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Abstract: - In this study, we use the zeroing property of the first six moments for constructing a splitting algorithm
for cubic spline wavelets. First, we construct a new system of cubic basic spline-wavelets, realizing orthogonal
conditions to all polynomials up to fifth degree. Then, using the homogeneous Dirichlet boundary conditions, we
adapt spaces to the closed interval. The originality of the study consists of obtaining implicit relations connecting
the coefficients of the spline decomposition at the initial scale with the spline coefficients and wavelet coefficients
at the nested scale by a tape system of linear algebraic equations with a non-degenerate matrix. After excluding
the even rows of the system, in contrast to the case with two zero moments, the resulting transformation matrix
has five (instead of three) diagonals. The problems of modeling automobile road pavements using laser scanned
data are described. The results of numerical experiments on visualizing the designed road from the processed
laser points are also presented.
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1 Introduction

Increasing the efficiency of digital information pro-
cessing is an urgent task of modern applied mathe-
matics. This is especially noticeable in the areas re-
lated to computer graphics. The problem of three-
dimensional modeling of open areas of the terrain, ex-
tended objects of transport, industrial and civil con-
struction is now becoming more and more urgent.
The requirements for a realism of generated images
are constantly growing, which ultimately leads to an
increase in computational costs. At the same time,
for many applications (for example, visualization of
laser scanning data of automobile roads), very high
processing speed is required. One of the ways to in-
crease the efficiency of digital information process-
ing is the use of methods based on the multiscale rep-
resentation of graphical objects. A multiscale repre-
sentation is a multilayer structure, the first layer of
which contains sufficient information to coarse (low
resolution) approximation of an object; when adding
information from each subsequent layer, the level of
details gradually increases until the object is fully re-
stored (that is, with maximum resolution). With the
methods based on multiscale representation, a wide
range of problems of processing numerical informa-
tion can be solved, including noise elimination, visu-
alization of graphical objects, reduction of data vol-

umes by removing redundant and irrelevant infor-
mation, thereby reducing the computational cost of
subsequent processing, etc. Among these methods,
algorithms for processing multiscale representations
based on wavelet analysis, which are quite simple and
effective in implementation, have recently become
widespread. This transformation provides a non-
stationary time-frequency representation [1], which
attracts much attention from researchers in areas such
as image compression, image noise processing, signal
processing, computer graphics, and pattern recogni-
tion.

Wavelets are short or quickly damped wave func-
tions (bursts), a set of shifts and compressions of
which together generate the space of measurable
functions for the whole numeric axis [2-5]. If there
are several such waves, then multiwavelets [6-9] ap-
pear. Multiwavelets became the subject of special
attention after it was shown that symmetry and or-
thogonality can be simultaneously achieved, which
is impossible [4, 6] in the case of a traditional scalar
wavelet. Because compressions the wavelets reveal
varying scales of detail differences between the char-
acteristics of the measured signal, and due to shifts,
they can analyze the properties of a signal at dif-
ferent points throughout the studied interval. In the
analysis of non-stationary signals, the locality prop-
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erty of wavelets provides them an advantage over the
Fourier transform, which gives only global informa-
tion about properties of a signal under study; since
the basic functions used in this case (sine and cosine)
have infinite support. In solving problems of numeri-
cal analysis, since wavelets transform a system of ba-
sic functions with distributed parameters into a sys-
tem with lumped parameters, such a basis is more ef-
ficient in terms of stability and convergence [10]. The
unique properties of wavelets allow designing a ba-
sis in which the data representation can be expressed
with a small number of non-zero coefficients. This
property makes wavelets attractive for data compres-
sion, including video and audio information. Wavelet
transform can be viewed as one of the methods of pri-
mary signal processing to improve the efficiency of
its compression. In this case, direct compression is
performed by classical methods after its preprocess-
ing only for significant coefficients of the wavelet de-
composition of the signal, and its reconstruction ac-
cording to these coefficients is performed at the stage
of restoration (decompression).

