WSEAS Transactions on Heat and Mass Transfer

Print ISSN: 1790-5044
E-ISSN: 2224-3461

Volume 13, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Mesoscopic Single and Multi-Mode Rheological Models for Polymeric Melts Viscometric Flows Description

AUTHORS: Grigory Pyshnograi, Darina Merzlikina, Petr Filip, Radek Pivokonsky

Download as PDF

ABSTRACT: The Vinogradov and Pokrovskii rheological model was extended for a description of rheological behaviour of branched polymer melts. Since stationary elongational viscosity is a nonmonotonic function of the elongational rate, it required a generalization of the law of internal friction for beads of macromolecule. To achieve high prediction accuracy was proposed multi-mode approximation. The contribution of each independent mode to a stress tensor corresponds to the individual polymer fractions differing in relaxation time and viscosity. The theoretical predictions of the generalized model provide a good agreement with the measured steady and transient rheological characteristics of two samples branched low density polyethylenes.

KEYWORDS: Constitutive equations, Mesoscopic approach, Polymer dynamics, Polymer melts, Viscometric flows, Viscoelasticity


[1] J.G. Oldroyd, On the formulation of rheological equations of state, Proc R Soc. A 200 (1950) 523-541

[2] Leonov A.I., Prokunin A.N., Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, New York.(1994).

[3] Rouse P.E., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21 (1953) 1271-1280

[4] Kargin V.A., Slonimskii G.A., On the deformation of amorphous liquid linear polymers. Doklady Russian Academy of Sciences. 62, (1948), vol. No. 2, 239-242 (in Russian)

[5] Doi M, Edwards SF. The theory of polymer dynamics. Clarendon, Oxford (1986)

[6] Gennes De, Scaling concepts in polymer physics, Cornell University Press, Ithaca (1979)

[7] Bird RB, Curtiss CF, Armstrong RC, Hassager O. Dynamics of polymeric fluids. Wiley, New York. 2 (1987)

[8] Ottinger H.C. A thermodinamically admissible reptation model for fast of flows entangle polymer. J. Rheol. 43 (1999) p. 1461-1493.

[9] Likhtman A, McLeish T. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules. 35 (2002) p. 6332-6343

[10] BishkoG., McLeish T.C.B.,Harlen O.G., Larson R.G., Theoretical molecular rheology of branched polymers in simple and complex flows: The Pom-Pom Model. Phys. Rev. Letters. 79 (1997), 2352-2355.

[11] McLeish T.C.B., Larson R.G. Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J. Rheol. 42 (1998) v. p. 81-110

[12] Verbeeten W.M.H., Peters G.W.M. Differential constitutive equations for polymer melt: the eXtended Pom-Pom model. J. Rheol. 45 (2001) p. 821-841

[13] Pokrovskii V.N., Dynamics of weakly-coupled linear macromolecules. Physics-Uspekhi (Adv. Phys. Sci.). 35 (1992) No. 5, 384-399.

[14] Pokrovskii V.N., The mesoscopic theory of polymer dynamics, 2nd Ed., Springer, DordrechtHeidelberg-London-New York. (2010)

[15] Pokrovskii V.N., Pyshnograi G.V., Simple forms of determining equation of concentrated polymer solutions and melts as a consequence of molecular viscoelasticity theory. Fluid Dynamics. 26 (1991) 58-64.

[16] Pokrovskii V.N., Volkov V.S., The calculation of relaxation time and dynamical modulus of linear polymers on one-molecular approximation with self-consistency (A new approach to the theory of viscoelasticity of linear polymers). Polymer Science USSR 20 (1978), 3029-3037

[17] Remmelgas J., Harrison G., Leal L.G. A differential constitutive equation for entangled polymer solutions. J. Non-Newton. Fluid. 80 (1999) N. 2-3. p. 115-134.

[18] Wagner M., Kheirandish S., Hassager O. Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. Journal of Rheology. 49 (2005) p.1317-1327

[19] Wagner M., Roln-Garrido V. The interchain pressure effect in shear rheology. Rheologica Acta. 49 (2005) p.459-471

[20] Zatloukal M. Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flow. J. Non-Newtonian Fluid Mech. 209 (2003) p. 11-27.

[21] Graessley W.W., The entanglement concept in polymer rheology. Adv. Polym. Sci. 16 (1974), 1-179.

[22] W.W. Graessley, Entangled linear, branched and network polymersystemsmolecular theories, Adv. Polym. Sci. 47 (1982) 67-117.

[23] Pyshnograi G.V., Pokrovskii V.N., Yanovskii Yu.G., Karnet Yu.N., Obrazcov I.F. , Equation of state for nonlinear viscoelastic (polymer) continua in zero-approximations by molecular theory parameters and sequentals for shearing and elongational flows. Doklady Russian Academy of Sciences 335 (1994) No. 9, pp. 612-615 (in Russian).

[24] Pyshnograi G.V., Gusev A.S., Pokrovskii V.N., Constitutive equations for weakly entangled linear polymers. J. Non-Newt. Fluid Mech. 163 (2009), 17-28.

[25] Golovicheva I.E., Zinovich S.A., Pyshnograi G.V., Effect of the molecular mass on the shear and longitudinal viscosity of linear polymers, J. Appl. Mech. Techn. Phys. 41 (2000), No. 2, 347- 352.

[26] Gusev A.S., Makarova M.A., Pyshnograi G.V., Mesoscopic equation of state of polymer systems and description on the dynamic characteristics based on it. J. Eng. Phys. Thermophys. 78 (2005), No.5, 892-898.

[27] Joda H.N.A. Al , Afonin G.L., Merzlikina D.A., Filip P., Pivokonsky R., Pyshnograi,G.V. Modification of the internal friction law in mesoscopic theory flowable polymer media. J. Comp. Mech. Design (Mekh. Komp. Mater. Konstr.).19 (2013), No. 1, 128-140 (in Russian).

[28] Merzlikina D.A. , Filip P., Pivokonsky R., Pyshnograi G.V. , Multimode rheological model and findings for simple shear and elongation. J. Comp. Mech. Design (Mekh. Komp. Mater. Konstr.) 19 (2013), No. 2, 254-261 (in Russian)

[29] Pivokonsky R., Zatloukal M., Filip P., On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J. Non-Newt. Fluid Mech. 135 (2006), 58-67.

[30] V.H. Roln-Garrido, R. Pivokonsky, P. Filip, M. Zatloukal, M.H. Wagner, Modelling elongational and shear rheology of two LDPE melts. Rheol. Acta 48 (2009) 691-697.

[31] Koshelev K.B., Pyshnograi G.V., Tolstych M.Y., Simulation of three-dimensional flow of the polymer melt in a converging channel with a rectangular cross section, Fluid Dynamics (2015) issue 3

[32] N.V. Bambaeva and A.M. Blokhin, The thyporboliscity of a nonstationary system governing flows of polymeric media, Journal of Mathematical Science. 188 (2013) 333-343

[33] Pivokonsky R., Filip P., Predictive/fitting capabilities of differential constitutive models for polymer melts-reduction of nonlinear parameters in the eXtended Pom-Pom model// Colloid and Polymer Science 292 (2014) 2753-2763

[34] Pivokonsky R., Filip P., Zelenkova J., The role of the GordonSchowalter derivative term in the constitutive modelsimproved flexibility of the modified XPP model// Colloid Polymer Science 293 (2015) 1227-1236

WSEAS Transactions on Heat and Mass Transfer, ISSN / E-ISSN: 1790-5044 / 2224-3461, Volume 13, 2018, Art. #5, pp. 49-65

Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board


The editorial board is accepting papers.

WSEAS Main Site