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Abstract: This paper is concerned with the problem of robust finite-time boundedness for the discrete-time
neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we
proposed the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural
networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust
finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical
example is present to illustrate the efficiency of proposed methods.
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1 Introduction in the performance of the system over a finite time

In recent years, neural networks have been widely
used in associative memory, pattern recognition,
model identification, signal processing, static image
processing, optimization control problems and other
aspects [1-4]. Many applications of neural networks
rely on dynamic behavior. Therefore the stability of
neural networks has incurred extensive attention
from scholars. In [5], the stability criteria for neural
networks were given. Assimakis et al. [6]
investigated the robust exponential stability for
uncertain recurrent neural networks.

With the rapid development of technology,
computer technology is introduced into the field of
engineering research. In fact, when the computer
processes the input and output control signals, the
resulting signals are discrete-time. Therefore,
discrete-time systems have attracted extensive
attention of researchers [7-10]. On the other hand, in
the field of practical application, the time-delay
phenomenon commonly exists in the neural network
system, which will not only reduce the transmission
speed of the network but also lead to the instability
or vibration of the network. Therefore, it is of great
theoretical and practical significance to study the
stability and control performance of neural network
systems with delay [9-12]. In [9], Yu et al. studied
the exponential stability for discrete-time recurrent
neural networks with time-varying delay. In [11],
Liu et al. considered the mean square exponential
stability for discrete-time stochastic fuzzy neural
network.

In many real systems, we are sometimes interested
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interval. For automobile suspension control system,
the performance of short time interval is more
popular. Compared with the Lyapunov asymptotic
stability, the research of finite-time stability
considers the behavior of the dynamic system within
a finite time interval. The finite time stability theory
can be applied to the design of wheeled robots and
the attitude tracking and attitude cooperative control
technology of spacecraft. In [13], Dorato proposed
the definition of short-time stability. In recent years,
finite time stability and stabilization have attracted
much attention [14-19]. In [14], the finite-time
stability analysis of neutral-type neural networks
with random time varying delays was given. In [16],
via a new argument Lyapunov-Krasovskii functional,
the finite-time stability of neural networks with
time-varying delays was studied. In [19], Ren et al.
considered the finite-time stabilization for uncertain
positive Markovian jumping neural networks. In [20],
Amato et al. extended the concept of finite time
stability introducing the definition of finite-time
boundedness for the state of a system. In [21], by
using reciprocally convex approach, Tuan
investigated the finite-time boundedness for
discrete-time delay neural networks. In [22], the
criterion of finite-time boundedness for the nonlinear
switched neutral system was presented.

To the best of our knowledge, the problem of finite
time boundedness of discrete time neural networks is
seldom studied. In this paper, we consider the robust
finite-time boundedness problem for a class of
uncertain  discrete-time neural networks. We
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construct an appropriate Lyapunov-Krasovskii
functional. According to the linear matrix inequality
technique, the criteria of robust finite-time
boundedness for discrete-time neural networks with
time-varying delay are proposed. In addition, the
sufficient condition for robust finite-time
boundedness of the discrete-time neural networks
with constant delay is given. Finally, a numerical
example is provided to verify the validity of the
stability criterion.

Notations: Throughout this note, R" denotes the
n -dimensional Fuclidean space. P >0(=0)

denotes that P is a symmetric positive-definite
(semi-positive-definite) matrix. The symmetric term
in a symmetric matrix is denoted by =*. We use
A () and A__(-) to denote the minimum and

min ‘max

maximum eigenvalue of the real symmetric matrix.

