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Abstract: - In this work, we present a novel optimizing approach to the problem of human body location in 
video surveillance. The pixels of the object extracted by background subtraction technique are grouped into a 
point set. It can be covered by an optimal ellipsoid with the minimum enclosing volume. The task of 
constructing the minimum volume enclosing ellipsoid (MVEE) is implemented by convex optimization theory. 
We get the parameters of the minimum volume enclosing ellipsoid by solving the problem of the dual 
formation of the MVEE. Compared with the traditional geometrical moment based method and enclosing box, 
our approach gives a better result in terms of computing time and object locating affinity. The computing time 
of the proposed method is only 5.1% and 9.7% of the time used up by the geometrical moment based method 
and the enclosing box, respectively. The object locating affinity is 10.0% and 8.2% higher than that of the two 
compared methods. 
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1 Introduction 
The minimum volume enclosing ellipsoids (MVEE) 
problem has been studied since it was first discussed 
in connection with optimality conditions. The 
problem consists of covering a set of points 

1 2{ , , , } n
mx x x R… ∈ with an ellipsoid of minimum 

volume. It can be found in various formulations, 
each of them presenting different properties [1]. The 
most simple formulation is the center form 
described by a symmetric matrix n nE R ×∈  and a 
center of the ellipsoid, i.e.,  

n
, { ( ) ( ) 1}T

E c x R x c E x cε = ∈ − − ≤  

Its shape is determined by the symmetric matrix E . 
The volume of ,E cε  is given by the formula  

1
/2 1 2( / 2 1)det( )n n Eπ

−−Γ +  
where ( )nΓ  is the gamma function. Minimum 
volume enclosing ellipsoids also play an important 
role in several diverse spheres of application such as 
optimal design [2], human computer interaction [3, 
4], convex optimization [5], anomaly detection [6, 
7], pattern recognition [8, 9] and statistics [10, 11]. 

In this paper, we are going to locate the extracted 
area of a moving human body in the image plane by 
a minimum volume ellipsoid. It is a key step in 
analysing the behaviour of a monitored person, 
especially in the video surveillance and home 
assistant robot. In order to extract the objects in 

foreground image, a background model is 
established firstly. The moving objects can be 
extracted by the background subtraction technique. 
After detecting the object in the foreground image, 
one way of finding the extracted object is counting 
the number of pixels belonging to the object. It is 
often used to locate the objects in the digital image 
processing community. The result is promising 
when there is a holistic object in the image plane. 
Sometimes, this method only finds the largest 
component of the object, because it can not cope 
with the fragmented object in the image. 
Additionally, it is very sensitive to the noises. 

The alternative method is to employ an ellipsoid 
covering the object. To the best of our knowledge, it 
is the first time when the optimization techniques 
are used to locate a moving object in an image 
sequence. The problem of locating the foreground 
object, represented as a point set, can be solved by 
constructing a minimum area enclosing ellipsoid. 
The region of the object can be located very well in 
the image plane. By this method, we can also get an 
approximate shape of the human body by covering 
the points in the minimum enclosing volume 
ellipsoid. 

The remainder of the paper is organized as 
follows. In Section 2, we briefly describe the 
foreground segmentation implemented with the help 
of a background model. Section 3 gives an elaborate 
explanation of the process of locating an object by 
approximated ellipsoid, and includes the description 
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of optimizing the model of the MVEE, calculating 
the parameters of the covering ellipsoid and moment 
based ellipsoid. In Section 4, we present the 
computational results, evaluate the performance of 
the proposed algorithm in the aspects of computing 
time and object locating affinity. Finally, Section 5 
contains the conclusion. 
 
