importance the reliability and stability of a net-
work. If the network begins losing communication
links or processors, then there is a loss in its effec-
tiveness. This event is called as the vulnerability of
communication networks.

The vulnerability of communication networks
measures the resistance of a network to a disruption
in operation after the failure of certain processors and
communication links. Cable cuts, processor interrup-
tions, software errors, hardware failures, or transmis-
sion failure at various points can interrupt service for
a long period of time. But network designs require
greater degrees of stability and reliability or less vul-
nerability in communication networks. Thus, commu-
nication networks must be constructed to be as stable
as possible, not only with respect to the initial disrup-
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tion, but also with respect to the possible reconfigura-
tion of the network.

The communication network often has as con-
siderable an impact on a network’s performance as
the processors themselves. Performance measures for
communication networks are essential to guide the de-
signers in choosing an appropriate topology. In order
to measure the performance, we are interested in the
following performance metrics (there may be others):

(1) the number of elements that are not function-
ing,

(2) the number of remaining connected sub-
networks,

(3) the size of a largest remaining group within
which mutual communication can still occur.

The communication network can be represented
as an undirected and unweighted graph, where a pro-
cessor (station) is represented as a node and a com-
munication link between processors (stations) as an
edge between corresponding nodes. If we use a graph
to model a network, there are many graph theoretical
parameters used to describe the vulnerability of com-
munication networks.

One of the vulnerability parameters determined
above is connectivity which deals with the quantity
(1). The other parameters, toughness and scattering
number take into account of the quantities (1) and (2).
The integrity deals with the quantities (1) and (3). The
rupture degree is a measure which deals with all the
quantities, (1), (2) and (3).

Definition 1 Let G be an incomplete graph. Then the
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rupture degree r(G) of G is defined as

r(G) = max{ω(G− S)− |S| −m(G− S) :

S ⊂ V (G), ω(G− S) ≥ 2}.
In particular, the rupture degree of a complete graph
Kn is defined to be 1− n.

Definition 2 Let G be an incomplete connected
graph, a set S ⊂ V (G) is called an R-set if it sat-
isfies r(G) = ω(G− S)− |S| −m(G− S).

The concept of rupture degree was first intro-
duced by Li, Zhang and Li in [10], where the au-
thors determined the rupture degrees of several classes
of graphs, and gave formulas for the rupture degrees
of join graphs and some bounds of rupture degrees.
Some Nordhaus-Goddard-type results for the rupture
degree are also deduced.

Of all the above parameters, rupture degree are
comparatively appropriate for measuring the vulnera-
bility of networks, for rupture degree gives us more
knowledge about the network to disruption. On the
other hand, the tenacity which is introduced by M.
Cozzens et al. [5] is also a measure which deals with
the quantities, (1), (2) and (3). The rupture degree can
be regarded as additive dual of tenacity. Li et al. [10]
proved that the rupture degree is a better parameter
than tenacity. As a consequence, the rupture degree
is a better parameter to measure the vulnerability of a
communication network. In [9], we proposed the fol-
lowing decision problem.

Decision Problem Not r-Rupture
Let G be an incomplete connected graph and r

be an integer. Does there exist an X ⊂ V (G) with
ω(G−X) ≥ 2 such that ω(G−X) > |X|+m(G−
X) + r ?

For this decision problem, we proved that com-
puting the rupture degree of a graph is NP-hard in
general, so it is an interesting problem to determine
this parameter for some special classes of interesting
or practically useful graphs. It is easy to see that the
less the rupture degree of a network the more stable
it is considered to be. In [8], A. Kirlangic studied the
rupture degree of gear graphs. In this paper, we give
some results on the rupture degree of some specific
classes of graphs.

The rest is organized as follows. Formulas for
computing the rupture degree of the Cartesian prod-
uct of a path and a cycle is determined in section 2.
In section 3, we determine the rupture degree for to-
tal graphs of some special graphs. In the section 4,
we give exact values for the rupture degree of powers
of paths and cycles. Finally, in section 5, we give a
conclusion remark.

2 Rupture degree for the Cartesian
product of a path and a cycle

In this section, we focus our attention to rupture de-
gree of the Cartesian product of a path Pn and a cycle
Cm.

The Cartesian product of two graphs G1 and G2,
denoted by G1 ×G2, is defined as follows:

V (G1 ×G2) = V (G1)× V (G2),

two vertices (u1, u2) and (v1, v2) are adjacent if and
only if u1 = v1 and u2v2 ∈ E(G2) or u1v1 ∈ E(G1)
and u2 = v2. Observe that if G1 and G2 are connect-
ed, thenG1×G2 is connected. In particular, we study
the rupture degree of the Cartesian product of a path
Pn and a cycle Cm, denoted by Pn × Cm.

It is easy to see that if we denote

Pn = u1u2 · · ·un,

Cm = v1v2 · · · vmv1.
Then the vertex set of Pn × Cm is

{(ui, vj)|ui ∈ Pn, vj ∈ Cm, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

An undirected graph G = (V,E) is said to be
hamiltonian if it contains a hamiltonian cycle. Firstly
we give two properties of the graph Pn × Cm.

Proposition 3 The graph Pn × Cm is a hamiltonian
graph.

Proof. It is easy to see that if a graph G contains
a hamiltonian cycle, then so does graph Pn × G. It
follows that Pn×Cm contains a hamiltonian cycle, so
Pn × Cm is a hamiltonian graph. �

Proposition 4 The graph Pn × Cm is a bipartite
graph when m is even.

Proof. It is well known that if G is a bipartite graph
with bipartition [A,B] and H is bipartite graph with
bipartition [C,D], then the Cartesian product of these
two bipartite graphs G and H , G × H is a bipartite
graph with bipartition

[(A× C) ∪ (B ×D), (A×D) ∪ (B × C)].

Hence, it follows that when m is even, the cycle Cm

is a bipartite graph, and for any positive integer n,
the path Pn is always a bipartite graph, so, on this
condition, the Cartesian product of a path and a cycle
Pn × Cm is a bipartite graph. �

If S is an R-set of Pn × Cm, we shall show that
the components of Pn×Cm−S satisfy the following
properties.
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Proposition 5 If S is an R-set of Pn × Cm, then the
components of Pn × Cm − S must be K1 or K2.