2. Problem Formulation

Consider the following discrete-time neural
networks with time-varying delay
(K +1) = —(A+ AAK)X(K) + (C + AC(K)) (k)

+(Ay + AA (K)x(k —d (k)
+(G +AG(k))g(x(k))
+(H + AH (k)h(x(k —d (k))),
X(0)=¢(0), 0el={-d,,~d, +1,--,0},
where  x(k) =[x (k), X, (K),--,%,(k)]' €R" is the

(1)

neural state vector ; the diagonal matrix
A=diag{%,%,--9 } has positive entries & >0 .
A,.G,H,C are real and known constant

matrices. The ¢(0) denotes a vector-valued initial

function, w(k)eR" is disturbance satisfying the
following condition

D o' (Ko(k) < z. )
k=0

The delay d(k) is a positive integer which is
time-varying and satisfies
1<d, <d(k)<d,, (3)

where d, and d, are the known positive integers.
The parametric uncertainties AA(K),AA, (k),AG(k),
AH (K),AC(K) are assumed to be norm-bounded of
the form:

[AA(K) AA, (k) AG(k) AH (k) AC(K)]

=DF(K)[N, N, N, N, N.],
where D,N,,N,,N,,N,,N; are real known constant

“4)
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matrices of appropriate dimensions, and F(k) is an
unknown time-varying matrix satisfying
FT(k)F(kx )

The functions

g(X(k)) = [gl (Xl (k))a 50, (Xn (k))]T P

h(x(k —d(k))) =[h (x, (k =d(k))), h,(x, (k —d(k))),
S h, (x(k=d (k)T

denote the neuron activation functions.

Assumption 1. For je{l,2,---,n} , the neuron

activation functions g;(X;(k)),h;(x;(k—=d(k))) in

(1) are continuous and bounded with

9,(0)=h,(0)=0, and satisfy

o < gj(xl)_gj(xz)

N
i <ap, VX, X €RX #X,,

X=X
(6)
_ hj(Xl)_hj(Xz) +
S < BV X eRX £ X,
X; =X,

- + — +
where a;,a;, ,Bj , ﬂj are constants.

- + — +
Remark 1. The constants aj,aj,ﬂj ,,Bj can be

positive, negative, or zero. Hence, the activation
functions are more general than the commonly used
Lipschitz conditions.

Definition 1. [23] Given four positive constants

c.C,x,N with ¢ <c, and NeZ® , a

symmetric positive-definite matrix R, system (1)
is said to be finite-time bounded with respect to
(c.C, 7, R,N), if

sup{x" (A)Rx()} <c, = x" (k)Rx(k) <¢,,

vk e{l,2,---,N}.
Remark 2. When @(k)=0, the definition of
finite-time boundedness can become finite-time
stability with respect to (c,,C,,R,N).
Lemma 1. [9] Given constant matrices X,Y,Z
with appropriate dimensions satisfying X = X',

Y =Y" >0, then
;
X+Z'Y'Z<0 Xz <0. (8)
* =Y

Lemma 2. [24] Let A,D and E be real matrices
of appropriate dimensions, matrix F(t) satisfies

FT(t)F(t)< 1. Then for any matrix P >0and scalar
&>0 suchthat ¢l —EPE" >0, we have
(A+ DF(t)E)P(A+DF(t)E)"

T T _ Ty-1 T T ©)
<APA" + APE (¢l -EPE )" EPA" +¢DD".
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3. Main Results

This section provides some criteria for the
finite-time boundedness of system (1).
Theorem 1. Suppose that Assumption 1 holds.
Given positive constants y,N,c, <C,,o>1, a
symmetric positive-definite matrix R, system (1)
is robustly finite-time bounded with respect to

(c.c,,x,R,N), if there exist symmetric
positive-definite matrices P,Q,T,,T,, diagonal
matrices U, >0,U,>0, and positive scalars
M, A (1=1,2,---,5), such that the following
LMIs hold:
A:LA“ A12J<o, (10)
* A22
AR<P<AR,Q<AR,T <A4R,T,<AR, (11)
ﬂzUN_ll -4 u4  vd VA LA
¢ -0,4, 0 0 0
* * U4, 0 0
* * * -0, A, 0
% * * * _Usﬁs
<0,
(12)
where
[0, 0 0 0 DU,
* —c"Q-YU, 0 0 0
A, =] * * T, 0 0
% % % _gdZTl 0
% * % * —U1
0, =—0cP+T,+T,+(d,-d, +1)Q-DU,,
0 0 —-AP -ATPD —uN/ |
YU, 0 AP A'PD  uN]
A,=| 0 0 0 0 0o |
0 0 0 0
i 0 G'P G'PD N |
U, 0 H'P H'PD  pyN]]
* -l CTP C'PD N/
Ay, =| = * -P 0 0 |
* * * D'PD-gl 0
* * * * -