 
2 Foreground segmentation 
Extracting the moving objects from image 
sequences is the prerequisite of our object locating 
method. Human is one of the most critical object to 
be considered in video surveillance. However, the 
moving human body is an extremely non-rigid 
object with a high degree of variability in size and 
shape. When people walk towards a video camera or 
away from it, both the shape and size of a human 
body change a lot. Sometimes, even the color and 
texture are effected greatly by the shadow or 
ambient light in a living room. A visual extractor 
has to deal with such complex situations. 

To accomplish this goal, we use a background 
subtraction method described in [12], which gives 
appropriate results on image sequences with 
shadows, highlights, and high image compression. 
 
 
2.1 Color distortion model 
For the color distortion model, N  ( 30N =  in this 
paper) static background images are used to 
construct a background image. There is a difference 
between the current point 

( ) { ( ), ( ), ( )}R G BI i I i I i I i=  and the background 
point ( ) { ( ), ( ), ( )}R G BE i E i E i E i= . After 
subtracting the current image from the background, 
we use statistics derived by a distance function to 
measure the difference between the values of pixels 
in a current image and the background image. The 
statistics are also used to determine the thresholds. 
According to these thresholds, the current pixels are 
classified into different object masks. To solve this 
problem, we take a scalar instead of three-color 
components for the brightness. 

The line starting from the origin and passing 
through the point ( )E i  represents the brightness of 
the point in the background. This brightness is 
scaled by a factor ( )iα . If ( )iα  exceeds one, the 
point is brighter, if it is less than one, the point is 
darker. So, ( )iα  is a measure of the brightness 
difference between the current point ( )I i  and the 
reference point ( )E i . The brightness distortion 

( ( ))BD iα  is the value of ( )iα  which brings the 

observed color close to the line ( )OE i


, as follows 
2

2
( ( )) min ( ) ( ) ( )BD i I i i E iα = −α  (1) 

Then we obtain the chrominance distortion ( )CD i  
as the distance of ( )I i  from ( ) ( )i E iα   

2
( ) ( ) ( ) ( )CD i I i i E i= −α  (2) 

 
 

O R

G

B

( )E i

( )I i

( ) ( )i E iα

( )CD i

 
Fig. 1. Colour distortion model 

 
 
This is illustrated in Fig. 1, where the 

chrominance distortion is the length of the line 
normal to line ( )OE i



. The algorithm initially uses 
N  frames to construct the background model and 
to obtain the mean and the standard deviation for 
each pixel. The expected color ( )E i  is the average 
over these N  frames ( ) { ( ), ( ), ( )}R G BE i i i iµ µ µ=  
and the standard deviation ( )s i  is the variance 

( ) { ( ), ( ), ( )}R G Bs i i i iσ σ σ=  of them. 
The value of ( )iα  is that which minimizes

2

{ , , }

( ) ( ) ( )min
( )

C C

C R G B C

I i i i
i∈

  − 
  

   
∑ α µ

σ
 giving 

2
{ , , }

2

{ , , }

( ) ( )
( )

( ( ))
( )
( )

C C

C R G B C

C

C R G B C

I i i
i

BD i
i
i

∈

∈

 
 
 =
 
 
 

∑

∑

µ
σ

α
µ
σ

 (3) 

and  
2

{ , , }

( ) ( ) ( )( )
( )

C C

C R G B C

I i i iCD i
i∈

 −
=  

 
∑ α µ

σ
 (4) 

Different pixels yield different distributions of 
( )iα  and ( )CD i . Having known these 
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characteristics of the distributions, we can deduce 
appropriate classification thresholds.  

The variations of the brightness distortion and 
chrominance distortion are given by 

 

( )

2

1

2

1

( ( ) 1)
( ) RMS( ( ))

( )
( ) RMS( ( ))

N

i

N

i

i
a i i

N

CD i
b i CD i

N

=

=

−
= =

= =

∑

∑

α
α

 (5) 

Then normalize the values of ( ( ))BD iα  and 
( )CD i  in the same range just as ( )a i  and ( )b i  

 

( ( )) 1ˆ ( ( ))
( )

( )ˆ ( )
( )

BD iBD i
a i

CD iCD i
b i

−
=

=

αα
 (6) 

 
 

 
(a) 

 
(b) 

Fig. 2. Brightness and chromaticity distortion of 
background. (a) Normalized brightness distortion. 
(b) Normalized chromaticity distortion. 