Proof. Let S be an R-set of Pn × Cm. We assume
that there exist k components whose order is larger
than 2. In order to prove this assumption is not true,
we distinguish the following three cases.
Case 1. If any components of Pn × Cm − S
whose order is larger than 2 do not contain cy-
cles, then these components must be trees. We let
(u, v)1, (u, v)2, · · · , (u, v)k be vertices of maximum
degree in such k components, respectively. We let

S′ = S ∪ {(u, v)1, (u, v)2, · · · , (u, v)k},

then

|S′| = |S|+ k,
m(Pn × Cm − S′) ≤ m(Pn × Cm − S)− 1,
ω(Pn × Cm − S′) ≥ ω(Pn × Cm − S) + k,

so, we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)
≥ ω(Pn × Cm−S)−|S| −m(Pn × Cm−S)+ 1
> ω(Pn × Cm − S)− |S| −m(Pn × Cm − S),

a contradiction to the definition of rupture degree of
graphs.
Case 2. If any components of Pn × Cm − S whose
order is larger than 2 contains a cycle.

Subcase 2.1 If every such k components con-
tain a cut edge, then, it is easy to see that ev-
ery cut edge must have a end vertex whose de-
gree is larger than 1, we denote these vertices be
(u, v)1, (u, v)2, · · · , (u, v)k, let

S′ = S ∪ {(u, v)1, (u, v)2, · · · , (u, v)k},

then
|S′| = |S|+ k,

m(Pn × Cm − S′) ≤ m(Pn × Cm − S)− 2,

ω(Pn × Cm − S′) ≥ ω(Pn × Cm − S) + k,

so, we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)
≥ ω(Pn × Cm−S)−|S|−m(Pn × Cm−S)+2
> ω(Pn × Cm − S)− |S| −m(Pn × Cm − S),

a contradiction to the definition of rupture degree of
graphs.

Subcase 2.2 If there exist no cut edge in such k
components, we let vertex set

S′ =

(ui, vj)
∣∣∣ 1 ≤ i ≤ n; 1 ≤ j ≤ m;

if i is odd, then j is even;
if i is even, then j is odd

 ,

It is easily seen that :
(1) all components of Pn×Cm−S′ areK1, when

m is even;
(2) every components of Pn × Cm − S′ is K1 or

K2, when m is odd. And we have

m(Pn × Cm − S) > m(Pn × Cm − S′) ≥ 1,

ω(Pn × Cm − S) < ω(Pn × Cm − S′),

so, we have the following two cases:
Subcase 2.2.1 If |S| ≥ |S′|, contradicts to the

assumption.
Subcase 2.2.2 If |S| < |S′|, we can characterize

graph Pn × Cm − S′ by considering the condition of
graph Pn × Cm − S. Because every components of
Pn × Cm − S′ is either K1 or K2, If we want to get
k components without cut edge and with order no less
than 3, we must release vertices in k components, and
we must add vertices from Pn×Cm−S′ to S′, by this
method, we know that if the number of adding vertices
is less than the number of vertices releasing from S′,
then we have |S′| < |S|, and we can see that , when
we release one vertex from |S′|, then ω(Pn×Cm−S′)
will reduce at least 1. If we denote

|S′| = |S|+∆S,

then

ω(Pn × Cm − S′) ≥ ω(Pn × Cm − S) + ∆S,

so, we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)
> ω(Pn × Cm − S) + ∆S − |S|

−∆S −m(Pn × Cm − S)
= ω(Pn × Cm − S)− |S| −m(Pn × Cm − S).

This is a contradiction to the definition of rupture de-
gree of graphs. The proof is thus completed. �

Definition 6 In graph Pn × Cm, for 1 ≤ k ≤ n,
let vertex set Vk = {(uk, v1), (uk, v2), · · · , (uk, vm)}
, we denote Ck

m, an m-order cycle, be subgraph of
Pn×Cm with vertex set Vk. If 1 ≤ i < i+1 < j ≤ n,
we call two cycles Ci

m and Cj
m are nonadjacent in

Pn × Cm.

Definition 7 In graphPn×Cm, the induced subgraph
{(uh, vi), (uh, vi+1)} and {(uj , vk), (uj , vk+1)} are
both K2, 1 ≤ h < h + 1 < j ≤ n, 1 ≤
i ≤ m ,1 ≤ j ≤ m . If i = j, we cal-
l that {(uh, vi), (uh, vi+1)} and {(uj , vk), (uj , vk+1)}
are located at the same position of nonadjacent cycles
Ci
m and Cj

m.
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Proposition 8 If S is a minimal R-set of Pn × Cm,
then in the components of Pn×Cm−S, there exist at
most ⌈n2 ⌉ number of K2, and they are located at the
same position of nonadjacent cycles.

Proof. (1) By the definition of rupture degree
r(G) = max{ω(G − S) − |S| − m(G − S) :
ω(G − S) > 1}. we can see that if we want to get
r(G), we must let the R-set S satisfying that |S| and
m(Pn × Cm − S) are small and ω(Pn × Cm − S) is
large.

(a) When m is even, by proposition 3, we know
that Pn × Cm is a bipartite graph, so, the order of
components in Pn × Cm − S is not larger than 1.

(b) Whenm is odd, if allK2 ofm(Pn×Cm−S)
are located on path Pn, and ω(Pn × Cm − S) is as
larger as possible, then, it is easy to see that S must
contain 4 adjacent vertices, so, on this condition, S
does not satisfy that it is as small as possible. So, in
Pn × Cm, all K2 are not located on path Pn, i.e. all
K2 of Pn × Cm − S must be located on cycle Cr

m.
(2) If there exists a component K2 which is lo-

cated at the different position from that of other com-
ponents K2, we will distinguish three cases.