In the work of the author [11], non-orthogonal
wavelets of the third degree with the first two zero
moments, that is, orthogonal to polynomials of the
first degree, were considered, the existence of fi-
nite implicit decomposition relations was proved, and
an effective algorithm for wavelet analysis based on
them was justified. This article attempts to find out
if there is an even-odd splitting algorithm for non-
orthogonal cubic wavelets with the first six zero mo-
ments; the lack of a strict diagonal dominance in the
splitting system is discussed; the results of numerical
experiments on roads laser data processing are pre-
sented.

2 Construction of cubic spline

wavelets with six vanishing

moments on an interval

Let VL denotes a space of cubic splines of smoothness
C2 on a segment [a, b] with a uniform grid consisting

of the nodes ∆L : xi = a + h · i, i = 0, 1, . . . , 2L,
h = (b− a)/2L, and the basic functions ϕ3(v− i)∀i,
where v = (x − a)/h, with the centers in integers,
are generated bymeans of compressions and displace-
ments of the function of the form [12, p. 89]:

ϕ3(t) =
1

6

4∑
j=0

(
4

j

)
(−1)j(t− j)3+,

where tn+ = (max{t, 0})n.
Then these functions satisfy the calibration rela-

tion [5, p. 91]:

ϕ3(t) =
1

8

4∑
k=0

(
4

k

)
ϕ3(2t− k). (1)

We use here for constructing a basis forWL−1 the
cubic wavelet orthogonal to all polynomials of the
fifth degree of the following form [13]

w3(t) =
1

8

6∑
k=0

(−1)k
(
6

k

)
ϕ3(2t− k). (2)

It has six zero moments∫ ∞

−∞
xkw3(x)dx = 0, k = 0, 1, . . . , 5,

in addition, these functions have the following sup-
ports:

suppϕ3 = [0, 4], suppw3 = [0, 6].

Unfortunately, to construct the bases of the spline
andwavelet spaces on a finite segment [a, b], the func-
tions ϕ3(v − i) and w3(v − i) cannot simply be trun-
cated when going beyond the ends of the segment.
There are two approaches to solving this problem: the
first is the introduction of additional nodes to the right
and the left of the ends of the segment and the other
is the use of multiple nodes at points a, b. In the the-
ory of wavelets, the second approach is more popu-
lar. Additionally, we have to keep the symmetry of an
expanded function on a finite interval. This requires
arranging the bases so that the location of basic func-
tions can be symmetrical concerning the center of the
interval. To accomplish this arrangement and having
in mind the desired property of splitting algorithms,
we will locate the centers of supports of w3(v − i) at
odd nodes j = 5, 7, . . . , 2L−5, to receive in the result
2L−1 − 4 degrees of freedom. To discuss the number
of boundary wavelets, let us calculate firstly the quan-
tity of the basic splinesϕ3(v−i), i = 0, 1, . . . , 2L−4,
fully nested in the interval [a, b], to receive in the re-
sult 2L − 3 degrees of freedom. If the grid ∆L−1

is obtained from ∆L by deleting every second node,
then the corresponding basic functions ϕ3(v/2−i)∀i,
whose supports are twice as wide and centers at even
nodes of the grid∆l, provide 2L−1−3 degrees of free-
dom. Since the difference of the degrees of freedoms
in both scales has to be equal to the number of added
wavelets, four boundary wavelets and four bound-
ary basic splines are necessary to obtain the nested
resolution approximation. Recall, that the whole di-
mension of VL equals 2L + 3. So to make true the
nested resolution argument we ought to neglect two
degrees of freedoms in each scale of spline approxi-
mation. To do so we simply impose the following ad-
ditional conditions on functions being approximated:
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f(a) = f(b) = 0. This assumption facilitates the
construction of wavelets near the ends of a finite in-
terval and the condition of the complement of dimen-
sions of the considered spaces is satisfied, i.e.

Dim(VL) = 2L + 1 = Dim(VL−1) + Dim(WL−1).