 
 
Fig. 2 demonstrates the distributions of 

ˆ ( ( ))BD iα  and ˆ ( )CD i  of the background. It 
reflects the brightness and chromaticity fluctuation 
of background. The distributions of ˆ ( ( ))BD iα  and 
ˆ ( )CD i  of the background can be used to determine 

the thresholds for pixel classification. 
 

 
2.2 Pixel classification 
By analyzing the characteristics of chrominance and 
brightness, the pixels in the current image can be 
classified into one of the three categories: 
 The background B : if the brightness and 

chrominance are similar to those of the original 
image. 

 The shadow S : if it has similar chrominance 
but the lower brightness. 

 The moving (foreground) object F : if it has 
different chrominance. 

 
 

 

(a)                                (b) 

 

(c)                                (d) 
Fig. 3. Human body extraction. (a) An original 
background image. (b) The current image with a 
human body. (c) The extracted human body in a 
foreground including shadows and holes. (d) The 
final extracted human object after the morphological 
operations. 
 
 

This is achieved by using thresholds for 
ˆ ( ( ))BD iα  and ˆ ( )CD i . Then the pixels in the 

current image are classified into a set of labels as 
ˆ: if ( )

ˆ: if ( ( ))

ˆ: if ( ( )) 0

( )
low high

CD

BD BD

F CD i T

B T BD i T

S i

i

BD

M

<

< α


= <

α <



 (7) 

The background subtraction is illustrated in Fig. 3. 
After the foreground segmentation is done, in 

order to gain a deeper understanding of the human 
motions we should proceed to locate the region of 
the moving object on the image plane. Then, the 
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analysis of the human body shape in that located 
region is performed to detect the changes in its 
orientation and proportion. For that purpose, the 
best choice is to use an ellipsoid for the shape 
approximation. We consider that this representation 
of the human object good enough for distinguishing 
different movements of the monitored person. It is 
also adequate for tracking out a wide range of 
postures and clothing. 
 
 
3 Ellipsoid approximation 
In this section, we present two different methods for 
computing the covering ellipsoid of a point set. The 
first method makes use of minimum volume 
ellipsoids. The ellipsoid is formulated in the center 
form, i.e., the center nc R∈  and the symmetric 
matrix n nE R ×∈ . The center and symmetric matrix 
of the ellipsoid are obtained by minimizing the 
volume of the ellipsoid. The second approach uses 
the first and second moments of the data points to 
calculate the parameters of an ellipsoid that covers 
most of the points. 
 
 
3.1 Minimum volume enclosing ellipsoid 
Practically, a foreground object is usually separated 
into several small blocks, since it moves rapidly on 
the similar background along with the human body. 
We gather all the extracted pixels together into a 
point set, and identifying of the human body in the 
image plane can be carried out by optimizing the 
minimum area enclosing ellipsoid of these points. 

Suppose a set of m  point in n  dimensional space 

1 2{ , , , } n
mS x x x R= ∈ . Let us denote the 

minimum volume enclosing ellipsoid of the set S   
MVEE( )S . In order to guarantee that any ellipsoid 
containing S  has positive volume, we assume that 
the affine hull of 1 2, , , mx x x  spans nR . 

 
Definition 1 An ellipsoid in the center form is 
given by 
 , { | ( ) ( ) 1}n T

E c x R x c E x c= ∈ − − ≤  

where nc R∈  is the center of the ellipsoid ,E c  and 

E S++∈ . S++  is the convex cone of n n×  
symmetric positive matrixes. 
 

