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Abstract: - The present study focuses on the development of a numerical framework for predicting the onset of 

vortex sheading due to flow past a square cylinder. For this a discrete linear stability analysis framework for 

two-dimensional laminar flows have used. Initially the frame work is validating by using the analysis of 

thermal stability of flows in the discrete numerical sense. The two-dimensional base flow for various values of 

the controlling parameter (Reynolds number for flow past a square cylinder and Rayleigh number for double-

glazing problem) is computed numerically by using the lattice Boltzmann method. The governing equations, 

discretized using the finite-difference method in two-dimensions and are subsequently written in the form of 

perturbed equations with two-dimensional disturbances. These equations are linearized around the base flow 

and form a set of partial differential equations that govern the evolution of the perturbations. The eigenvalues, 

stability of the base flow and the points of bifurcations are determined using normal mode analysis. The 

eigenvalue spectrum predicts that the critical Reynolds number is 52 for the flow past a square cylinder. The 

results are consistent with the previous numerical and experimental observations. 
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1 Introduction 
The role of hydrodynamic stability in fluid 

mechanics that focuses on the evolution of small 

disturbances with time is of prime importance in 

understanding many natural phenomena, as well as 

in the analysis and design of many engineering 

systems. For example, it is pursued in civil aviation 

to design lifting surfaces with drag reduced by 

passive means. In these circumstances, keeping the 

flow stable over a wing to possibly as large an 

extent is the desired goal. The other application of 

stability is in the selection of kinematics governs the 

motion of self-propelled flapping wings with 

relevance to micro-air vehicles (MAVs) [1]. The 

fundamental ideas of linear stability analysis have 

been described in the classical works of 

Chandrasekhar [2] and Drazen [3]. The primary 

approach of most studies carried out on stability 

analysis to analytically calculate the critical value of 

flow governing parameter responsible for the 

hydrodynamic instability of simple fluid flow 

problems. Jackson [4] and Zebib [5] developed 

analytical tools to investigate a broad variety of non-

parallel flow problems. The analytical model of 

stability analysis presented by Zebib [5] was 

modified and extended by Kim and Pearstein [6]. 

Fortin et.al. [7] used numerical approach with the 

linear and non-linear hydrodynamic instability of 

two-dimensional Poiseuille flows by reducing the 

problem to one-dimension using the Orr-

Sommerfeld equation.  

Clever and Busse [8] analytically examined the 

stability of two-dimensional Rayleigh-Benard 

convection and had shown that this steady flow 

undergoes a cross-roll instability at a low Rayleigh 

number (Ra = 1708). The mechanism of the thermal 

convection instability of transition states was 

studied experimentally and theoretically by Busse 

[9]. Winters [10] presented an attractive three-

variable model capturing many aspects of a two-

dimensional square air-filled cavity. Their numerical 

model suggested that the onset of the oscillatory 

convection occurs at a Hopf bifurcation in the 

steady-state equations for free convection in the 

Boussinesq approximation. Xin & Le Quéré [11] 

investigated the stability of two-dimensional natural 

convection flows in a differentially heated square 

cavity with conducting horizontal walls for a large 

range of Prandtl numbers with respect to both two- 

and three-dimensional perturbations.  
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It is clear that the analytical treatment of 

hydrodynamic instability is worth pursuing only for 

simple one-dimensional flow problems. A similar 

treatment for determining stability of non-parallel 

laminar fluid flows is inherently challenging and 

sometimes may not be even analytically feasible. In 

contrast, a numerical approach provides a more 

straightforward way to analyze non-parallel fluid 

flow problems, which relatively ease to have the 

transformation of non-linear and higher-order 

differentials using by discretized approximations 

with reasonable accuracy. A numerical method can 

also handle problems with a large number of 

variables and dimensions, which is difficult and 

time-consuming for the analytical methods. Over 

the past four decades, the solution of complex 

hydrodynamic and thermal instability problems has 

also been made possible by improved numerical 

techniques and continuously increasing 

computational capacity. 