Then the corresponding left basic functions have
the form [14]

ϕb1(t) =
7

4
t3+ − 9

2
t2+ + 3t1+ − 2(t− 1)3+, 0 ≤ t ≤ 2,

ϕb2(t) =
3

2
t2+ − 11

12
t3+ +

3

2
(t− 1)3+ − 3

4
(t− 2)3+,

0 ≤ t ≤ 3,

and satisfy the calibration relations

ϕb1(t) =
1

2
ϕb1(2t) +

3

4
ϕb2(2t) +

3

16
ϕ3(2t), (3)

ϕb2(t) =
1

4
ϕb2(2t) +

11

16
ϕ3(2t) + (4)

+
1

2
ϕ3(2t− 1) +

1

8
ϕ3(2t− 2).

As to boundary basic wavelets to illustrate the
main idea of the studying we shall use here the cubic
wavelets that are orthogonal to all third-degree poly-
nomials [14],

wb1(t) = 6ϕb1(2t)−
57

5
ϕb2(2t) +

919

100
ϕ3(2t)− (5)

−116

25
ϕ3(2t− 1) + ϕ3(2t− 2),

wb2(t) =
7

3
ϕb2(2t)−

319

60
ϕ3(2t) + ϕ3(2t− 3) + (6)

+
101

15
ϕ3(2t− 1)− 25

6
ϕ3(2t− 2).

They have the following supports

suppwb1 = [0, 3], suppwb2 = [0, 3.5],

and, accordingly, they have four zero moments∫ 3

0
xkwb1(x)dx =

∫ 3.5

0
xkwb2(x)dx = 0,

for k = 0, 1, 2, 3.
At the right end of the segment, the basic functions

mirror the functions ϕb1,2(t), wb1,2(t). As a result, for

any grid ∆L, L ≥ 2, a third-degree spline with zero
boundary conditions can be represented as

SL(v) = CL
−2ϕb1(v) + CL

−1ϕb2(v) + (7)

+
2L−4∑
i=0

CL
i ϕ3(v − i) + CL

2L−3ϕb2(2
L − v) +

+CL
2L−2ϕb1(2

L − v), 0 ≤ v ≤ 2L,

where the coefficients CL
i ∀i are the solution, for ex-

ample, of the interpolation problem:

SL(i) = f(xi), i = 1, 2, . . . , 2L − 1,(
SL
)′
(i) = h · f ′(xi), i = 1, 2L − 1.

3 Construction of the defining

system of wavelet transform

equations
For further reasoning, it is convenient to write the ba-
sic spline functions in the form of a single rowmatrix,

ϕL(·) = [ϕb1(·), ϕb2(·), ϕ3(·), ϕ3(· − 1), . . .

. . . , ϕ3(· − 2L + 4), ϕb2(2
L − ·), ϕb1(2

L − ·)
]

and to arrange the spline coefficients in the form of a
vector,

CL =
[
CL
−2, C

L
−1, C

L
0 , . . . , C

L
2L−3, C

L
2L−2

]T
.

Then the formula (7) is rewritten as

SL(·) = ϕL(·)CL.

Similarly, for L ≥ 4 we can write the basic
wavelet functions in the form of a row matrix as

ψL−1(·) = [wb1(·), wb2(·), w3(·), w3(· − 2), . . .

. . . , w3(· − 2L + 5), wb2(2
L − ·), wb1(2

L − ·)
]
.

The corresponding coefficients of the decomposi-
tion wavelets at the scale L− 1 are assembled into a
vector,

DL−1 = [D−1, D0, . . . , D2L−1−2]
T .

Then, for a scale of the expansion of L − 1, the
functions ϕL−1(·) and ψL−1(·) can be written as lin-
ear combinations of the functions ϕL(·):

ϕL−1(·) = ϕL(·)PL and ψL−1(·) = ϕL(·)QL,

where the columns of the matrix PL are composed
of the relation coefficients (1) and (3), (4) since each
wide basic function within the approximation interval
can be constructed from five narrow basic functions,
each wide basic function at the ends of the interval
can be constructed from three or four narrow basic
functions while the elements of the columns of the
matrix QL are composed of the relation coefficients
(2) and (5), (6).