(a) If there exist two K2 in Pn × Cm − S
which are located on the same cycle Ck

m, we de-
note these two K2 as {(uk, vi), (uk, vi+1)} and
{(uk, vj), (uk, vj+1)}, 1 < k < n, 1 ≤ i ≤ m
,j ≥ (i + 3)mod(m). Among these two K2, we as-
sume that {(uk, vi), (uk, vi+1)} is located on the same
position of that of other K2. Now, let

S′ = S ∪ {(uk, vi)} − {(uk−1, vi),

(uk, vi+1), (uk+1, vi)},
or

S′ = S ∪ {(uk, vi+1)} − {(uk−1, vi+1),

(uk, vi+2), (uk+1, vi+1)},
then, we have

|S′| = |S| − 2,

m(Pn × Cm − S′) = m(Pn × Cm − S) = 2,

ω(Pn × Cm − S′) = ω(Pn × Cm − S) + 2,

so we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)
= ω(Pn × Cm−S)+2−|S|+ 2−m(Pn× Cm−S)
> ω(Pn × Cm − S)− |S| −m(Pn × Cm − S).

This contradicts to the definition of rupture degree of
graphs.

(b) If there exist two K2 in Pn × Cm − S
which are located on two adjacent cycles, then,

their position must be different from each other, we
denote these two K2 as {(uk, vi), (uk, vi+1)} and
{(uk+1, vj), (uk+1, vj+1)}, 0 < k < n − 1, 1 ≤ i ≤
m ,j ≥ (i+ 2)modm or j ≤ (i− 2 +m)modm.

Among these two K2, we assume that
{(uk, vi), (uk, vi+1)} is located on the same po-
sition of that of other K2. Now, let

S′ = S ∪ {(uk+1, vj)} − {(uk, vj), (uk+1, vj−1),

(uk+2, vj)},

or

S′ = S ∪ {(uk+1, vi+1)} − {(uk, vj+1),

(uk+1, vj+1), (uk+2, vj+1)},

then, we have
|S′| = |S| − 2,

m(Pn × Cm − S′) = m(Pn × Cm − S) = 2,

ω(Pn × Cm − S′) = ω(Pn × Cm − S) + 2.

So we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)
= ω(Pn× Cm−S)+2−|S|+2−m(Pn× Cm−S)
> ω(Pn × Cm − S)− |S| −m(Pn × Cm − S),

a contradiction to the definition of rupture degree of
graphs.

(c) If all K2 in Pn ×Cm −S are located on non-
adjacent cycles, and there exists a K2 whose position
is different from that of others, we denotes this K2

as {(uk, vi), (uk, vi+1)}, 0 < k < n, 1 ≤ i ≤ m.
And we let the other K2 be {(uh, vj), (uh, vj+1)},
(1 ≤ k ≤ n, and h ̸= k, 1 ≤ j ≤ m, j ̸= i).
Now, let

S′ = S ∪ {(uk, vj)} − {(uk−1, vi), (uk, vi−1),

(uk, vj), (uk+1, vi)},

or

S′ = S ∪ {(uk, vi+1)} − {(uk−1, vi+1), (uk, vi+2),

(uk, vj), (uk+1, vi+1)},

or

S′ = S ∪ {(uk, vi+1)} − {(uk−1, vi+1), (uk, vi+2),

(uk, vj+1), (uk+1, vi+1)},

then, we have
|S′| = |S| − 3,

m(Pn × Cm − S′) = m(Pn × Cm − S) = 2,
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ω(Pn × Cm − S′) = ω(Pn × Cm − S) + 3,

so, we have

ω(Pn × Cm − S′)− |S′| −m(Pn × Cm − S′)

= ω(Pn × Cm − S) + 6− |S| −m(Pn × Cm − S)

> ω(Pn × Cm − S)− |S| −m(Pn × Cm − S).

This also contradicts to the definition of rupture de-
gree of graphs.

So, by cases (a), (b), (c), we know that all K2 in
Pn ×Cm − S must be located on nonadjacent cycles,
hence, there exist at most ⌈n2 ⌉ number of K2 in Pn ×
Cm − S. The proof is then completed. �

Lemma 9 [9] If 1 ≤ m ≤ n, then r(Km,n) = n −
m− 1.

Lemma 10 [10] If Cn is an n (n ≥ 3) cycle, then

r(Cn) =

{
−1, if n is even
−2, if n is odd.

Lemma 11 [10] If H is a spanning subgraph of
graph G, then r(G) ≤ r(H).

Theorem 12 The rupture degree of the Cartesian
product of a path and a cycle Pn × Cm is as follows

r(Pn × Cm) =


−1, if m is even
−n+3

2 , if m and n are both odd
−n+4

2 , if m is odd and n is even.

Proof. We distinguish the following three cases:
Case 1. If m is even and n is any positive integer. So,
on one hand, by proposition 3 we know that Pn ×Cm

contains a hamiltonian cycle Cmn, then by Lemma 11
we know that

r(Pn × Cm) ≤ r(Cmn).

For m is even, by Lemma 10, r(Cmn) = −1 and so

r(Pn × Cm) ≤ −1.

On the other hand, by proposition 4 we know that
Pn × Cm is a bipartite graph, and

Pn × Cm ⊆ Kmn
2

,mn
2
.

so, by Lemma 9 and Lemma 11 we have

r(Pn × Cm) ≥ r(Kmn
2

,mn
2
) = −1.

So, in this case, r(Pn × Cm) = −1.

Case 2. If m and n are both odd.
On one hand, let

S′ =

(ui, vj)
∣∣∣ 1 ≤ i ≤ n; 1 ≤ j ≤ m;

if i is odd, then j is even;
if i is even, then j is odd

 ,

then

|S| = m− 1

2
× n+ 1

2
+
m+ 1

2
× n− 1

2
=
mn− 1

2
,

ω(Pn × Cm − S) =
n(m− 1)

2
,

m(Pn × Cm − S) = 2.

So we have
r(Pn × Cm) ≥

ω(Pn × Cm − S)− |S| −m(Pn × Cm − S) =

n(m− 1)

2
− mn− 1

2
− 2 = −n+ 3

2
.