Since we hope all the points ix  to be inside ,E c , 
they should satisfy the following constraint 
 ( ) ( ) 1 1,2, ,T

i ix c E x c i m− − ≤ = …  (8) 

The volume of ,E c  is given by 

  
1
2

,Vol( ) det( )
det( )E c E

E
−

= =
η η  (9) 

where η  is the volume of the unit ball in nR  and 
can be computed by a gamma function ( )nΓ  [13]. 
Thus, the problem of determining the ellipsoid of 
the least volume containing the points of S  is 
equivalent to finding a vector nc R∈  and a n n×  
positive definite symmetric matrix E  that 
minimizes 1det( )E−  under the constraint equation 
(8). 

A mathematical formulation of the problem is 
given as follows 

 

1
,

( )

mi

( ) 1

n det( )

s. t .
1, 2, ,m

0

T
i i

E c

x c E x

E

E

c
i

−

− ≤
=
−




 (10) 

 where   means a positive definite matrix 
restriction. It is not a convex optimization problem. 
By making an appropriate change of variable, we 
can reformulate the problem as 
 , 2

{ | 1}n
E c x R Ax b= ∈ − ≤  

where 
1
2A E=  and 

1
2b E c= . Thus, the minimum 

volume enclosing ellipsoid problem (10) becomes 

2

min log det( )

s. t .

1, 2, ,m

1

0

i

A,b

Ax
i
A

b

A

−

−

=

≤





  (11) 

The norm constraints 
2

1iAx b− ≤  are just convex 

quadratic inequalities in the variables A  and b . It 
can be expressed as linear matrix inequalities 

 0
( )

i
T

i

I Ax b
Ax b

− 
 − 1

  

Therefore, problem (11) is a convex problem in 
variables A  and b . However, it is difficult to solve 
this problem directly. It proves that the dual 
problem is easier than the primal problem. We 
modify the primal problem (10) and proceed to 
solve it in this way. 
 
 
3.1.1 Dual formulation and solution 
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Definition 2 A set of m  point in n  dimensional 
space 1 2{ , , , } n

mS x x x R= ∈ . The lifting set of S  

is formulated as 1
1{ , , }  n

mS q q R +′ = ± … ± ∈ , where 

[ ,1]T T
i iq x= , 1, ,i m= … . 

 
By this definition each point ix  is lifted to the 

hyperplane 1
1 1{( , ) | 1}n

n nH x x R x+
+ += ∈ = . Since 

S ′  is centrally symmetric, MVEE( )S ′  is centered 
at the origin of the hyperplane. From the result of 
[15], the minimum volume enclosing ellipsoid of the 
original problem is recovered as the intersection of 
H  with the minimum volume enclosing ellipsoid 
that contains the lifted points iq  of  the set S ′  
 MVEE( ) MVEE( )S S H′= ∩  
The lifted primal problem is as follows 

min log det( )

s. t .
1, 2, ,

0

1
m

T
i i

M

q
M

Mq
i
M

−

=
≤




  (12) 

where ( 1)nM S +
++∈  is the decision variable. 

Let P  denote the n m×  matrix whose columns 
are the vectors ip , i.e., [ , , ]i mP p p= … , then the 
matrix Q  whose columns are the vectors iq  is 
given by 

 ( 1)
1[ , , ]  n m

m T

P
Q q q R + × 
= … = ∈ 

 1
 

The Lagrangian dual problem is given by 
max log det ( )

s. t . 1
0

T

V
n

λ λ

λ = +
λ
1


  (13) 

where ( ) diag( ) TV Q Q=λ λ  and mR∈λ  is the 
decision variable. The change of variable 

( 1)n u= +λ  results in the following dual problem 
max log det ( )

s. t .
0

1T
u V u

u
u

=1


  (14) 

where ( ) TV u QUQ=  and diag( ) m mU u R ×= ∈ . 
Problem (14) is a concave optimization problem, so 
we can apply an ascent method [16] to find the 
optimal *u . 
 