Consequently, the following equalities hold:

ϕL(·)CL = ϕL−1(·)CL−1 + ψL−1(·)DL−1 =

= ϕL(·)PLCL−1 + ϕL(·)QLDL−1. (8)
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Thus, the process of obtaining CL from CL−1 and
DL−1 can be written in the form

CL = PLCL−1 +QLDL−1

or, using the notation for block matrices,

CL =
[
PL | QL

] [CL−1

DL−1

]
. (9)

Define the block matrix that inverse to the matrix[
PL | QL

]
: [

AL

BL

]
=
[
PL | QL

]−1
.

Then the process of creating a version with a
coarse resolution, CL−1, characterized by fewer co-
efficients, can be expressed by the matrix equality

CL−1 = ALCL,

where AL is a matrix of dimension
(
2L−1 + 1

)
×(

2L − 1
)
.

In this case, the lost parts are collected in another
vector DL−1, defined by the expression

DL−1 = BLCL,

whereBL is a matrix of dimension 2L−1×
(
2L − 1

)
.

Matrices AL and BL are called analysis filters, and
matrices PL and QL are called synthesis filters
[4, p. 95], [10, p. 198].

Unfortunately, as it is easy to see, the matrices

that inverse to
[
PL | QL

]
lose their sparse structure.

The essence of the approach proposed in [4, p. 96]
for such cases is that CL−1 and DL−1 can be calcu-
lated from CL by solving the system of linear equa-
tions (9). Moreover, they proposed to remake the ma-

trix
[
PL | QL

]
into a tape matrix by simply changing

the order of the unknowns so that the columns of the
matrices PL and QL were interleaved. Thus, the op-
eration of wavelet decomposition can be performed
without explicit representation and the use of a filter
block. Nevertheless, although the solvability of the
resulting system is guaranteed by the linear indepen-
dence of the basic functions, it has seven diagonals,
which are quite large. Moreover, the question of its
good conditioning remains open. As can be easy seen,
the resulting system of equations does not have diago-
nal dominance, which can make it difficult to analyze
large-size wavelet data.

4 Splitting algorithm

Let for resolution scales L ≥ 4, the matrixGL of size(
2L + 1

)
×
(
2L + 1

)
has the form



904 600 15920 340 123680
87 0 0 0

0 −908 0 0 0 0 0 0
1338 1557 9111 301 25654

29 5 5 0

0 0 0 −116 0 0 0 0
...

...
...

...
...

162 216 −4626 25 −3969
29 51 60 5 0 0 0 0 0

0 0 0 0 0 −16 0 0
. . . 15 0 0 0 0

0 0 −261 0 144 51 126 51
. . . 0 0 0 0 0

0 0 0 0 0 0 0 −16
. . . 144 0 −261 0 0

0 0 0 0 15 5 60 51
. . . 0 0 0 0 0

0 0 0 0 0 0 0 0
. . . −3969

29 25 −462 216 162
...

...
...

...
...

... 5 5
. . . 0 −116 0 0 0

0 0
. . . 25654

29 301 9111 1557 1338
...

...
. . . 0 0 0 −908 0

123680
87 340 15920 600 904



.

Here diagonal points mean that the preceding
two columns are repeated the appropriate number
of times, each time moving two positions right and

down, while the matrix RL is compound from two
blocks according to 2L−1 + 1 basic spline functions
of VL−1 and 2

L−1 basic wavelets ofWL−1:
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908 0 16360 380 128200
87 0 0 0

696 928 0 0 0 0 0 0

0 0 −2088 0 0 24 24 0
...

...
...

...
...

0 0 0 0 72 24 80 24 0 0 0 0 0

0 0 0 0 0 0 24 24
. . . 72 0 0 0 0

...
...

...
...

...
... 0 0

. . . 0 0 −2088 0 0
...

...
. . . 0 0 0 928 696

128200
87 380 16360 0 908

75 100 1290 25 3310
29 0 0 0

0 0 1044 0 84 0 0 0

0 0 0 0 −48 −16 −16 0
...

...
...

...
...

0 0 0 0 0 0 −16 −16
. . . 0 0 0 0 0

...
...

...
...

...
... 0 0

. . . −48 0 0 0 0
...

...
. . . 84 0 1044 0 0

3310
29 25 1290 100 75



.