On the other hand, by proposition 8 we know that
there exist at most ⌈n2 ⌉ =

n+1
2 number of K2 in Pn ×

Cm − S, and the other components are all K1. We
have

|S| ≥ ⌈
mn− n+1

2 2

2
⌉ = ⌈mn− n− 1

2
⌉.

But, in order to get at most n+1
2 number of K2, we

must delete at least n−1
2 number ofK2 from Pn×Cm,

and so

|S| ≥ ⌈
mn− n+1

2 2

2
⌉+ n− 1

2
=
mn− 1

2
,

and

ω(Pn×Cm−S) ≤ n+ 1

2
+⌊

mn− n+1
2 2

2
⌋− n− 1

2
,

m(Pn × Cm − S) = 2,

so we have

r(Pn × Cm) ≤ mn− n

2
− mn− 1

2
− 2 = −n+ 3

2
.

In this case, r(Pn × Cm) = −n+3
2 .

Case 3. If m is odd and n is even.
On one hand, let

S′ =

(ui, vj)
∣∣∣ 1 ≤ i ≤ n; 1 ≤ j ≤ m;

if i is odd, then j is odd;
if i is even, then j is even

 ,

then
|S| = mn

2
,
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ω(Pn × Cm − S) =
n(m− 1)

2
,

m(Pn × Cm − S) = 2.

We have
r(Pn × Cm) ≥

ω(Pn × Cm − S)− |S| −m(Pn × Cm − S)

=
n(m− 1)

2
− mn

2
− 2 = −n+ 4

2
.

On the other hand, by proposition 8 we know that
there exist at most ⌈n2 ⌉ = n

2 number of K2 in Pn ×
Cm − S, and the other components are all K1. So we
have

|S| ≥ ⌈
mn− n

2 2

2
⌉ = ⌈mn− n

2
⌉,

However, in order to get at most n
2 number of K2, we

must delete at least n
2 number of K2 from Pn × Cm.

Therefore,

|S| ≥ ⌈mn− n

2
⌉+ n

2
=
mn

2
,

and

ω(Pn×Cm−S) ≤ n

2
+⌊

mn− n
2 2

2
⌋−n

2
=
n(m− 1)

2
,

m(Pn × Cm − S) = 2,

so we have

r(Pn × Cm) ≤ mn−n
2 − mn

2 − 2
= −n+4

2 .

So, in this case, r(Pn × Cm) = −n+4
2 . The proof is

then complete. �

3 Rupture degree of total graphs
The total graph T (G) of a graph G is a graph such
that the vertex set of T (G) corresponds to the ver-
tices and edges of G and two vertices are adjacent in
T (G) if and only if their corresponding elements are
either adjacent or incident in G. It is easy to see that
T (G) always contains bothG and Line graph L(G) as
a induced subgraphs. Total graph is the largest graph
that is formed by the adjacent relations of elements
of a graph. It is highly recommended for the design
of interconnection networks. In [7], P. Dündar and
A. Aytaç determined the integrity of Total graphs vi-
a some parameters. In this section, we give formulas
for rupture degree of total graph of path Pn, cycle Cn,
and star S1,n.

Definition 13 [2] A subset S of V is called an
independent set of G if no two vertices of S are ad-
jacent in G. An independent set S is a maximum if
G has no independent set S′ with |S′| > |S|. The
independence number of G, β(G), is the number of
vertices in a maximum independent set of G.

Definition 14 [2] A subset S of V is called a
covering of G if every edge of G has at least one end
in S. A covering S is a minimum covering if G has
no covering S′ with |S′| > |S|. The covering number,
α(G), is the number of vertices in a minimum cover-
ing of G.

Firstly, we will study rupture degree of T (Pn),
the total graph of Pn.

Lemma 15 [7] Let T (Pn) be the total graph of
Pn, then the independence number of T (Pn) is
β(T (Pn)) = ⌈2n−1

3 ⌉.

Lemma 16 [7] Let T (Pn) be the total graph of Pn,
then the covering number of T (Pn) is α(T (Pn)) =

⌈2(2n−1)
3 ⌉.

Theorem 17 Let T (Pn) be the total graph of Pn with
order n, then the rupture degree of T (Pn) is

r(T (Pn)) = max{2⌈2n−1
3 ⌉ − 2n, ⌈n2 ⌉ − n− 1}.

Proof. The number of vertices, the indepen-
dence number and the covering number of T (Pn)
are |V (T (Pn))| = 2n − 1, β(T (Pn)) = ⌈2n−1

3 ⌉,
α(T (Pn)) = ⌈2(2n−1)

3 ⌉ respectively. Let S be an R-
set of T (Pn), then m(T (Pn) − S) ≤ 2, for, other-
wise, if there is a component Gi of T (Pn) − S such
that |Gi| = m ≥ 3. Then we select a cut-set Si of
Gi and let the order of every component of Gi − Si
is not larger than 2. Clearly, |Si| ≤ 2⌊m+1

4 ⌋ and
ω(Gi − Si) ≥ ⌊m+1

4 ⌋. Thus we get a new R-set
S′ = Si ∪ S. Since m ≥ 2 + 2⌊m+1

4 ⌋. Then we
get that

ω(T (Pn)− S′)− |S′| −m(T (Pn)− S′)

≥



ω(T (Pn)− S)− ⌊m+1
4 ⌋ − |S| − 2

= ω(T (Pn)− S)− |S| −m(T (Pn)− S),
if m = 3
ω(T (Pn)− S)− ⌊m+1

4 ⌋ − |S| − 3
> ω(T (Pn)− S)− |S| −m(T (Pn)− S),
if m > 3

This contradicts to S is a R-set of T (Pn). Therefore
m(T (Pn) − S) ≤ 2. The following we distinguish
two cases to complete the proof.
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Case 1 If m(T (Pn) − S) = 1. Clearly, |S| =
α(T (Pn)) and ω(T (Pn) − S) = β(T (Pn)) Thus by
Lemmas 3.1 and 3.2 we get

r(T (Pn) = ω(T (Pn)− S)− |S| −m(T (Pn)− S)

= β(T (Pn))− α(T (Pn))− 1 = 2⌈2n− 1

3
⌉ − 2n

Case 2 If m(T (Pn) − S) = 2. Clearly, |S| = n − 1
and ω(T (Pn)− S) = ⌈n2 ⌉, hence

r(T (Pn) = ω(T (Pn)− S)− |S| −m(T (Pn)− S)

= ⌈n
2
⌉ − n− 1.

