Robust finite-time boundedness of discrete-time neural networks with time-varying delays

MENGYING DING, YALI DONG*
School of Mathematical Sciences
Tiangong University
Tianjin 300387
CHINA

Abstract: This paper is concerned with the problem of robust finite-time boundedness for the discrete-time neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we proposed the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical example is present to illustrate the efficiency of proposed methods.

Key-Words: - Finite-time boundedness; Lyapunov-Krasovskii functional; discrete-time systems; neural networks; time-varying delays

1 Introduction in the performance of the system over a finite time

In recent years, neural networks have been widely used in associative memory, pattern recognition, model identification, signal processing, static image processing, optimization control problems and other aspects [1-4]. Many applications of neural networks rely on dynamic behavior. Therefore the stability of neural networks has incurred extensive attention from scholars. In [5], the stability criteria for neural networks were given. Assimakis et al. [6] investigated the robust exponential stability for uncertain recurrent neural networks.

With the rapid development of technology, computer technology is introduced into the field of engineering research. In fact, when the computer processes the input and output control signals, the resulting signals are discrete-time. Therefore, discrete-time systems have attracted extensive attention of researchers [7-10]. On the other hand, in the field of practical application, the time-delay phenomenon commonly exists in the neural network system, which will not only reduce the transmission speed of the network but also lead to the instability or vibration of the network. Therefore, it is of great theoretical and practical significance to study the stability and control performance of neural network systems with delay [9-12]. In [9], Yu et al. studied the exponential stability for discrete-time recurrent neural networks with time-varying delay. In [11], Liu et al. considered the mean square exponential stability for discrete-time stochastic fuzzy neural network.

In many real systems, we are sometimes interested interval. For automobile suspension control system, the performance of short time interval is more popular. Compared with the Lyapunov asymptotic stability, the research of finite-time stability considers the behavior of the dynamic system within a finite time interval. The finite time stability theory can be applied to the design of wheeled robots and the attitude tracking and attitude cooperative control technology of spacecraft. In [13], Dorato proposed the definition of short-time stability. In recent years, finite time stability and stabilization have attracted much attention [14-19]. In [14], the finite-time stability analysis of neutral-type neural networks with random time varying delays was given. In [16], via a new argument Lyapunov-Krasovskii functional, the finite-time stability of neural networks with time-varying delays was studied. In [19], Ren et al. considered the finite-time stabilization for uncertain positive Markovian jumping neural networks. In [20], Amato et al. extended the concept of finite time stability introducing the definition of finite-time boundedness for the state of a system. In [21], by using reciprocally convex approach, Tuan investigated the finite-time boundedness for discrete-time delay neural networks. In [22], the criterion of finite-time boundedness for the nonlinear switched neutral system was presented.

To the best of our knowledge, the problem of finite time boundedness of discrete time neural networks is seldom studied. In this paper, we consider the robust finite-time boundedness problem for a class of uncertain discrete-time neural networks. We
construct an appropriate Lyapunov-Krasovskii functional. According to the linear matrix inequality technique, the criteria of robust finite-time boundedness for discrete-time neural networks with time-varying delay are proposed. In addition, the sufficient condition for robust finite-time boundedness of the discrete-time neural networks with constant delay is given. Finally, a numerical example is provided to verify the validity of the stability criterion.

Notations: Throughout this note, \mathbb{R}^n denotes the n-dimensional Euclidean space. $P > 0 (\geq 0)$ denotes that P is a symmetric positive-definite (semi-positive-definite) matrix. The symmetric term in a symmetric matrix is denoted by \ast. We use $\lambda_{\min}(\cdot)$ and $\lambda_{\max}(\cdot)$ to denote the minimum and maximum eigenvalue of the real symmetric matrix.