Here diagonal points mean that the preceding two
columns are repeated the corresponding number of
times while going right two positions, each time mov-
ing one position down. The last five columns of the
matricesGL and two blocks ofRL mirror the first five
columns; the empty positions of matrices are equal to
zero.

We propose to perform calculations based on our
previously developed procedure [15, 16] of the even-
odd splitting of wavelet decomposition of the form
(8), connecting the basic functions of the space of
splines on a dense grid, the basic functions on a sparse
grid, and wavelets by finite implicit relations of the
expansion with three non-empty diagonals and strict
diagonal dominance. For the type of wavelets pre-
sented above, similar results are valid, which, using
the notations above, can be represented in the follow-
ing form.

Theorem 1 For any scale of resolution L ≥ 4, the
matrix of the wavelet decomposition of cubic splines
satisfies the equality[

PL | QL
]
RL = GL. (10)

From the notation of the matrix equation (10) it can be
seen that for each column of the matrix GL

j the cor-

responding column of the matrix RL
j is nothing more

than a solution of a system of linear equations of the
form [

PL | QL
]
RL

j = GL
j . (11)

Now it is seen that for the elements of the columns
of the matrix RL, the system of equations (11) has
only five mirrored solutions for the right and left ends
of the segment [a, b] and two solutions in the variable
part of the system, depending on the number of inter-
nal nodes of the grid ∆L. All other solutions differ
only in the placement of these elements in columns.

Since each row of the matrix,
[
PL | QL

]
contains

only a few nonzero elements, these systems them-
selves have a small dimension. For each variant, the
resulting systems turn out to be consistent, but their
ranks are less than the number of unknowns, so each
system provides some freedom in choosing the most
compact solution in the sense of the least number of
nonzero values and regular solution in the sense of
zeroing out the even right-hand sides. Therefore, it is
not difficult to obtain these solutions or at least check
the available solutions using manual counting. Let’s
find their explicit representation.

For the matrix
[
PL | QL

]
the seven-diagonal ma-

trix
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[
PL | QL

]′
=



1
2 6 0 0 0 0 0
3
4 −57

5
1
4

7
3 0 0 0

3
16

919
100

11
16 −319

60
1
8 −1

8 0
0 −116

25
1
2

101
15

1
2

3
4 0

0 1 1
8 −25

6
3
4 −15

8
1
8

...
...

...
...

0 0 0 1 1
2

5
2

1
2

. . . 0 0 0 0

0 0 0 0 1
8 −15

8
3
4

. . . 1 0 0 0

0 0 0 0 0 3
4

1
2

. . . −25
6

1
8 1 0

...
...

...
...

... −1
8

1
8

. . . 101
15

1
2 −116

25 0

0 0
. . . −319

60
11
16

919
100

3
16

...
... 7

3
1
4

−57
5

3
4

0 0 6 1
2



(12)

is obtained by permuting the columns of thematrix[
PL | QL

]
in accordance with the substitution

[
0 1 · · · 2L 2L + 1 2L + 2 · · · 2L+1

0 2 · · · 2L+1 1 3 · · · 2L+1 − 1

]
.

(13)

Let the matrix corresponding to the permutation
of columns (13) is denoted by T . Then the following
representation is true [17][

PL | QL
]′
=
[
PL | QL

]
T. (14)

From the representation (14) we find[
PL | QL

]−1
·GL = T ·

[
PL | QL

]′−1
·GL. (15)

Thus, the problem was reduced to finding a solu-
tion to the system of matrix equalities[

PL | QL
]′
j
(R′)Lj = GL

j , j = 0, 1, . . . , 2L, (16)

which, according to the assumed stepped structure of
the matrices R′L and GL, decomposes into blocks
with matrices of the following forms:

[
PL | QL

]′
0−6

=



1
2 6 0 0 0
3
4 −57

5
1
4

7
3 0 0 0

3
16

919
100

11
16 −319

60
1
8 −1

8 0
0 −116

25
1
2

101
15

1
2

3
4 0 0 0

0 1 1
8 −25

6
3
4 −15

8
1
8 −1

8 0
0 0 0 1 1

2
5
2

1
2

3
4 0

0 0 0 0 1
8 −15

8
3
4 −15

8
1
8

0 0 0 0 0 3
4

1
2

5
2

1
2

−1
8

1
8 −15

8
3
4


,

[
PL | QL

]′
7−9

=



1
8 −1

8 0
1
2

3
4 0 0 0

3
4 −15

8
1
8 −1

8 0
1
2

5
2

1
2

3
4 0

1
8 −15

8
3
4 −15

8
1
8

0 3
4

1
2

5
2

1
2

−1
8

1
8 −15

8
3
4

0 0 3
4

1
2

−1
8

1
8


,

· · ·
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[
PL | QL

]′
2L−6,2L

=



3
4 −15

8
1
8 −1

8 0
1
2

5
2

1
2

3
4 0

1
8 −15

8
3
4 −15

8
1
8 0 0 0 0

0 3
4

1
2

5
2

1
2 1 0 0 0

−1
8

1
8 −15

8
3
4 −25

6
1
8 1 0

0 0 3
4

1
2

101
15

1
2 −116

25 0
−1

8
1
8 −319

60
11
16

919
100

3
16

0 0 7
3

1
4

−57
5

3
4

0 0 6 1
2


.

In this case, the lower right indices in the nota-
tion of the left matrices indicate which columns of the
matrix R′L are calculated by the corresponding sys-
tem (16), provided that the equations corresponding

to the zero rows of the matrices GL
j removed from

the system. As a result, the product of the matrices[
PL | QL

]′−1
· GL turns out to be an almost five-

diagonal matrix and has the following form:



908 0 16360 380 128200
87 0 0 0

75 100 1290 25 3310
29 0 0 0

696 928 0 0 0 0 0 0

0 0 1044 0 84 0 0 0
...

...
...

...
...

0 0 −2088 0 0 24 24 0 0 0 0 0 0
0 0 0 0 −48 −16 −16 0 72 0 0 0 0

0 0 0 0 72 24 80 24
. . . −48 0 0 0 0

0 0 0 0 0 0 −16 −16
. . . 0 0 −2088 0 0

...
...

...
...

...
... 24 24

. . . 84 0 1044 0 0

0 0
. . . 0 0 0 928 696

...
...

. . . 3310
29 25 1290 100 75

128200
87 380 16360 0 908



. (17)

From the equality (15) it follows that to find the

matrix RL =
[
PL | QL

]−1
· GL, you need to apply

to the rows of the matrix (17) the permutation inverse
to (13), that is, a permutation in which the records of
the pattern and the preimage are swapped. Hence we
obtain the required representation of the matrix RL.

After that, the solution to the system of equations
(9) can be written in matrix form as

[
CL−1

DL−1

]
=
[
PL | QL

]−1
CL = RL

(
GL
)−1

CL.

So, instead of directly solving a system of the form
(9), we can solve the system

GLΞL = CL (18)

with respect to some values of ΞL and then just cal-
culate the values of CL−1 and DL−1 using the linear

transformation

[
CL−1

DL−1

]
= RLΞL.

Thus, in contrast to [11], in the five-diagonal ap-
proach, there is no possibility to perform transforma-
tions with the boundary rows of the splitting matrix
(with the corresponding boundary wavelets) to ensure
a strict diagonal predomination and consequently the
stability of the calculations.

Nevertheless, for large values of L, we still need
to divide the system (18) into even and odd numbers
to reduce the algorithm to solving a five-diagonal sys-
tem of equations. We can achieve this goal by com-
bining the five-diagonal sweep method with the in-
complete reduction method studied in [18, Ch. IV,
§3].