Therefore

r(G) = max{2⌈2n− 1

3
⌉ − 2n, ⌈n

2
⌉ − n− 1}.

In the next, we will give the formula for comput-
ing rupture degree of T (Cn), the total graph of cycle
Cn.

Lemma 18 [7] Let T (Cn) is the total graph of
Cn, then the independence number of T (Cn) is
β(T (Cn)) = ⌈2n3 ⌉.

Lemma 19 [7] Let T (Cn) is the total graph of Cn,
then the covering number of T (Cn) is α(T (Cn)) =
⌈4n3 ⌉.

Theorem 20 Let T (Cn) be the total graph of Cn

with order n, then the rupture degree of T (Cn) is

r(T (Cn)) =


max{2⌈2n3 ⌉ − 2n− 1, n2 − n− 2},
if n is even
max{2⌈2n3 ⌉− 2n− 1, ⌊n2 ⌋− n− 3},
if n is odd

Proof. The number of vertices, the independence
number and the covering number of T (Cn) are
|V (T (Cn))| = 2n, β(T (Cn)) = ⌈2n3 ⌉, α(T (Cn)) =

⌈4n3 ⌉ respectively. Let S be an R-set of T (Cn), then
similar to Theorem 17, m(T (Cn) − S) ≤ 2. The
following we distinguish two cases to complete the
proof.
Case 1 If n is even.
Subcase 1.1 If m(T (Cn) − S) = 1. Clearly, |S| =
α(T (Cn)) and ω(T (Cn)− S) = β(T (Cn)). Thus by
Lemmas 18 and 19, we get

r(T (Cn) = ω(T (Cn)−S)−|S|−m(T (Cn)−S)
= β(T (Cn))− α(T (Cn))− 1
= ⌈2n3 ⌉ − 2n− 1.

Subcase 1.2 If m(T (Cn)− S) = 2. Clearly, |S| = n
and ω(T (Cn)− S) = n

2 , hence

r(T (Cn) = ω(T (Cn)− S)− |S| −m(T (Cn)− S)

=
n

2
− n− 2.

Case 2 If n is odd. The proof is similar to that of Case
1.

Hence

r(T (Cn)) =


max{2⌈2n3 ⌉ − 2n− 1, n2 − n− 2},
if n is even
max{2⌈2n3 ⌉ − 2n− 1, ⌊n2 ⌋ − n− 3},
if n is odd

In the following, we will give the rupture degree
of the total graph of star S1,n. Firstly, we give three
necessary lemmas.

Lemma 21 LetG be an incomplete connected graph
of order n, β(G) is the independence number ofG and
T (G) is the tenacity of G, then we have

2β(G)− n− 1 ≤ r(G) ≤ β(G)(1− T (G)).

Proof. On one hand, let S1 be a largest independent
set of G. Then |S1| = β(G), and it is easily seen that
S′ = V \ S1 is a vertex cut set of G, m(G− S′) = 1
and ω(G− S′) = β(G). Hence

r(G) = ω(G− S)− |S| −m(G− S)
≥ ω(G− S′)− |S′| −m(G− S′)
= 2β(G)− n− 1.

On the other hand, we suppose that S is an R-set of
G. Then, by the definition, we have

r(G) = ω(G− S)− |S| −m(G− S),

where ω(G− S) ≥ 2. So we have

r(G)

ω(G− S)
= 1− |S|+m(G− S)

ω(G− S)
.

By the definition of tenacity, we know that

|S|+m(G− S)

ω(G− S)
≥ T (G).

On the other hand, it is obvious that ω(G − S) ≤
β(G). So we have r(G) ≤ β(G)(1− T (G)). �

Lemma 22 [7] Let T (S1,n) be the total graph of
S1,n, then the independence number of T (S1,n) is
β(T (S1,n)) = n.
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Lemma 23 [1] Let T (S1,n) be the total graph of star
S1,n. Then the tenacity of T (S1,n) is

T (T (S1,n)) =
n+ 2

n
.

Theorem 24 Let T (S1,n) be the total graph of star
S1,n. Then the rupture degree of T (S1,n) is

r(T (S1,n)) = −2.

Proof. The number of vertices, the independence
number of T (S1,n) are V (T (S1,n)) = 2n + 1,
β(T (S1,n)) = n, respectively. Then by Lemma 21
we have

−2 ≤ r(T (S1,n)).

On the other hand, by Lemmas 21, 22 and 23, we have

r(T (S1,n)) ≤ β(T (S1,n))(1− T (T (S1,n)))

= n(1− n+2
n ) = −2.

So, we have r(T (S1,n)) = −2. �

4 Rupture degree of powers of
graphs

For an integer k ≥ 1, the k-th power of a graph
G, denoted by Gk, is a supergraph with V (Gk) =
V (G) and E(Gk) = {(u, v) : u, v ∈ V (G), u ̸=
v and dG(u, v) ≤ k}. The second power of a graph is
also called its square.

Remark 25 We notice that G1 is just G itself. So, we
let k ≥ 2 in the following.

As a useful network, power of cycles and paths
have arouse interests for many network designers. C.
A. Barefoot, et al. gave the exact values of integrity of
powers of cycles in [3], and determined the connec-
tivity, binding number and toughness of powers of cy-
cles [4]. Vertex-neighbor-integrity of powers of cycles
were studied in [6] by M. B. Cozzens and Shu-Shih Y.
Wu. In [12] Dara Moazzami gave the exact values for
the tenacity of powers of cycles. X. K. Zhang and C.
M. Yang [11] studied the binding number of the Pow-
ers of Paths and cycles.