In practice, there are two alternatives to study the 

stability of steady flows. The first method consists 

of conducting a direct numerical simulation by 

solving the Navier-Stokes equations, thereafter 

starting near the steady state solution and verifying 

whether the corresponding time-dependent solution 

retracts to the steady state solution [12, 13]. This 

type of computation is relatively expensive due to 

computational cost and time. The second approach 

employs the small perturbation method, wherein the 

flow variables are perturbed about the base state and 

the resulting partial differential equations are 

linearized. Subsequently, the linearized equations 

are used to formulate an eigenvalue problem whose 

solution dictates the stability of the base state.  

Numerical assessment of stability is especially 

challenging for open boundary flows due to large 

domain requirements and necessitating the solution 

of an eigenvalue problem with high degrees of 

freedom. Although iterative methods exist, solution 

to such large eigenvalue problems is not trivial. 

Thus, alternative approaches for detection of 

bifurcation even for the simplest of flows need to be 

developed. In this work, we demonstrate a discrete, 

numerical form of linear stability analysis 

framework for prediction of onset of instability in 

two-dimensional laminar flows by using perturbed 

Navier-Stokes’ equations in the vicinity of base 

flows which will be shown to be applicable for both 

open and confined domain flows. The degrees of 

freedom in the eigenvalue problem are reduced by 

developing the treatment in vorticity-stream 

function formulation. First we have validated this 

framework with a thermally driven flows by Winter 

[10] by developing the eigenvalue equations in the 

discrete sense and then demonstrate the applicability 

of the proposed method by calculating the critical 

parameters responsible for the onset of primary 

instability in a laminar flow past a square cylinder. 

A numerical solution of the resulting eigenvalue 

problem is also presented and shown to be in good 

agreement with published results. 

 

 

2 Methodology 
In this section, the formulation of the problem and 

the equations that govern the evolution of the 

disturbance are described. The numerical methods 

which are used to compute the base flow and 

formulation of eigenvalue problem for the 

determination of critical state are outlined here. 

 

2.1 Base flow computations 
The lattice Boltzmann Bhatnagar-Gross-Krook 

(BGK) two-dimensional nine velocities (D2Q9) 

model [14, 15] is used as the direct numerical solver 

for computing the base flow. The lattice Boltzmann 

method (LBM) is a simulation technique in which 

the discretized Boltzmann’s equation is solved for 

the particle velocity distribution function   if x ,t  

on a regular, uniform Cartesian grid is given as,  
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 Here f  is dimensionless relaxation time, if  is 

velocity distribution function, 
eq

if   is the 

equilibrium velocity distribution function (which 

depends on macroscopic properties such as density 

and velocity) and 
i  accounts for any external 

forces acting on the fluid is given as,      
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The discretization of equation (2) in space and time 

leads to the lattice Boltzmann equation (LBE) which 

is given as, 
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The kinematic viscosity in the Navier-Stokes 

equation (derived from the above LBE) is 

21

2
f sc t  

 
  
 

 
   (4) 

where cs is the speed of sound and is related to 

lattice speed as, 
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The equilibrium distribution functions are given as, 

2

2 4 2

3 9 3
1 ( . ) ( . ) ( . )

2 2

eq

i i i if w
c c c


 

    
 

e u e u u u  
(6) 

where 
iw is a weighing factor, 

ie  is the discrete 

velocity vector, and 𝑐 is the unit lattice speed given 

by c x t  . This model is commonly known as the 

D2Q9 model as it is two-dimensional and involves 

nine velocity vectors. Figure 1 shows the lattice 

nodes of the D2Q9 model with nine velocities ei 

defined by 
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The pressure, density and velocity are computed 

from if  as, 
2 ;s i i i

i i

p c f f    u e  (9) 

For computing temperature-driven flows, the 

temperature distribution at different time instants are 

found by using the temperature lattice Boltzmann 

equation (TLBE). The TLBE is the set of 

temperature distribution function { 

( ) 0,1,ig x,t | ........,m  } from which the leading-

order solution of the macroscopic temperature is 

obtained [16-20]. 

The evolution of the TLBE is written as,   
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where g is dimensionless relaxation time, ig  is 

energy distribution function, eq
ig  is the equilibrium 

energy distribution function (which depends on 

macroscopic properties such as temperature and 

velocity u ) and is is a viscous heat dissipation term. 