 

3.1.2 Computing the parameters of the covering 
ellipsoid 
Considering the primal problem (12) with the lifted 
points iq  of the set S ′ , the Lagrangian function is 
given by 

 
1

( , ) log det ( 1)
m

T
i i i

i
L M M q Mq

=

= − + −∑λ λ  

Under the Karush-Kuhn-Tucker (KKT) 
conditions for optimality, we have 

 1 1

1

m
T T

i i i
i

L M q q M Q Q
M

− −

=

∂
= − + = − + Λ

∂ ∑λ  

where diag( )Λ = λ  and 1[ , , ]mQ q q= … . It implies 
that when a positive definite matrix 

* ( 1) ( 1)n nM R + × +∈  is optimal for the primal problem 
(12) with the Lagrangian multipliers * mR∈λ , then 
we have 
 * * * 1 *( ) ( ) ( 1) ( )TV Q Q M n V u−= Λ = = +λ  
Since [ ,1]T Tq x= , the equation of the ellipsoid is 
given by 

 

*

* 1

MVEE( ) { | 1}
1{ | ( ) ( ) 1}

1

T

T

S x R q M q

x R q V u q
n

−

= ∈ ≤

= ∈ ≤
+

 

Therefore, we can find the equation of the 
ellipsoid under the solution of dual the problem (13). 
Note that we have 

 ( )
( )

T
T

T T

PUP Pu
V u QUQ

Pu u
 

= =  
 1

 

which can be factorized as 

 
1 00

( )
0 1 ( ) 10 1 T

I Pu IE
V u

Pu

−    
=     
    

 

where 1 ( )T TE PUP Pu Pu− = − . The inverse 
1( )V u −  is given by 

 1 0 0
( ) .

( ) 1 0 1 0 1T

I E I Pu
V u

Pu
− −     
=      −     

 

Thus, we get 1( ) ( ) ( )T Tq V u q x Pu E x Pu− = − − . 
As for the dual optimal solution *u , we have 

 

* * *

* * * * 1

* *

MVEE( ) { | ( ) ( ) 1}
1 ( ( ) )T

n T

T

S x R x - c E x - c

E PU P Pu Pu
n

c Pu

−

= ∈ ≤

= −

=

(15) 
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3.2 Moment based ellipsoid 
 
Definition 3 For a continuous image ( , )f x y , the 
moments are give by 

 ( , )p q
pqm x y f x y dxdy

+∞ +∞

−∞ −∞
= ∫ ∫  

for  , 0,1,p q = … 
 

The center of the ellipsoid ( , )x y  is obtained by 
computing the coordinates of the center of mass 
with the first and zero order spatial moments 

 10 00

01 00

/
/

x m m
y m m
=
=

 (16) 

 
Definition 4 For a continuous image ( , )f x y , and 
its centroid ( , )x y , the central moments  are 
computed as follows 

 ( ) ( ) ( ) ( )p q
pq x x y y d x x d y y

+∞ +∞

−∞ −∞
= − − − −∫ ∫µ  

for  , 0,1,p q = … 
 

The angle θ  between the major axis a  and the 
horizontal axis x  gives the orientation of the 
ellipsoid. It can be computed with the central 
moments of the second order 

 11

20 02

21 arctan( )
2

=
−
µθ

µ µ
 (17) 

To recover the major semi-axis a  and the minor 
semi-axis b  of the ellipsoid, we have to compute 

minI  and maxI , the least and greatest moments of 
inertia, respectively. They can be computed by 
evaluating the eigenvalues of the covariance matrix 
[14] 

 20 11

11 02

J
 

=  
 

µ µ
µ µ

 (18) 

The eigenvalues minI  and maxI  are given by 
2 2

20 02 20 02 11

2 2
20 02 20 02 11

( ) 4
2

( ) 4
2

min

max

I

I

+ − − +
=

+ + − +
=

µ µ µ µ µ

µ µ µ µ µ
 (19) 