2. Problem Formulation

Consider the following discrete-time neural networks with time-varying delay

$$x(k+1) = (A + \Delta A(k))x(k) + (C + \Delta C(k))\omega(k) + (G + \Delta G(k))g(x(k)) + (H + \Delta H(k))h(x(k-d(k))),$$

(1)

where $x(k) = [x_1(k), x_2(k), \ldots, x_n(k)]^T \in \mathbb{R}^n$ is the neural state vector; the diagonal matrix $A = \text{diag}\{\vartheta_1, \vartheta_2, \ldots, \vartheta_n\}$ has positive entries $\vartheta_i > 0$. A_j, G, H, C are real and known constant matrices. The $\phi(\cdot)$ denotes a vector-valued initial function, $\omega(k) \in \mathbb{R}^q$ is disturbance satisfying the following condition

$$\sum_{k=0}^{\infty} \omega^T(k)\omega(k) \leq \chi.$$

(2)

The delay $d(k)$ is a positive integer which is time-varying and satisfies

$$1 \leq d_1 \leq d(k) \leq d_2,$$

(3)

where d_1 and d_2 are the known positive integers. The parametric uncertainties $\Delta A(k), \Delta A_0(k), \Delta G(k), \Delta H(k), \Delta C(k)$ are assumed to be norm-bounded of the form:

$$[\Delta A(k) \Delta A_0(k) \Delta G(k) \Delta H(k) \Delta C(k)] = DF(k)[N_1, N_2, N_3, N_4, N_5],$$

(4)

where $D, N_1, N_2, N_3, N_4, N_5$ are real known constant matrices of appropriate dimensions, and $F(k)$ is an unknown time-varying matrix satisfying

$$F^T(k)F(k) \leq \chi.$$

(5)

The functions $g(x(k)) = [g_1(x_1(k)), \ldots, g_n(x_n(k))]^T$, $h(x(k-d(k))) = [h_1(x_1(k-d(k))), h_2(x_2(k-d(k))), \ldots, h_n(x_n(k-d(k)))]^T$ denote the neuron activation functions.

Assumption 1. For $j \in \{1, 2, \ldots, n\}$, the neuron activation functions $g_j(x(k)), h_j(x(k-d(k)))$ in (1) are continuous and bounded with $g_j(0) = h_j(0) = 0$, and satisfy

$$\alpha_j \leq g_j(x_1) - g_j(x_2) \leq \alpha_j, \forall x_1, x_2 \in \mathbb{R}, x_1 \neq x_2,$$

(6)

$$\beta_j \leq h_j(x_1) - h_j(x_2) \leq \beta_j, \forall x_1, x_2 \in \mathbb{R}, x_1 \neq x_2,$$

where α_j, β_j are constants.

Remark 1. The constants $\alpha_j^+ , \alpha_j^- , \beta_j^+ , \beta_j^-$ can be positive, negative, or zero. Hence, the activation functions are more general than the commonly used Lipschitz conditions.

Definition 1. [23] Given four positive constants c_1, c_2, χ, N with $c_1 < c_2$ and $N \in \mathbb{Z}^+$, a symmetric positive-definite matrix R, system (1) is said to be finite-time bounded with respect to (c_1, c_2, χ, R, N), if

$$\sup_{0 \leq k \leq N} x^T(\theta)Rx(\theta) \leq c_1 \Rightarrow x^T(k)Rx(k) < c_2, \forall k \in \{1, 2, \ldots, N\}.$$

(7)

Remark 2. When $\omega(k) = 0$, the definition of finite-time boundedness can become finite-time stability with respect to (c_1, c_2, R, N).

Lemma 1. [9] Given constant matrices X, Y, Z with appropriate dimensions satisfying $X = X^T$, $Y = Y^T$, $Z = Z^T$, $X + Z^TY^{-1}Z < 0$,

$$X + Z^TY^{-1}Z < 0 \iff \begin{bmatrix} X & Z^T \\ X^T & -Y \end{bmatrix} < 0.$$

(8)

Lemma 2. [24] Let A, D, E be real matrices of appropriate dimensions, matrix $F(t)$ satisfies $F^T(t)F(t) \leq I$. Then for any matrix $P > 0$ and scalar $\varrho > 0$ such that $\varrho I - EPE^T > 0$, we have

$$A + DF(t)E(P + DF(t)E)^T \leq APA^T + APE^T(\varrho I - EPE^T)^{-1}EPA^T + \varrho DD^T.$$

(9)
3. Main Results

This section provides some criteria for the finite-time boundedness of system (1).