_ N _ N d,—
v,=Co ,u,=Co d,o"
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2

Proof. Choose the following Lyapunov-Krasovskii
functional candidate

\ (k) =V1 (k) +V2 (k) +V3 (k) +V4 (k) +V5 (k)a
where

. L,d?-d’—d, —d
v, =co" [dzoﬂ'2 lpohr 2 L1 2

(13)

Vi (k) =x" (k)Px(k),

V= S o ),

i=k—d (k)

V(K= S o T X,

i=k—d,

V, (k)= ki S KT (DT, X(i),

i=k—d,
V (k)= i kZiiak’“xT(i)Qx(i).
j=—dy+li=k+]j

Let us define the forward difference of V (k) as
AV (k) =V (k +1) -V (k).
We have
AV, (k) =V, (k +1) -V, (k)
= (o =DV, (K)+V, (k+1) = oV, (k)
= (o =1V, (k) +&7 (K)Y, (K)PY] (k)& (k)
—ox" (K)Px(k),

(14)

where
Y7 (k) =[-AK) A, (k) 00 G(k) H(k) C(K)],
&) =[ X" (k) X" (k—d(k)) X" (k—d,) X" (k—d,)

g" (x(K)) h" (x(k—d (k) &' (K)] .
Denote
Y] =[-A A 00GH C],
AYT (k) =[-AA(k) AA (k) 0 0 AG(K) AH (k) AC(K)].
By Lemma 2, we have
Y, (K)PY," (k) = (X, + AY(K))P(Y, + AY(k))"
=(Y,+ Y,FT (k)D"P(Y, + Y,F" (k)D")"
<Y,PY] +Y,PD(z41 —D"PD)"'D'PY] + 1Y, Y},
(15)
where Y] =[-N, N, 00 N, N, N,].
According to (14) and (15), we have
AV, (k) < (o =1V, (k) - ox" (k)Px(k)
+ET(K)[Y,PY] +Y,PD(z41 —D"PD) ™" (16)
xDTPY] + 4 Y, Y] 1&(K),
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AV, (k) =V, (k +1) -V, (k)
-0+ Y
i=k+1-d (k+1)
- ki o X" (HX(I)
i=k—d (k)
= (o =1V, (k) +x" (k)Qx(k)
k-1

+ Y oIXT(HRx()

A 4000
i=k+1-d (k+1)
- kz_ll o X" (HQX(I)
i=k—d (k)+1
— X" (k = d (k))Qx(k —d(k))
< (o =1V, (k) +x" (k)Qx(k)
k-d,

+ Y o IX(HRX()

i=k+1-d,

—o"x" (k= d(k)Qx(k —d(k)),

AV, (k) =V, (k +1) =V, (k)
= (o =V, (k) +x" (K)T,x(k)

k-1 )
+ Y o X X()
i=k—d,+1
k-1

- > X (Tx()

i=k—d,+1
—o®x"(k—d,)T,x(k —d,)

= (o = 1V;(K) + X" (K)Tx(k)
—o®x"(k-d,)Tx(k —d,),

AV, (K) =V, (k+1) =V, (k)
= (o =1V, (K) +V,(k +1) - oV, (k)

=(c -1V, (k) + i X7 ()T, (1)

i=k—d, +1
k-1 _
= Y X HT,X()
i=k—d,

= (o =V, (K)+ X" (K)T,x(k)
—o"X" (k—d)T,x(k —d,),
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AV, (k) =V (k +1) =V, (k)
=(o—1)V,(k)

_dl k

+ 22 o
- ZZ oiXT (QX(0)

=(o -1V, (k) + j:Z:]H[XT (K)Qx(k)
£ S o)
W0 (0

i=k+j+1

—o X (k+ HQx(k+ ) |
=(oc-DV(k)+(d, - dl)XT (k)Qx(k)

k—d,

- > X (HX().