In this section, we consider the problem of com-
puting the rupture degree of powers of cycles and
paths.

Firstly, we determine the rupture degree of pow-
ers of cycles.

It is easy to see that Ck
n
∼= Kn if n ≤ 2k + 1.

So, in the following lemmas, we assume that 2 ≤ k <
n−1
2 .

Lemma 26 If S is a minimalR-set for the graph Ck
n,

2 ≤ k < n−1
2 , then S consists of the union of sets of k

consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive
vertices in S.

Proof. We assume that the vertices of Ck
n are la-

beled by 0, 1, 2, · · · , n − 1. Let S be a minimal
R-set of Ck

n and j be the smallest integer such that
T = {j, j + 1, · · · , j + t − 1} is a maximum set of
consecutive vertices such that T ⊆ S. Relabel the ver-
tices of Ck

n as v1 = j, v2 = j+1, · · · , vt = j+ t− 1,
· · · , vn = j − 1. Since S ̸= V (Ck

n) and T ̸= V (Ck
n),

vn does not belong to S. Since S must leave at least
two components of G − S, we have t ̸= n − 1, and
so vt+1 ̸= vn. Therefore, {vt+1, vn) ∩ S = ∅. Now
suppose t < k. Choose vi such that 1 ≤ i ≤ t, and
delete vi from S yielding a new set S

′
= S−{vi} with

|S′ | = |S| − 1. By the definition of Ck
n (1 ≤ k ≤ n

2 )
we know that the edges vivn and vivt+1 are inCk

n−S
′
.

Consider a vertex vp adjacent to vi in Ck
n − S

′
. If

p ≥ t + 1, then p < t + k. So, vp is also adjacent to
vt+1 in Ck

n − S
′
. If p < n, then p ≥ n − k + 1 and

vp is also adjacent to vn in Ck
n − S

′
. Since t < k,

then vn and vt+1 are adjacent in Ck
n − S

′
. There-

fore, we can conclude that deleting the vertex vi from
S does not change the number of components, and
so ω(Ck

n − S
′
) = ω(Ck

n − S) and m(Ck
n − S

′
) ≤

m(Ck
n − S) + 1. Thus, we have

ω(Ck
n − S

′
)− |S′ | −m(Ck

n − S
′
)

≥ ω(Ck
n − S)− |S|+ 1−m(Ck

n − S)− 1
= ω(Ck

n − S)− |S| −m(Ck
n − S)

= r(Ck
n).

This is contrary to our choice of S. Thus we must
have t ≥ k. Now suppose t > k. Delete vt from the
set S yielding a new set S1 = S − {vt}. Since t > k,
the edge vtvn is not in Ck

n − S1. Consider a vertex
vp adjacent to vt in Ck

n − S1. Then, p ≥ t + 1 and
p ≤ t+k, and so vp is also adjacent to vt+1 inCk

n−S1.
Therefore, deleting vt from S yields ω(Ck

n − S1) =
ω(Ck

n − S) and m(Ck
n − S1)=m(Ck

n − S) + 1. So,

ω(Ck
n − S1)− |S1| −m(Ck

n − S1)
≥ ω(Ck

n − S)− |S|+ 1−m(Ck
n − S)− 1

= ω(Ck
n − S)− |S| −m(Ck

n − S)
= r(Ck

n),

which is again contrary to our choice of S. Thus, t =
k, and so S consists of the union of sets of exactly k
consecutive vertices. �
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Lemma 27 There is an R-set S for the graph Ck
n,

2 ≤ k < n−1
2 , such that all components of Ck

n − S

have order m(Ck
n − S) or m(Ck

n − S)− 1.

Proof. Among all R-sets of minimum order, con-
sider those sets with maximum number of minimum
order components, and we let s denote the order of
a minimum component. Among these sets, let S
be one with the fewest components of order s in
Ck
n. Suppose s ≤ m(Ck

n − S) − 2. Note that all
of the components must be sets of consecutive ver-
tices. Assume that Cp is a smallest component. Then
|V (Cp)| = s, and without loss of generality, let Cp =
{v1, v2, · · · , vs}. Suppose Ce is a largest component,
and so |V (Ce)| = m(Ck

n − S) = m and let Ce =
{vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca be the
components with vertices between vs of Ck and vj of
Ce, such that |Ci| = pi for 1 ≤ i ≤ a, and let Ci =
{vi1 , vi2 , · · · , vipi}. Now we construct the vertex set
S

′
as S

′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1} ∪

{v11 , v22 , · · · , va1 , vj}. Therefore, |S′ | = |S|,
m(Ck

n − S
′
) ≤ m(Ck

n − S) and ω(Ck
n − S

′
) =

ω(Ck
n − S). So we have

ω(Ck
n − S

′
)− |S′ | −m(Ck

n − S
′
)

≥ ω(Ck
n − S)− |S| −m(Ck

n − S).

Therefore,

ω(Ck
n − S

′
)− |S′ | −m(Ck

n − S
′
)

= ω(Ck
n − S)− |S| −m(Ck

n − S).

But, Ck
n −S

′
has one less components of order s than

Ck
n−S, a contradiction. Thus, all components ofCk

n−
S have order m(Ck

n − S) or m(Ck
n − S) − 1. So,

m(Ck
n − S) = ⌈n−kω

ω ⌉. �
By the above two lemmas we give the exact val-

ues for rupture degrees of the powers of cycles.

Theorem 28 Let Ck
n be k-th (k ≥ 2)power of a

cycle and n = r(k + 1) + s for 0 ≤ s < k + 1. Then

r(Ck
n) =


1− n, if n ≤ 2k+1;
2− k − ⌈p2⌉, if 2k+1 < n ≤ 8(k−1);

max{ω−ωk − ⌈n−kωω ⌉ω−ωk−⌈n−kωω ⌉}
if n > 8(k − 1)

where ω = ⌊
√

n
k−1⌋, ω = ⌈

√
n

k−1⌉.