Theorem 1. Suppose that Assumption 1 holds. Given positive constants $\lambda, N, c_1 < c_2, \sigma > 1$, a symmetric positive-definite matrix R, system (1) is robustly finite-time bounded with respect to $(c_1, c_2, \sigma; R, N)$, if there exist symmetric positive-definite matrices P, Q, T_1, T_2, diagonal matrices $U_1 > 0, U_2 > 0$, and positive scalars μ, μ_1, λ_i ($i = 1, 2, \ldots, 5$), such that the following LMIs hold:

$$\Lambda = \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ * & \Lambda_{22} \end{bmatrix} < 0,$$

$$\Lambda_{11} R < P < \lambda R, \quad Q < \lambda R, \quad T_1 < \lambda R, \quad T_2 < \lambda R, \quad R,$$

where

$$\Theta_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ * & -\sigma^d Q - \Psi U_2 & 0 & 0 & 0 \\ * & * & -\sigma^d T_2 & 0 & 0 \\ * & * & * & -\sigma^d T_2 & 0 \\ * & * & * & * & -U_1 \end{bmatrix} < 0,$$

$$\Theta_2 = -\sigma P + T_1 + T_2 + (d_1 - d_1 - 1)Q - \Phi U_1,$$

$$\Lambda_{12} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Proof. Choose the following Lyapunov-Krasovskii functional candidate

$$V(k) = V_1(k) + V_2(k) + V_3(k) + V_4(k) + V_5(k),$$

where

$$V_1(k) = x^T(k) P x(k),$$

$$V_2(k) = \sum_{i=k-d}^{k-1} \sigma^{k-i} x^T(i) Q x(i),$$

$$V_3(k) = \sum_{i=k-d}^{k-1} \sigma^{k-i} x^T(i) T x(i),$$

$$V_4(k) = \sum_{i=k-d}^{k-1} \sigma^{k-i} x^T(i) T x(i),$$

$$V_5(k) = \sum_{i=k-d}^{k-1} \sigma^{k-i} x^T(i) Q x(i).$$

Let us define the forward difference of $V(k)$ as

$$\Delta V(k) = V(k+1) - V(k).$$

We have

$$\Delta V_1(k) = V_1(k+1) - V_1(k) = (\sigma - 1)V_1(k),$$

$$\Delta V_2(k) = V_2(k) - V_2(k-1) = (\sigma - 1) \sum_{i=k-d}^{k-1} \sigma^{i-k} x^T(i) T x(i) + \xi^T(k) \xi(k),$$

where

$$\xi(k) = [x^T(k) x^T(k-d(k)) x^T(k-d_1) x^T(k-d_2)]^T.$$
\[\Delta V_2(k) = V_2(k+1) - V_2(k) = (\sigma - 1) V_2(k) + \sum_{i=k+1-d_2}^{k-1} \sigma^{k-i} x^T(i)Qx(i) \]
\[- \sum_{i=k-d_2}^{k-1} \sigma^{k-i} x^T(i)Qx(i) \]
\[= (\sigma - 1) V_2(k) + x^T(k)Tz(k) \]
\[+ \sum_{i=k-d_2+1}^{k-1} \sigma^{k-i} x^T(i)Tz(i), \] (17)

\[\Delta V_4(k) = V_4(k+1) - V_4(k) = (\sigma - 1) V_4(k) + \sum_{i=k-d_2}^{k-1} \sigma^{k-i} Tz_x(k) \]
\[= (\sigma - 1) V_4(k) + \sum_{i=k-d_2+1}^{k-1} \sigma^{k-i} Tz_x(i) \] (19)

\[\Delta V_i(k) = V_i(k+1) - V_i(k) \]
\[= (\sigma - 1) V_i(k) + (\sigma - 1) \sum_{i=k-d_2}^{k-1} \sigma^{k-i} Tz_x(k) \]
\[= (\sigma - 1) V_i(k) + \sum_{i=k-d_2+1}^{k-1} \sigma^{k-i} Tz_x(i) \] (18)