Then the major semi-axis a  and the minor semi-
axis b  of the best fitting ellipsoid are given by 

 

1/83
1/4

1/83
1/4

( )4( )

( )4( )

max

min

min

max

Ia
I

Ib
I

 
=  

 

 
=  

 

π

π

 (20) 

 
 
4 Computational experiments 
In this section, we show the performance of the 
proposed algorithm. The experiments have been 
carried out on a desktop with Intel (R) Core (TM) 
i3-2120 CUP and 2.00 GB RAM. We tested it 
intensively on a public fall detection dataset [17]. 
The video sequence was recorded with static 
cameras at a frame rate of fifteen frames per second. 
It is mainly used to test our algorithm in the first 
step of locating a falling person during a fall 
incident. A fall is inherently a motion that lasts for a 
short period. During this period, there is a variety of 
postures. For the fall event analysis to be carried out 
effectively every posture should be located 
accurately on the foreground image. 

Concerning the point set for the body shape 
approximation, the background subtraction 
algorithm is applied to extract the human body from 
each frame. The region of interest, i.e., the moving 
human body, is covered by the approximated 
ellipsoid. In order to demonstrate our algorithm, we 
give a sequence of a falling human with different 
typical postures during the fall incident. This 
procedure contains four different phases of a fall 
event, which are the pre-fall phase, critical phase, 
post-fall phase and recovery phase [18]. The first 
phase corresponding to daily life motions (like 
walking and so on) is illustrated by the first frame in 
Fig. 4(a), where it is represented by a stand posture 
at the beginning of the fall incident. The second 
critical phase corresponding to the actual fall is 
extremely short. It is shown in the second frame of 
Fig. 4(a), where it is represented by more 
complicated bent posture with a hole in the middle 
of the human body. This phase can be detected by 
the movement of the body toward the ground or by 
the ground impact. The post-fall phase during which 
a person is generally lying motionless on the ground 
is illustrated by the frames three and four of Fig. 
4(a), where it is represented by a lying posture. It 
can be detected by a lying position or by an absence 
of motion. The last phase, i.e., recovery phase of the 
fall incident, when the person is eventually able to 
stand up alone or with the help of another person, is 
shown in the last two frames of the Fig. 4 (a). It is 
represented here by a limp posture when a fallen 
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person tries to stand up after a fall event. Note that 
in Fig.4(c) (the green ellipsoid), our method locates 
the human postures very well in all cases. In order 
to evaluate our algorithm, we choose some images 
from the fall event to compare with the geometrical 
moments method [19] and enclosing box [20] in 

terms of computing time and object locating 
affinity(the ratio between the object area in the 
ellipsoid and the whole area of the ellipsoid).   

 
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. A sequence of a fall incident. (a) Original typical frames of the chosen fall sequence. (b) Extracted 
typical postures of the chosen fall sequence. (c) The results given by different object locating algorithms. 
 
 

From the comparative results in Table 1, it can be 
seen that the computing time of our algorithm is 
merely 1.00 milliseconds, which is only 5.1% and 
9.7% of the time given by the geometrical moment 
based method and the enclosing box, respectively. 
The object locating affinity in Table 2 is 10.0% and 
8.2% higher than that of the two compared 
approaches. 

The application of the compared geometrical 
moments method in Fig. 4(c) (the red ellipsoid) 
requires the computing of the first and second order 
spatial moments and central spatial moments of the 
foreground image. The spatial moments are used to 
calculate the parameters of the locating ellipsoid, 
i.e., the region of interest. This is a time-consuming 
step. The enclosing box in Fig. 4(c) (the white 
rectangle) searches the foreground image and finds 
the minimum enclosing rectangle. It has to traverse 
all the points in the foreground image to find the 
coordinates of the rectangle. The time of locating 
the object in the rectangle is less than that of the 
geometrical moments. But the region covered by the 
minimum enclosing box is larger than that of the 
minimum ellipsoid. In the pre-fall phase, most of the 
postures are standing. The enclosing box can fit the 
body shape just like the minimum ellipsoid. 
Meanwhile, the bending posture always occurs in 

the second phase of the fall incident. When the 
person tilts backward or forward, the enclosing box 
is not suitable for fitting the shape of the human 
body. 