i=K—d,+1
(20)
From Assumption 1, for anyi=1,2,---,n, we have
(9 (% (K)) — 5" % (K))(g; (% (K)) — o %, (k) <0, (21)
which is equivalent to
a +o ¢

{x(k) } claes  —T e [x(k)}
gx() ] | o +of . g(x(k)

Qei i
2

<0,

(22)
where e denotes the units column vector having
element 1 on its i th row and zeros elsewhere. Let
U, >0,U, >0,be any nxn diagonal matrices. Then

we have

{ X(k) } |:(D1U1 _®2U1:||: X(k) :|S0, (23)
g(x(k) | [-®U, U, | gx(k)
xk-dk)y T[T PU, -¥U,7T xk-dk))
h(x(k=d(k) | |-P,U, U, | h(x(k-d(k))

<0,
(24)
where
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Ul = diag{ell’glza”"eln}’
q)l :diag{a;a1+’a;a;"",a;a:},

o +af 0:'+oz+ o +a’
—dlag{ 1 1 2 2,.”’ n n}’

2 2
U2 = dl&g{@z],ﬁzz,-“,%n},
lP1 = diag{ﬂl_ﬂl+’ﬂ2_ﬂ;""sﬂ_ﬂ+}

\Pzzdiag{ﬁl—;ﬂ] ’ﬁ2;ﬂ2 ,o ﬂ +ﬂn}

Combine (16)-(20), (23) and (24), we get
AV (k) < (o =1V (K) — ox" (K)Px(K) + & (K)[Y,PY]
+Y,PD(z4,1 =D"PD)"'D'PY] + 1Y, Y] ]
x&E(K) + X (KT, x(K) + X" (K)T,x(k)
+(d, —d, + X" (K)Qx(k) — X" (k —d (k))
xQx(k —d(k)) —o®x" (k —d,)Tx(k —d,)
—ox" (k—d)T,x(k —d,) = x" (k)®,U,x(k)
+2x" (K)®,U,g(x(k)) - g" (x(k)U,g(x(k))
X" (k —d(k)¥ U, x(k —d(k))
+2x" (k —d (k) ¥,U,g(x(k —d(k)))
—g" (x(k=d(K))U,g(x(k —d(k)))
— 10" (K)o (k) + 10" (K)o(k)
=(c -1V K)+E(K[E+T,PY] +T,PD (25)
(41 =D"PD)'D'PY] + 14, Y, Y} 1E(K)

+ ;usz (K)ao(k),
where
(Z, 0 0 oU, 0 0]
* =0 0 Yu, 0
* * H, 0 0 0 0
E=[* % x B, 0 0o 0|
* * * * _U1 0 0
* * * * * -U, 0
| * * * * * * 577_

E,=—0cP+T,+T,+(,-d, +DQ—-DdU
) =—0'd1Q—‘P1U2, Sy =—o"T

2

1 [
¥

—i 1.

From Lemma 1, we deduce that the inequality
E+Y,PYT +Y,PD(z41 —D'PD)"'D"PYT + 14, Y,Y]
<0
is satisfied if (10) is feasible.

Hence, we get

AV (K) < (o =1V (K) + ,0" (K)ax(K).
From (26), it follows that

— dZ — .
Ey=-0"T, E;=

(26)
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V(k+1) -0V (K) < 0" (K)axK). 27)
By iteration, and take (2) into account, inequality
(27) implies

V (k)< o'V (O)+y2§0k o (Do)

<oV (0)+ ,uQO'N_lki:a)T (H(i)

(28)
i=0
<oV (0)+ " "y, k<N.
Denote
1 L
P= RZPRZ, Q=R2QR2, T = RZTRQ
1
T,=R2T,R 2.