From Assumption 1, for any \(i = 1,2,\ldots,n, \) we have
\[(g_i(x(k)) - \alpha_i x(k)) (g_i(x(k)) - \alpha_i x(k)) \leq 0, \] (21)
which is equivalent to
\[\begin{bmatrix} x(k) \\ g(x(k)) \end{bmatrix} \begin{bmatrix} \alpha_i \alpha_i e_i e_i^T & -\frac{\alpha_i^2 + \alpha_i^2}{2} e_i e_i^T \\ -\frac{\alpha_i^2 + \alpha_i^2}{2} e_i e_i^T & e_i e_i^T \end{bmatrix} \begin{bmatrix} x(k) \\ g(x(k)) \end{bmatrix} \leq 0, \] (22)
where \(e_i \) denotes the units column vector having element 1 on its \(i \)th row and zeros elsewhere. Let \(U_1 > 0, U_2 > 0 \), be any \(n \times n \) diagonal matrices. Then we have
\[\begin{bmatrix} x(k) \\ g(x(k)) \end{bmatrix} \begin{bmatrix} \Phi_1 U_1 & -\Phi_2 U_1 \\ -\Phi_2 U_1 & U_2 \end{bmatrix} \begin{bmatrix} x(k) \\ g(x(k)) \end{bmatrix} \leq 0, \] (23)
\[\begin{bmatrix} x(k-d(k)) \\ h(x(k-d(k)) \end{bmatrix} \begin{bmatrix} \Psi_2 U_2 & -\Psi_2 U_2 \\ -\Psi_2 U_2 & U_2 \end{bmatrix} \begin{bmatrix} x(k-d(k)) \\ h(x(k-d(k)) \end{bmatrix} \leq 0, \] (24)
where
$$U_1 = \text{diag}\{\theta_1, \theta_2, \ldots, \theta_n\},$$

$$\Phi_1 = \text{diag}\{\alpha, \alpha^2, \alpha^3, \ldots, \alpha^m\},$$

$$\Phi_2 = \text{diag}\{\alpha^2 + \alpha^3, \alpha^2 + \alpha^3, \ldots, \alpha^2 + \alpha^3\},$$

$$U_2 = \text{diag}\{\theta_1, \theta_2, \ldots, \theta_n\},$$

$$\Psi_1 = \text{diag}\{\beta, \beta^2, \beta^3, \ldots, \beta^m\},$$

$$\Psi_2 = \text{diag}\{\beta^2 + \beta^3, \beta^2 + \beta^3, \ldots, \beta^2 + \beta^3\}.$$

Combine (16)-(20), (23) and (24), we get

$$\Delta V(k) \leq (\sigma - 1)V(k) - \sigma x^T(k)P(x(k)) + \xi^T(k)[Y_1P\gamma_1 + Y_1PD(\mu I - D^TPD)^{-1}D^TP\gamma_1 + \mu Y_2 \gamma_2^T]$$