The principle of our approach is quite different 
from the compared two methods. After detecting the 
points in the foreground image, we just solve the 
symmetric matrix E  and the center c  as described 
in the previous section. The area of the minimum 
ellipsoid is affected not only by the number and the 
location of foreground points detected in the image 
plane but also by the calculation error. In practice, 
not all of the points are covered by the ellipsoid. 
Because of the round-off error, there are few points 
out of the minimum ellipsoid in the boundary. But 
this will not result in too many errors. The 
geometrical moment based ellipsoid encloses most 
of the points, but far from all. According to this 
method, the area is determined by the least and the 
greatest moments of inertia which are greatly 
affected by distribution of the scattered points. Its 
area is slightly larger than that of the corresponding 
minimum ellipsoid. The affinity is about 8.2% less 
than that of our method. Thus, our method is more 
effective and accurate than the traditional methods 
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in locating the moving human body during the fall 
detection. 

 

 
Table 1. Locating affinity comparison results of the three methods 

Images Geometrical moment (%) Enclosing box (%) Our method (%) 

Images1 44.94 43.80 46.75 

Images2 41.07 50.36 57.44 

Images3 54.6  48.75 61.29 

Images4 63.99  74.55  84.05 

Images5 29.89  36.94  41.82 

Images6 46.95  37.84 49.79 

Average 46.91  48.71  56.86 
 

Table 2. Time comparison results of the three methods 

Images Geometrical moment (ms) Enclosing box (ms) Our method (ms) 

Images1 19.68  10.09  1.16 

Images2 19.59  10.15  0.93 

Images3 19.83  10.77 0.66 

Images4 19.71 9.69  0.49 

Images5 19.56  10.11  1.24 

Images6 19.92  10.47 1.51 

Average 19.72  10.35  1.00 
 
 

 
5 Conclusion 
In this paper, we proposed a novel optimizing 
approach to the problem of locating the moving 
human object in the foreground image. The moving 
human body was firstly extracted by the background 
subtraction technique. All the pixels of the object 
were aggregated into a point set which was covered 
by a minimum volume ellipsoid. The minimum 
volume ellipsoid was formulated as a convex 
optimization problem with inequality constraint. It 
is not easy to solve this primal problem directly. We 
modified this primal problem and then solved its 

dual formation to obtain the parameters of the 
minimum volume ellipsoid. The computational 
results show that the minimum volume ellipsoid 
represents a satisfactory solution to the problem of 
locating the moving human body. The 
computational efficiency of our method is more than 
ten times higher than that of the compared enclosing 
box and geometrical moment based ellipsoid 
methods. 
 
 
Acknowledgements: The research was 
supported by the Tianjin University in the case of 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Kaibo Fan, Ping Wang

E-ISSN: 2224-3402 25 Volume 15, 2018



the first author; it was also supported by the 
Department of Science and Technology in Hebei 
Province (grant No. 12213519D1). The authors 
would like to thank Dr. Fabian Nater for providing 
the video sequence. 
 
 
References: 
[1] S. Boyd, and L. Vandenberghe, Convex 

optimization, Cambridge University Press, 
Cambridge, 2004. 

[2] S. Silvey, Optimal design: an introduction to 
the theory for parameter estimation, Springer, 
New York, 2013. 

[3] J. Music, M. Cecic, and M. Bonkovic, Testing 
inertial sensor performance as hands-free 
human-computer interface, WSEAS T. 
Computers. 8(4), 2009, pp. 715–724. 