Using condition (12), we can get

V(0) = x" (0)Px(0) + Zl o X" (1)x(N)

i=—d(0)

+i o X (T x(0) + Za T T, (i)

i=—d,
—d, 1

+_ Z Za ST ()Qx()
<2 (P)X (O)RX(0)

max

+o%7)

N(e) Z X" (RX(i)

i=—d(0)

vot . ()Y X (HRKG)

i=—d,

+o047)

(1) S X7 (DR()

0" 2,(Q Y S X ORXD)

2 2
S|:ﬂ«2 +(d20_d2—l +O_d2—2 d2 _dl +d1 _d2)

(29)

2
x4, +d,0"" 2, +d o A]c,
From (28) and (29), we obtain
VK) <o+ oy, (30)
where

= [ﬂ*z + (dzadz_l

+d,0%7"4, +d,c"" s]c.
According to (13), we get

V (k) = x" (K)Px(k) > 2 X" (K)RX(K).
Note that (12) is equivalent to

Ld2-d>+d, —d
2

)4

€1))
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,uZO'N’l;(—CZ/?1 +CIO'Nﬂz +C1(7N [dzadf1 +o%7?

4 -d’+d -,
2

}Zg +co’d,o% 4,

+c,p"d p" A <0,
that is
o y—c, A +c"5<0. (32)
Consequently, it can be obtained from (30) - (32)

X" (K)Rx(K) < %[a“é# o' e’ |

| (33)
<—AC, =C,.

which indicates that system (1) 1is robustly
finite-time bounded with respect to (c,,C,, ¥,R,N).

This completes the proof.
Consider the following discrete-time neural
networks

X(k +1)==(A+ AAK)X(K) + (C + AC(k)) (k)
+(Ay +AA (K)x(k —d)
+(G+AG((k)g(x(k))
+(H + AH(k))h(x(k —d)),

X(0)=¢(0), el ={-d,—d +1,---,0},
where d is a positive integer.
The following corollary can be obtained.

Corollary 1. Suppose that Assumption 1 holds.
Given positive constants y,N,c <c,,oc>1, a

(34)

symmetric positive-definite matrix R, system (34)
is finite-time bounded with respect to
(c.C,, x,R,N), if there exist symmetric positive

definite  matrices P,Q, diagonal matrices
U, >0,U, >0, positive scalars z4,1,,4,,4,,4,,
such that the following LMIs hold:
]\:{A“ /}12}0, (35)
* A22
AR<P< AR, Q< AR, (36)
wo"x—c, 4 o, cotdo'A
* o2, 0 <0,
* * —codo’ A,
(37)
where
0, 0 oU, 0
il -c'Q-¥YU, 0 YU,
11 « * _U1 0 >
* * * _U2
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0,=-cP+Q-0U,,

0 -A'P -A'TPD —yN/

i 2|0 AP A'PD  uN;
10 G'P G'PD pyN] |
0 H'P HTPD yN;

-l C'P C'PD  yN!
- * -P 0 0
A22= T

* * D'PD—gl 0

* * * -1

Proof. Choose the following Lyapunov-Krasovskii
functional candidate

V (k) =x" (K)Px(k) + kﬁ X (HX().

We have o
AV(K)=(c -1V K)+V(k+1)—oV (k)

=(o -V (K)+ & T, (KPY] (K)E(K)
+ X" (K)Qx(k) — o’ X" (k —d)Qx(k —d)
—ox' (k)Px(k)

<(e =DV (K)+E ([, PY]
+Y,PD(z1 -D'PD)'D'PY]

+ 0,0 1EK) + X (K)Qx(K)
—o'X" (K)Qx(k) — ox" (k)Px(k),

(3%)

where

Y/ =[-A A/ G H C],

Y] =[-N, N, N, N, N],

Ek)= [XT (k) x"(k—=d) g"(x(k)) h" (x(k —d(k)))
o ()] .

Combine (38), (23) and (24), we get

AV (k) < (o =V (K)+ET(K)[Y,PY]
+Y,PD(y1 —D"PD)'D"PY]
+ 40,0518 () + X (K)Qx(k)
—o*x" (K)Qx(K) — ox" (K)Px(k)
- XT (k)q)lulx(k) + 2XT (k)q)zulg(x(k))
-g" (x(k)U,g(x(k) - x" (k —d (k))'¥,
xU,x(k —d(k))+2x" (k —d(k))¥,U,
x g(x(k =d(k)) - g" (x(k —d(k))U,
x g(x(k —d(K))) = 0" (K)ax(k)
+ ,0" (K)o(k)
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=(c-IWV&K)+E"(K[E+Y,PY] +Y,PD
(41 =D'PD)'DTPY] + 1 T, Y7 1€(K)
+ /uZa)T (k)w(k)’

(39)
where
[0, 0 oU, 0 0 |
* —0'Q-¥YU, 0 YU, 0
E=| % * U, 0 0 |
* * * _U2 0
* * * * -1,

0,=—cP+Q-dU,.