$$+ \xi^T(k) + x^T(k)T_2x(k) + x^T(k)T_2x(k)$$

$$+ (d_2 - d_1 + 1)x^T(k)Qx(k) - \sigma d^2 x^T(k - d(k))$$

$$- \sigma d^2 x^T(k - d(k) - 1)x^T(k)\Phi U_2x(k)$$

$$+ 2x^T(k)\Phi U_2g(x(k)) - g^T(x(k))U_2g(x(k))$$

$$- \sigma^2 d^2 x^T(k - d(k))$$

$$+ x^T(k - d(k))\Psi U_2g(x(k - d(k)))$$

$$- g^T(x(k - d(k)))U_2g(x(k - d(k)))$$

$$- \mu_1 \omega^T(k)\theta_1(k) + \mu \omega^T(k)\theta_1(k)$$

$$=(\sigma - 1)V(k) + \xi^T(k)[\Xi + \tilde{Y}_1\gamma_1^T + \tilde{Y}_1PD]$$

$$+ (\mu I - D^TPD)^{-1}D^TP\gamma_1 + \mu \tilde{Y}_2 \gamma_2^T]$$

$$- \sigma^2 d^2 x^T(k - d(k))$$

$$+ x^T(k - d(k))\Psi U_2g(x(k - d(k)))$$

$$- g^T(x(k - d(k)))U_2g(x(k - d(k)))$$

$$+ \mu \omega^T(k)\theta_1(k),$$

where

$$\Xi = \begin{bmatrix} 0 & 0 & 0 & \Phi U_1 & 0 & 0 \\ \ast & 0 & 0 & 0 & \Psi U_2 & 0 \\ \ast & \ast & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast & \ast \end{bmatrix}$$

$$= -\sigma^2 P + \Gamma_1 + \Gamma_2 + (d_2 - d_1 + 1)Q - \Phi U_1,$$

$$\Xi_{44} = -\sigma^2 T_2, \quad \Xi_{77} = -\mu_1 I.$$
that is
\[\mu \sigma^{N-1} x - c_1 \lambda_1 + c_1 \sigma^N \lambda_2 + c_1 \sigma^N d_\alpha d^{d-1} \lambda_3 < 0, \]
which indicates that system (1) is robustly finite-time bounded with respect to \((c_1,c_2,\chi,R,N) \). This completes the proof.

Consider the following discrete-time neural networks
\[x(k+1) = -(A + \Delta A(k))x(k) + (C + \Delta C(k))\omega(k) + (A_\gamma + \Delta A_\gamma(k))x(k-d) + (G + \Delta G(k))g(x(k)) + (H + \Delta H(k))h(x(k-d)), \]
where \(d \) is a positive integer.

The following corollary can be obtained.

Corollary 1. Suppose that Assumption 1 holds. Given positive constants \(\chi, N, c_1 < c_2, \sigma \geq 1 \), a symmetric positive-definite matrix \(R \), system (34) is finite-time bounded with respect to \((c_1,c_2,\chi,R,N) \), if there exist symmetric positive definite matrices \(P,Q \), diagonal matrices \(U_1 > 0, U_2 > 0 \), positive scalars \(\mu_1, \mu_2, \lambda_1, \lambda_2, \lambda_3 \), such that the following LMI s hold:
\[
\bar{\Lambda} = \begin{bmatrix} \bar{\Lambda}_{11} & \bar{\Lambda}_{12} \\ \ast & \bar{\Lambda}_{22} \end{bmatrix} < 0,
\]
\[
\lambda_4 R < P < \lambda_2 R, Q < \lambda_2 R,
\]
\[
\begin{bmatrix}
\mu_2 \sigma^{N-1} x - c_1 \lambda_1 + c_1 \sigma^N \lambda_2 + c_1 \sigma^N d_\alpha d^{d-1} \lambda_3 \\
\ast - c_1 \sigma^N \lambda_2 \\
\ast \ast - c_1 \sigma^N d_\alpha d^{d-1} \lambda_3
\end{bmatrix} < 0,
\]
where
\[
\bar{\Theta}_1 = -\sigma P + Q - \Phi_1 U_1, \\
\bar{\Lambda}_{12} = \begin{bmatrix} 0 & -A^T P & -A^T PD & -\mu_1 N^T \\
0 & A^T \gamma P & A^T \gamma PD & \mu_1 N^T \\
0 & G^T P & G^T PD & \mu_1 N^T \\
0 & H^T P & H^T PD & \mu_1 N^T
\end{bmatrix},
\]
\[
\bar{\Lambda}_{22} = \begin{bmatrix} -\mu_1 I & C^T P & C^T PD & \mu_1 N^T \\
* & -P & 0 & 0 \\
* & * & D^T PD & -\mu_1 I \\
* & * & * & -\mu_1 I
\end{bmatrix}.
\]