[4] J. Music, M. Cecic, and V. Zanchi, Real-time 
body orientation estimation based on two-layer 
stochastic filter architecture, Automatika. 51(3), 
2010, pp. 264–274. 

[5] P. Kumar, and E. A. Yildirim, Computing 
minimum-volume enclosing axis-aligned 
ellipsoids, J. Optimiz. Theory App. 136(2), 
2008, pp. 211–228. 

[6] G. Grosklos, and J. Theiler, Ellipsoids for 
anomaly detection in remote sensing imagery, 
Conference on Algorithms and Technologies 
for Multispectral, Hyperspectral, and 
Ultraspectral Imagery XXI. 2015, pp. 351–370. 

[7] H. Lee, D. Moon, I. Kim, H. Jung, and D. Park, 
Anomaly intrusion detection based on hyper 
ellipsoid in the kernel feature space, KSII T. 
Internet Inf. 9(3), 2015, pp. 1173–1192. 

[8] S. Ha, Probabilistic space-time analysis of 
human mobility patterns, WSEAS T. 
Computers. 21(15), 2016, pp. 222–238. 

[9] L. Källberg, and T. Larsson, Improved pruning 
of large data sets for the minimum enclosing 
ball problem, Graph. Models. 76(6), 2014, pp. 
609–619. 

[10] D. Martinez-Rego, E. Castillo, O. Fontenla-
Romero, and A. Alonso-Betanzos, A minimum 
volume covering approach with a set of 
ellipsoids, IEEE T. Pattern Anal. 35(12), 2013, 
pp. 3997–3009. 

[11] S. D. Ahipasaoglu, Fast algorithms for the 
minimum volume estimator, J. Global Optim. 
62(2), 2015, pp. 351–370. 

[12] T. Horprasert, D. Harwood, and L. S. Davis, A 
statistical approach for real-time robust 
background subtraction and shadow detection, 
IEEE International Conference On Computer 
Vision. 1999, pp. 1–19. 

[13] M. Grötschel, L. Lovász, and A. Schrijver, 
Geometric algorithms and combinatorial 
optimization, Springer, New York, 2012. 

[14] M. Yu, A. Rhuma, S. Naqvi, L. Wang, and J. 
Chambers, A posture recognition-based fall 
detection system for monitoring an elderly 
person in a smart home environment, IEEE T. 
Inf. Technol. B. 16(6), 2012, pp. 1274–1286. 

[15] Y. Nesterov, and A. Nemirovskii, Interior-
point polynomial algorithms in convex 
programming, SIAM, 1994. 

[16] J. Grandon, and I. Derpich, A Heuristic for the 
multi-knapsack problem, WSEAS T. 
Math.10(3), 2011, pp. 95–104. 

[17] F. Nater, T. Tommasi, H. Grabner, G. Van, and 
B. Caputo, Transferring activities: updating 
human behaviour analysis, IEEE International 
Conference on Computer Vision Workshops. 
2011, pp. 1737–1744. 

[18] B. Mirmahboub, S. Samavi, N. Karimi, and S. 
Shirani, Automatic monocular system for 
human fall detection based on variations in 
silhouette area, IEEE T. Bio. Med. Eng. 60(2), 
2013, pp. 427–436. 

[19] M.Yu, A. Rhuma, S. M. Naqvi, L. Wang, and 
J. Chambers, A posture recognition-based fall 
detection system for monitoring an elderly 
person in a smart home environment, IEEE T. 
Inf. Technol. B. 16(6), 2012, pp. 1274–1286. 

[20] J. L. Chua, Y. C. Chang, and W. K. Lim, A 
simple vision-based fall detection technique for 
indoor video surveillance, Signal Image Video 
P. 9(3), 2015, pp. 623–633. 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Kaibo Fan, Ping Wang

E-ISSN: 2224-3402 26 Volume 15, 2018