From Lemma 1, we get that
Z+Y,PY] +Y,PD(x41 —D'"PD)'D"PY] + 1, Y, Y}
<0

is satisfied if (35) is feasible.
Hence, we get

AV (K) < (o =1V (K) + 0" (K)ax(K). (40)
According to the proof of the Theorem 1, we have

V(K) <"V (0) + ,u2k§:0'k’i"laf (Do(i)

i=0

<o"V(0) +yza“*1§af (D (i)

(41)
<o"V(0)+ oy, k <N.
Using condition (36), we can get
V (0) = x" (0)Px(0) + i o X" (HQX()
i=—d
< A (P)X (O)EX(O) (42)
+0" 2 (Q) 2 X" (DRX(D)
i=—d
<4 +do’'4)c,.
So we have
VK <o (L, +do® e + oy, (43)
From (35). it follows that
V (K) > X" (K)Px(K) > 4,x" (K)Rx(K). (44)
From (37), we have
o oot (L +dot A <c A (49)
It can be obtained from (43) - (45)
1 1
X" (K)Rx(k) < —V (k)< —AcC, =C,,  (46)
4 4 4

which implies that the system (34) is robustly
finite-time bounded with respect to (c,,C,, ¥,R,N).
This completes the proof.

When  AAK)=0,  AA,(K)=0,AG(K)=0,
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AH(K)=0,AC(k) =0, the system (1) reduced to
the following neural networks
x(k +1) = —Ax(k) + A, x(k — d(k)) + Cax(k)
+Gg(x(k)) + Hh(x(k —d(k))),
X(@)=¢(0), Oel ={-d,,—d, +1,---,0}.
According to the similar ideas in the proof of

Theorem 1, we can obtain the following corollary.
Corollary 2. Suppose that Assumption 1 holds.
Given positive constants y,N,c <C,, o>l a

(47)

symmetric positive-definite matrix R, system (47)
is  finite-time bounded with respect to
(c.c,, x,R,N), if there exist symmetric positive

P,Q,T,,T,, diagonal matrices
U, >0,U, >0, positive scalars u,4 (i=1,2,---,5),
such that the following LMIs hold:

1_\ — /_\11 /__\12 <0
* A22 ,

AR<P<AR Q<AR T <AR T, <AR,

definite matrices

(48)

(49)

_,UO'N_IZ_Cz)ﬂ vd, LA, LA, U/Is_
* -0,4, 0 0 0
* * —Uy A 0 0
* * * -4, 0
* * * * _Usls
<0,
(50)
where
[0, 0 0 0
_ * —c"Q-YU, 0 0
An = % % d, 5
-o'T, 0
* * * _o-dZTl
0 =—0P+T +T,+(d,—-d, +DQ-DU,,
‘U, 0 0 -AP
- 0 YU, 0 A'P
AlZ = ’
0 0 0 0
| 0 0 0 0
U, 0 o G'P
n * U, 0 HTP
A, = T >
* * —ul C'P
* * * -P
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When w(k)=0, the system (1) reduced to the
following discrete-time neural networks

X(k+1) ==(A+ AAK)X(K) + (G + AG(k))g(x(k))

+ (A +AA (K))x(k —d(k))
+(H + AH (k))h(x(k —d(k))),
X(0)=¢(0), 0el ={-d,,—d, +1,---,0}.
(51)