Proof. Choose the following Lyapunov-Krasovskii functional candidate
\[V(k) = x^T(k)Px(k) + \sum_{i=-d}^{k-1} \sigma^{k-i-1} x^T(i)Qx(i). \]
We have
\[
\Delta V(k) = (\sigma - 1)V(k) + V(k+1) - \sigma V(k)
= (\sigma - 1)V(k) + \tilde{\xi}^T(k) \tilde{Y}_1(k) P \tilde{Y}_1^T(k) \tilde{\xi}^T(k) + x^T(k)Qx(k) - \sigma^d x^T(k-d)Qx(k-d)
= \sigma x^T(k)Px(k) - \sigma x^T(k)Px(k)
\leq (\sigma - 1)V(k) + \tilde{\xi}^T(k)[\tilde{Y}_1 P \tilde{Y}_1^T]
+ \tilde{\xi}^T(k) x^T(k-d)Qx(k)
- \sigma^d x^T(k)Px(k),
\]
where
\[
\tilde{Y}_1^T = [-A \gamma G \mathcal{H} C],
\tilde{Y}_2^T = [-N_1 N_2 N_3 N_4 N_5],
\tilde{\xi}(k) = [x^T(k) x^T(k-d) g^T(x(k)) h^T(x(k-d))]
\omega^T(k).
\]
Combine (38), (23) and (24), we get
\[
\Delta V(k) \leq (\sigma - 1)V(k) + \tilde{\xi}^T(k)\tilde{Y}_1 P \tilde{Y}_1^T
+ \tilde{\xi}^T(k) x^T(k)Qx(k)
- \sigma^d x^T(k)Px(k)
- x^T(k)\Phi_1 U_1 x(k) + 2x^T(k)\Phi_2 U_2 g(x(k))
- g^T(x(k))U_1 g(x(k)) - x^T(k-d)\Psi_1 \Psi_2 U_2
\times x(k-d) + 2x^T(k-d)\Psi_2 U_2
+ g(x(k-d)) - g^T(x(k-d))U_2
\times g(x(k-d)) - \mu_1 \omega^T(k)\omega(k)
+ \mu_2 \omega^T(k)\omega(k)
\]
\[\Delta H(k) = 0, \Delta C(k) = 0, \text{ the system (1) reduced to the following neural networks} \]
\[x(k + 1) = -Ax(k) + A_2x(k - d(k)) + C_2\omega(k) + Gg(x(k)) + Hh(x(k - d(k))), \tag{47}\]
\[(47)\] is finite-time bounded with respect to \((c_1, c_2, \mathcal{X}, R, N)\), if there exist symmetric positive definite matrices \(P, Q, T_1, T_2\), diagonal matrices \(U_1 > 0, U_2 > 0\), positive scalars \(\mu, \lambda_i (i = 1, 2, \ldots, 5)\), such that the following LMIs hold:
\[\Lambda = \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \ast & \Lambda_{22} \end{array} \right] < 0, \tag{48}\]
\[(48)\]
According to the similar ideas in the proof of Theorem 1, we can obtain the following corollary.

Corollary 2. Suppose that Assumption 1 holds. Given positive constants \(\mathcal{X}, N, c_1 < c_2, \sigma > 1\), a symmetric positive-definite matrix \(R\), system (47) is finite-time bounded with respect to \((c_1, c_2, \mathcal{X}, R, N)\), if there exist symmetric positive definite matrices \(P, Q, T_1, T_2\), diagonal matrices \(U_1 > 0, U_2 > 0\), positive scalars \(\mu, \lambda_i (i = 1, 2, \ldots, 5)\), such that the following LMIs hold:
\[\Lambda = \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \ast & \Lambda_{22} \end{array} \right] < 0, \tag{48}\]
\[(48)\]
According to the similar ideas in the proof of Theorem 1, we can obtain the following corollary.