Proof. If n ≤ 2k + 1, then Ck
n = Kn, so, r(Ck

n) =
1 − n. If n > 2k + 1, let S be a minimum R-set of
Ck
n. By Lemmas 2.1 and 2.2 we know that |S| = kω

and m(Ck
n − S) = ⌈n−rω

ω ⌉. Thus, from the definition
of rupture degree we have

r(Ck
n) = max{ω − kω − ⌈n− kω

ω
⌉|2 ≤ ω ≤ k}.

Now we consider the function

f(ω) = ω − kω − ⌈n− kω

ω
⌉.

It is easy to see that f
′
(ω) = 1 − k − ⌈−n

ω2 ⌉ =

⌈ (1−k)ω2+n
ω2 ⌉. Since ω2 > 0, we have f

′
(ω) ≥ 0 if

and only if g(ω) = (1 − k)ω2 + n ≥ 0. Since the
two roots of the equation g(ω) = (1− k)ω2 + n = 0

are ω1 = −
√

n
k−1 and ω2 =

√
n

k−1 . But ω1 < 0,

and so it is deleted. Then if 0 < ω ≤ ⌊ω2⌋, we have
f

′
(ω) ≥ 0, and so f(ω) is an increasing function; if

ω ≥ ⌈ω2⌉, then f
′
(ω) ≤ 0, and so f(ω) is a decreas-

ing function. Thus, we have the following cases:
Case 1 If n ≤ 8(k − 1), then ⌊ω2⌋ ≤ 2. Since we
know that 2 ≤ ω ≤ r, we have that f(ω) is a de-
creasing function and the maximum value occurs at
the boundary. So, ω = 2 and r(Ck

n) = f(2) =
2− r − ⌈n2 ⌉.
Case 2 If n > 8(k − 1), then ⌊ω2⌋ ≥ 2. So, we have

Subcase 2.1 If 2 ≤ ω ≤ ⌊ω2⌋, then f(ω) is an
increasing function.

Subcase 2.2 If ⌈ω2⌉ ≤ ω ≤ r, then f(ω) is a
decreasing function.

Thus the maximum value occurs when ω = ⌊ω2⌋
or ω = ⌈ω2⌉ . Then, on this condition, r(Ck

n) =

f(⌊ω2⌋) = max{ω − ωk − ⌈n−kω
ω ⌉, ω − ωk −

⌈n−kω
ω ⌉}, where ω = ⌊

√
n

k−1⌋, ω = ⌈
√

n
k−1⌉.

The proof is now complete. �
In the next theorem, we shall consider the prob-

lem of computing the rupture degree of powers of
paths.

It is easy to see that P k
n
∼= Kn if n ≤ k+1. So, in

the following lemmas, we suppose that 2 ≤ k ≤ n−2.

Lemma 29 If S is a minimalR-set for the graph P k
n ,

2 ≤ k ≤ n−2, then S consists of the union of sets of k
consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive
vertices in S.

Proof. We assume that the vertices of P k
n are la-

beled by v1, v2, · · · , vn. Let S be a minimal R-set
of P k

n and j be the smallest integer such that T =
{vj , vj+1, · · · , vj+t−1} is a maximum set of consecu-
tive vertices such that T ⊆ S. Since S ̸= V (P k

n ) and
T ̸= V (P k

n ), then vj−1 /∈ S. Since S must leave at
least two components of G − S, we have vj+t /∈ S,
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and so vj+t ̸= vj−1. Therefore, {vj+t, vj−1)∩S = ∅.
Now suppose t < k. Choose vj+i such that 1 ≤ i ≤ t,
and delete vj+i from S yielding a new set S

′
=

S−{vj+i} with |S′ | = |S|−1. By the definition of P k
n

(2 ≤ k < n−1
2 ) we know that the edges vj+ivj−1 and

vj+ivj+t are in P k
n−S

′
. Consider a vertex vp adjacent

to vj+i in P k
n −S

′
. If p ≥ t+j+1, then p < t+j+k.

So, vp is also adjacent to vt+j in P k
n −S

′
. If p < j−1,

then p ≥ j − k and vp is also adjacent to vj−1 in
P k
n −S′

. Since t < k, then vj−1 and vj+t are adjacent
in P k

n − S
′
. Therefore, we can conclude that deleting

the vertex vj+i from S does not change the number of
components, and so ω(P k

n − S
′
) = ω(P k

n − S) and
m(P k

n − S
′
) ≤ m(P k

n − S) + 1. Thus, we have

ω(P k
n − S

′
)− |S′ | −m(P k

n − S
′
)

≥ ω(P k
n − S)− |S|+ 1−m(P k

n − S)− 1
= ω(P k

n − S)− |S| −m(P k
n − S)

= r(P k
n ).

This is contrary to our choice of S. Thus we must
have t ≥ k. Now suppose t > k. Delete vj+t−1

from the set S yielding a new set S1 = S−{vj+t−1}.
Since t > k, the edge vj+t−1vj−1 is not in P k

n − S1.
Consider a vertex vp adjacent to vj+t−1 in P k

n − S1.
Then, p ≥ j + t and p ≤ j + t + k − 2, and so vp is
also adjacent to vj+t in P k

n − S1. Therefore, deleting
vj+t−1 from S yields ω(P k

n − S1) = ω(P k
n − S) and

m(P k
n − S1)=m(P k

n − S) + 1. So,

ω(P k
n − S1)− |S1| −m(P k

n − S1)

≥ ω(P k
n − S)− |S|+ 1−m(P k

n − S)− 1

= ω(P k
n − S)− |S| −m(P k

n − S)

= r(P k
n ),

which is again contrary to our choice of S. Thus, t =
k, and so S consists of the union of sets of exactly k
consecutive vertices. �

Lemma 30 There is an R-set S for the graph P k
n ,

2 ≤ k ≤ n − 2, such that all components of P k
n − S

have order m(P k
n − S) or m(P k

n − S)− 1.