In a real situation of wavelet analysis of a discrete
signal, the homogeneous boundary conditions neces-
sary for the creation of a wavelet decomposition are
not satisfied. Therefore, before applying the above al-
gorithm, it is necessary to subtract values of the line
f(a)+(f(b)−f(a))(x−a)/(b−a) from the set val-
ues. After wavelet analysis of obtained differences
and reconstruction on wavelet coefficients of the ap-
proximating spline of the third degree, values of this
line are added to it.
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5 Modeling of road pavements based

laser scanned data
Laser scanning is a new direction in high-precision
3D-measurements [19]. As to mobile scanning,
scopes of application include positioning of the auto-
mobile and railroads, bridges, overpasses, city streets,
the coastline, etc. The main advantage of laser scan-
ning is the possibility to work at objects with heavy
traffic, at industrial facilities without stopping of pro-
duction and in hard-to-reach sites, and also at ob-
jects having a complex configuration [20]. Cartesian
components of the GPS data from laser scanning de-
vice are issued in the form of the array (”cloud”) of
points, inwhich there is no division into separate cross
scans. As the principle of mobile scanning system al-
lows working on the road without traffic overlapping,
the cloud of points contain a roadside landscape and
hindrances on the carriageway (reflection from peo-
ple who are on an object, technique, vegetation, etc.)
(Fig.1).

Figure 1: Isometric projection of cloud points for a
small section of the highway

Main goals of preliminary processing of laser
scanned data are the removal of a roadside and sur-
rounding landscape, the filling of gaps in the scanned
data, created by cars passing by on the carriageway,
and the elaboration of the planned axial line of the
road. From the mathematical point of view the pro-
duction of the axis of the road allows transforming
bends of the highway to some rectangular area, for
which it is possible to apply standard methods of two-
dimensional spline interpolation [21] on a rectangu-
lar grid, keeping structural lines of the road (edges,
brows), unlike the popular method of restoration of
a surface of the highway by triangulation of chaotic
points [22]. Very important is that at such approach

high precision of detection of cracks and damages of
a road pavement in the places demanding repair is
guaranteed and construction and application of the
wavelet transformation of interpolation splines for
compression of the scanned information in the places
of highways not demanding repair is significantly fa-
cilitated also. Figure 2 shows the results of the data
wavelet compression for a single track. In this case,
a very small section of the track is shown. The total
length of the track exceeds 4 km. Compression with a
coefficient of 15.9 is achieved. The maximum result-
ing error does not exceed 3.5 cm.

Figure 2: Data compression results for a single track.
The total length of the track is more than 4 km. The
Y-Z profile of the section with a length of 450 m is
shown

Note that when using the wavelet transformations
based on Hermite splines it is necessary to calcu-
late approximate values of derivatives in nodes of
the densest grid with suitable accuracy (for example
via ENO-scheme [23]) to apply algorithms of wavelet
transformations. From the point of view of compres-
sion the number of wavelet-coefficients given thus
in comparison with the methods, based on B-spline-
wavelet-transformations, will multiply increase. The
stated above algorithms were the basis for the soft-
ware package for the processing of laser scanned
data. Results of visualization of the data processed
are given in Fig.3, 4.

When compressing data using bicubic wavelets
with a compression ratio of 3,97, the resulting root-
mean-square error of the surface approximation does
not exceed 5.7 mm. The mathematical expectation of
the deviation is slightly biased – by 9.4 · 10−4 m. A
three-dimensional image of a part of the surface after
wavelet compression is shown in Fig.4.
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Figure 3: A piece of the surface to compress the bicu-
bic wavelets

Figure 4: A piece of the surface after compression
bicubic wavelets

6 Conclusion

The article discusses the further development of the
author’s procedure for an even-odd partition of the
defining system of the Hermite wavelet expansion for
the practically important case of approximating func-
tions that do not require specifying the values of the
derivatives, based on B-splines of the third degree.
In this paper, we propose using an algorithm based on
wavelet transform to detect cracks and damages of a
road pavement. Besides, we design a filter needed in
the transform and make the computation much more
efficient by block matrix identities. The figures and
data resulting from experiments show that a bicubic
wavelet transform is a powerful tool in cracks and
damages of road pavement detection.

The extension of the proposed approach to splines
of a higher degree and a larger number of zero mo-
ments can provide new opportunities for the devel-
opment of algorithms for constructing and applying
spline wavelets. We believe that the flexible multi-
scale decomposition of the wavelet transform has the
potential to be usedmore andmore in image and video
processing. And we expect a combination of cracks
and damages of road pavement detection andmachine
learning in the future to develop a more intelligent
road repairing system.
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