Corollary 2. Suppose that Assumption 1 holds. Given positive constants \(\mathcal{X}, N, c_1 < c_2, \sigma > 1\), a symmetric positive-definite matrix \(R\), system (47) is finite-time bounded with respect to \((c_1, c_2, \mathcal{X}, R, N)\), if there exist symmetric positive definite matrices \(P, Q, T_1, T_2\), diagonal matrices \(U_1 > 0, U_2 > 0\), positive scalars \(\mu, \lambda_i (i = 1, 2, \ldots, 5)\), such that the following LMIs hold:
\[\Lambda = \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \ast & \Lambda_{22} \end{array} \right] < 0, \tag{48}\]
\[(48)\]
According to the similar ideas in the proof of Theorem 1, we can obtain the following corollary.

Corollary 2. Suppose that Assumption 1 holds. Given positive constants \(\mathcal{X}, N, c_1 < c_2, \sigma > 1\), a symmetric positive-definite matrix \(R\), system (47) is finite-time bounded with respect to \((c_1, c_2, \mathcal{X}, R, N)\), if there exist symmetric positive definite matrices \(P, Q, T_1, T_2\), diagonal matrices \(U_1 > 0, U_2 > 0\), positive scalars \(\mu, \lambda_i (i = 1, 2, \ldots, 5)\), such that the following LMIs hold:
\[\Lambda = \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \ast & \Lambda_{22} \end{array} \right] < 0, \tag{48}\]
\[(48)\]
According to the similar ideas in the proof of Theorem 1, we can obtain the following corollary.
When \(\omega(k) = 0 \), the system (1) reduced to the following discrete-time neural networks

\[
\begin{align*}
x(k+1) &= -(A + \Delta A(k))x(k) + (G + \Delta G(k))g(x(k)) \\
&
\quad + (A_g + \Delta A_g(k))(x(k) - d(k)) \\
&
\quad + (H + \Delta H(k))h(x(k) - d(k)), \\
x(\theta) &= \phi(\theta), \quad \theta \in \Gamma = \{-d_1, -d_2, 1, \ldots, 0\}.
\end{align*}
\]

(51)

From Remark 2, we know that when \(\omega(k) = 0 \), the definition of finite-time boundedness can become finite-time stability. According to the similar ideas in the proof of Theorem 1, we can get the following corollary.

Corollary 3. Suppose that Assumption 1 holds. Given positive constants \(N, \sigma > 1, c_1 < c_2 \), a symmetric positive-definite matrix \(R \), system (51) is finite-time stable with respect to \((c_1, c_2, R, N) \), if there exist symmetric positive-definite matrices \(P, Q, T_1, T_2 \), diagonal matrices \(U_1 > 0, U_2 > 0 \), positive scalars \(\mu, \lambda, \mu \) \((i=1, 2, \cdots, 5) \), such that the following LMIs hold:

\[
\begin{align*}
\hat{\Lambda} &= \begin{bmatrix} \Lambda_{11} & \hat{\Lambda}_{12} \\ * & \hat{\Lambda}_{22} \end{bmatrix} < 0, \\
\lambda R &< P < \lambda_2 R, Q < \lambda_3 R, T_1 < \lambda_4 R, T_2 < \lambda_5 R,
\end{align*}
\]

(52)

\[
\begin{align*}
-c_2 \lambda_i &< \nu_2 \lambda_i < \nu_3 \lambda_i < \nu_4 \lambda_i < \nu_5 \lambda_i, \\
* &< 0,
\end{align*}
\]

(54)

where

\[
\begin{align*}
\Lambda_{11} &= \\
\Theta_1 &= \begin{bmatrix} \Phi_1 U_1 \\ \Pi \end{bmatrix}, \\
\Pi &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \\
\Theta_{11} &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \\
\Lambda_{12} &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \\
\Lambda_{22} &= \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]

4. **Numerical example**

In this section, we present one example to demonstrate the effectiveness of our results.