From Remark 2, we know that when w(k)=0,
the definition of finite-time boundedness can
become finite-time stability. According to the
similar ideas in the proof of Theorem 1, we can get
the following corollary.
Corollary 3. Suppose that Assumption 1 holds.
Given positive constants N,o>1,c <cC,, a
symmetric positive-definite matrix R, system (51)
is finite-time stable with respect to(c,,c,,R,N) , if
there exist symmetric positive-definite matrices
P,Q,T,,T,, diagonal matrices U,>0,U, >0,
positive scalars g, A (i=1,2,---,5), such that the
following LMIs hold:

A Ay A,
A= 2o, (52)
¥ 3
AR<P<AR, Q< AR, T <A4R, T, < AR, (53)
_02}‘1 Uzﬂ'z 1)32,3 0414 05/15
£ -4, 0 0 0
* x oA 0 0 |<0, (54)
* * * -4, 0
* * * * _0515
where
©, 0 0 0 oU,
* I 0 0 0
A =|* * —o"T, 0 0 |
* % * —o'dZT1 0
* * * * —U1

0, =-0cP+T +T,+(d,—d, +1)Q-DU,,
M=-0c"Q-YU,,

0 -AP —ATPD —uN/]
YU, AP ATPD  uN]
A,=| 0 0 0 0 |
0 0 0 0
| 0 G'P G'PD uN]
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-U, H'P H'PD  uN;
~ * -P 0 0
Ay, = T ’
* * D' PD—ul 0
* * * —ul

-1 1

, vy=codc",
dz2 _d12+d1 _dz
—2 .

v,=co", v, =cod,c®
v, =co" {dzad21 +o%7?
4. Numerical example

In this section, we present one example to
demonstrate the effectiveness of our results.

Example 1. Consider the system (1) with the
following parameters

04 0 ~0.12 0.1
A= , Ad: ,
{o 0.5} {0.15 OJ
02 0.1 oo 0.01 0.01
02 025 ~ 1001 001/
0.01 0.01 1 0
H= , R= ,
0.01 0.01 0 1

10 001 0
Fk)= , D= ,
0 1 0 0.0l
01 0 0.1 04
le Py N2= )
0 03 02 0.1
0.1 03 02 03
N3= 5N4: ,
03 02 02 03
0.1 0.1 e " sin(k
N, = O R
0.1 0.1 e " cos(k)
tanh(0.08x, (k))
tanh(0.06X, (k)) )’

tanh(0.08x, (k —d (k)))
tanh(0.08x, (k —d(k))) )’

g(x(k)) =(

h(x(k—d(k))) =[

dik)y=2+ sin(%), x =1,

c=1.00Lc =1c,=7,N=10.
By using Matlab LMI control Toolbox to solve
LMIs (10)-(12), we have

_[0.0884 0.0013 _[0.0098 0.0004
~10.0013 0.0703 |’ - 10.0004 0.0066 |

~0.0008 [62862 0
Ul 00 628620

=

0.0027
—0.0008  0.0008
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> 1-0.0009  0.0009 0 0.1043
A, =0.0687, 4, =0.1039, 4, =0.0114, 2, = 0.0086,

A5 =0.0159, 14,=2.5568 x107°, 12,=0.1936.

According to Theorem 1, the system (1) is robustly
finite-time bounded with respect to (1,7,1,1,10). The

state trajectory of system (1) is shown in Fig.1

_{0.0031 —0.0009} _{0.1043 0 }
s 2 = B

State responses
1 T T

08r

06}

04

0.2

s

024
r

04k

06F

N8k

-1

. . . . . . . .
0 5 10 15 20 25 30 35 40 45
Time

Fig 1. The state trajectory of system (1)

5 Conclusion

The paper has investigated the robust finite-time
boundedness for discrete-time neural networks with
time-varying delays. Through constructing a
Lyapunov-Krasovskii functional, based on the linear
matrix inequality technique, robust finite-time
boundedness criteria for the discrete-time neural
networks with time-varying delays have been
established. Furthermore, robust finite-time stability
criterion for the discrete-time neural networks with
time-varying delays has been given. At the end of the
article, an example has been given to verify the
validity of the stability criterion. The finite time H

control for the discrete-time stochastic neural
networks with mixed time delays is a very
meaningful topic that deserves further exploration.
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