Proof. Among all R-sets of minimum order, con-
sider those sets with maximum number of minimum
order components, and we let s denote the order of
a minimum component. Among these sets, let S
be one with the fewest components of order s in
P k
n . Suppose s ≤ m(P k

n − S) − 2. Note that all
of the components must be sets of consecutive ver-
tices. Assume that Cp is a smallest component. Then
|V (Cp)| = s, and let Cp = {v1, v2, · · · , vs}. Sup-
pose Ce is a largest component, and without loss of

generality, we assume that Ce is on the right side of
Cp, so |V (Ce)| = m(P k

n − S) = m and let Ce =
{vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca be the
components with vertices between vs of Ck and vj of
Ce, such that |Ci| = pi for 1 ≤ i ≤ a, and let Ci =
{vi1 , vi2 , · · · , vipi}. Now we construct the vertex set
S

′
as S

′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1} ∪

{v11 , v22 , · · · , va1 , vj}. Therefore, |S′ | = |S|,
m(P k

n − S
′
) ≤ m(P k

n − S) and ω(P k
n − S

′
) =

ω(P k
n − S). So we have

ω(P k
n − S

′
)− |S′ | −m(P k

n − S
′
)

≥ ω(P k
n − S)− |S| −m(P k

n − S).

Therefore,

ω(P k
n − S

′
)− |S′ | −m(P k

n − S
′
)

= ω(P k
n − S)− |S| −m(P k

n − S).

But, P k
n −S

′
has one less components of order s than

P k
n−S, a contradiction. Thus, all components of P k

n−
S have order m(P k

n − S) or m(P k
n − S) − 1. So,

m(P k
n − S) = ⌈n−k(ω−1)

ω ⌉. �
By the above two lemmas we give the exact val-

ues for rupture degrees of the powers of paths.

Theorem 31 Let P k
n be the k-th (k ≥ 2)power of a

path Pn, n = r(k + 1) + s for 0 ≤ s < k + 1. Then

r(P k
n ) =



1− n, if n ≤ k+1;

2− k − ⌈n−k
2 ⌉,

if k + 1 < n ≤ 7k − 8;

max{ω−(ω−1)k−⌈n−k(ω−1)
ω ⌉

ω − (ω − 1)k − ⌈n−k(ω−1)
ω ⌉},

if n > 7k − 8

where ω = ⌊
√

n+k
k−1 ⌋, ω = ⌈

√
n+k
k−1 ⌉.

Proof. Let S be a minimum R-set of P k
n . By Lem-

mas 15 and 16 we know that |S| = k(ω − 1) and
m(P k

n − S) = ⌈n−k(ω−1)
ω ⌉. Thus, from the definition

of rupture degree we have

r(P k
n ) =

max{ω−k(ω−1)−⌈n−k(ω−1)
ω ⌉

∣∣ 2 ≤ ω ≤ r+1}.

Now we consider the function

f(ω) = ω − k(ω − 1)− ⌈n−k(ω−1)
ω ⌉.

It is easy to see that f
′
(ω) = 1 − k − ⌈−n−k

ω2 ⌉ =

⌈ (1−k)ω2+n+k
ω2 ⌉. Since ω2 > 0, we have f

′
(ω) ≥ 0 if

and only if g(ω) = (1− k)ω2 + n+ k ≥ 0. Since the
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two roots of the equation g(ω) = (1−k)ω2+n+k =
0 are

ω1 = −
√

n+k
k−1 and ω2 =

√
n+k
k−1 .

But ω1 < 0, and so it is deleted. Then if 0 < ω ≤
⌊ω2⌋, we have f

′
(ω) ≥ 0, and so f(ω) is an increasing

function; if ω ≥ ⌈ω2⌉, then f
′
(ω) ≤ 0, and so f(ω)

is a decreasing function. Thus, we have the following
cases:
Case 1 If n ≤ 7k − 8, then ⌊ω2⌋ ≤ 2. Since we
know that 2 ≤ ω ≤ r + 1, we have that f(ω) is a
decreasing function and the maximum value occurs
at the boundary. So, ω = 2 and r(Ck

n) = f(2) =
2− k − ⌈n−k

2 ⌉.
Case 2 If n > 7k − 8, then ⌊ω2⌋ ≥ 2. So, we have

Subcase 2.1 If 2 ≤ ω ≤ ⌊ω2⌋, then f(ω) is an
increasing function.

Subcase 2.2 If ⌈ω2⌉ ≤ ω ≤ r+1, then f(ω) is a
decreasing function.

Thus the maximum value occurs when ω = ⌊ω2⌋
or ω = ⌈ω2⌉. Then, r(P k

n ) = f(⌊ω2⌋) = max{ω −
(ω−1)k−⌈n−k(ω−1)

ω ⌉, ω− (ω−1)k−⌈n−k(ω−1)
ω ⌉},

where where ω = ⌊
√

n+k
k−1 ⌋, ω = ⌈

√
n+k
k−1 ⌉. The proof

is now complete. �

5 Conclusion
If a system such as a communication network is mod-
eled by a graph G, there are many graph theoretical
parameters used to describe the stability and reliabil-
ity of communication networks including connectivi-
ty, integrity, toughness, binding number, tenacity and
rupture degree. Two ways of measuring the stabili-
ty of a network is through the ease with which one
can disrupt the network, and the cost of a disruption.
Connectivity has the least cost as far as disrupting the
network, but it does not take into account what re-
mains after disruption. One can say that the disrup-
tion is less harmful if the disconnected network con-
tains more components and much less harmful if the
affected components are small. One can associate the
cost with the number of the vertices destroyed to get
small components and the reward with the number of
the components remaining after destruction. The rup-
ture degree measure is compromise between the cost
and the reward by minimizing the cost: reward ratio.
Thus, a network with a small rupture degree performs
better under external attack. The results of this paper
suggest that rupture degree is a more suitable mea-
sure of stability in that it has the ability to distinguish
between graphs that intuitively should have different
measures of stability. In this paper, we have obtained

the exact values for the rupture degree of some special
graphs. To make further progress in this direction, one
could try to characterize the graphs with given rupture
degree.

Acknowledgements: This research is supported by
the NSFC(No.10871226). The authors are thankful to
anonymous referees for their constructive suggestion-
s and critical comments, which led to this improved
version.

References:
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