Example 1. Consider the system (1) with the following parameters

\[
A = \begin{bmatrix} 0.4 & 0 \\ 0 & 0.5 \end{bmatrix}, \quad A_d = \begin{bmatrix} -0.12 & 0.1 \\ 0.15 & 0.1 \end{bmatrix},
\]

\[
C = \begin{bmatrix} 0.2 & 0.1 \\ 0.2 & 0.25 \end{bmatrix}, \quad G = \begin{bmatrix} 0.01 & 0.01 \\ 0.01 & 0.01 \end{bmatrix},
\]

\[
H = \begin{bmatrix} 0.01 & 0.01 \\ 0.01 & 0.01 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
\]

\[
F(k) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix},
\]

\[
N_1 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.3 \end{bmatrix}, \quad N_2 = \begin{bmatrix} 0.1 & 0.4 \\
0 & 0.2 \end{bmatrix},
\]

\[
N_3 = \begin{bmatrix} 0.1 & 0.3 \\ 0.3 & 0.2 \end{bmatrix}, \quad N_4 = \begin{bmatrix} 0.2 & 0.3 \\ 0.2 & 0.3 \end{bmatrix},
\]

\[
N_5 = \begin{bmatrix} 0.1 & 0.1 \\ 0.1 & 0.1 \end{bmatrix}, \quad \omega(k) = \begin{bmatrix} e^{-0.1k} \sin(k) \\ e^{-0.1k} \cos(k) \end{bmatrix},
\]

\[
g(x(k)) = \begin{bmatrix} \tanh(0.08x_1(k)) \\ \tanh(0.06x_2(k)) \end{bmatrix},
\]

\[
h(x(k) - d(k)) = \begin{bmatrix} \tanh(0.08x_1(k) - d_1(k)) \\ \tanh(0.08x_2(k) - d_2(k)) \end{bmatrix},
\]

\[
d(k) = 2 + \sin\left(\frac{k\pi}{2}\right), \quad \chi = 1,
\]

\[
\sigma = 1.001, c_1 = c_2 = 7, N = 10.
\]

By using Matlab LMI control Toolbox to solve LMIs (10)-(12), we have

\[
P = \begin{bmatrix} 0.0884 & 0.0013 \\ 0.0013 & 0.0703 \end{bmatrix}, \quad Q = \begin{bmatrix} 0.0098 & 0.0004 \\ 0.0004 & 0.0066 \end{bmatrix},
\]

\[
T_1 = \begin{bmatrix} 0.0027 & -0.0008 \\ -0.0008 & 0.0008 \end{bmatrix}, \quad U_1 = \begin{bmatrix} 6.2862 & 0 \\ 0 & 6.2862 \end{bmatrix},
\]
\[
T = \begin{bmatrix}
0.0031 & -0.0009 \\
-0.0009 & 0.0009
\end{bmatrix},
U = \begin{bmatrix}
0.1043 & 0 \\
0 & 0.1043
\end{bmatrix},
\]

\[
\lambda_1 = 0.0687, \lambda_2 = 0.1039, \lambda_3 = 0.0114, \lambda_4 = 0.0086,
\lambda_5 = 0.0159, \mu_1 = 2.5568 \times 10^{-5}, \mu_2 = 0.1936.
\]

According to Theorem 1, the system (1) is robustly finite-time bounded with respect to (1, 7, 1, 10). The state trajectory of system (1) is shown in Fig.1.

5 Conclusion

The paper has investigated the robust finite-time boundedness for discrete-time neural networks with time-varying delays. Through constructing a Lyapunov-Krasovskii functional, based on the linear matrix inequality technique, robust finite-time boundedness criteria for the discrete-time neural networks with time-varying delays have been established. Furthermore, robust finite-time stability criterion for the discrete-time neural networks with time-varying delays has been given. At the end of the article, an example has been given to verify the validity of the stability criterion. The finite time H_∞ control for the discrete-time stochastic neural networks with mixed time delays is a very meaningful topic that deserves further exploration.

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin under Grant No. 18JCYBJC88000.

References:

[12] B. Yang, M. Hao, J. Cao, X. Zhao, Delay-dependent global exponential stability