The equilibrium distribution in equation (10) is 

written as 

2

3
1 ( . )eq

i i ig wT
c

 
  

 
e u  
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The temperature is computed from ig  as, 

1

2
o i

i

D R g T  
 (12) 

The thermal diffusivity in the energy equation 

(derived from the above LBE) is given as, 

22 1
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The equations (3, 10) are conventionally solved in 

by two steps: (a) collision,  
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 and (b) streaming,  

 , ( , )ii i tf t t f t  x e x  (16) 

 , ( , )i ii tt tg t g   x e x  (17) 

 

2.2 Formulation of the eigenvalue problem 
The procedure for formulation of the discrete 

eigenvalue problem is described in this section. For 

illustration purposes, the equations governing flow 

past a square cylinder will be considered. For this 

situation, the non-dimensional form of the 

governing equations that describe the flow of an 

incompressible Newtonian fluid are,                      

0.u =  (18) 

21
. p

t Re


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

u
u u u  

(19) 

where  u,vu   is the velocity vector and p is 

pressure.  In two-dimensions, the continuity and 

momentum equations (18) and (19) are transformed 

Figure 1. Illustration of lattice node of 

the D2Q9 model. 
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to vorticity    transport and stream function     

form, given as 
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(22) 

To determine the flow stability, the flow is 

decomposed into a steady  ,  , usually called 

the base state or base flow, and an unsteady or 

perturbed part  ', '   using  

     
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where x and y are the space coordinate vectors and   

 is a small number. Substituting into equations 

(21) and (22), subtracting the equations for the base 

flow and dropping higher-order terms the following 

linearized perturbation equation can be obtained for 

the perturbed vorticity and stream function, 

2

' ' ' ' '

t y x y x x y x y

1
'

Re

        



        
   

        

 

 

(24) 

2      (25) 

In this work, we represent the perturbed vorticity 

and stream function in terms of normal modes: 

   ˆ ˆ, , ,t tx y e x y e         (26) 

Here    is the complex growth rate. If    is real, 

the disturbances either grow or decay 

monotonically, with the critical Reynolds number to 

be that at which     . If   is complex, then the 

neutral condition is when the real part of     , and 

the onset of instability is oscillatory with a 

dimensionless frequency of the imaginary part of . 
Substituting (26) into (24) and (25), an eigenvalue 

problem with the growth rate being the eigenvalue 

can be formulated as 
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For a structured and uniformly spaced grid as shown 

in Figure 2, the discretized form of equations (27) 

and (28) with second-order accuracy can be written 

as  
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(30) 

Equations (29) and (30) can be written in a 

condensed matrix form as 

1 0

0 0

11 12

21 22
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Figure 2. Typical grid spacing diagram and 

the nomenclature for the distances used. 
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where coefficients a11, a12, a21, a22 are functions of 

the flow governing parameter associated with the 

base flow. The coefficients to these linear equations 

are determined by computing the base flow whose 

stability is to be established. The eigenvalue 

problem represented by equation (31) yields a 

generalized matrix eigenvalue problem of the form,  

σMJx x  (32) 

where x   is an eigenvector that contains the 

unknown values of vorticity ̂  and stream function 

̂ . It can be seen from the differential equations 

that the mass matrix M   is singular, symmetrical 

and real, while the Jacobian matrix J is 

asymmetrical and real. This system of equations is 

solved by inverting the eigenvalue problem to a 

form that does away with the singularity of the mass 

matrix M . Thus, the system is written as 

-1 1
M


J x x  

(33) 

B x x  (34) 

where -1B= MJ   and 1 /                        

The size of the Jacobian and mass matrix depends 

on the number of perturbed parts  ,   . For 

implementing and forming the discretized problem 

into eigenvalue problem of the type given by (34), 

the vector storage of perturbed space of solution is 

required. A variable is introduced that stores the 

global count of all grid points that are spanned in the 

discretized domain. The global counts are assigned 

sequentially, starting from one side of the boundary 

and traversing every point. This count variable maps 

the compass notation of the grid to vector storage 

location. In this way, the Jacobian matrix with 

defined locations for the constituting elements in the 

matrix is obtained by the pre-defined global count of 

the respective grid point. The method of assigning 

the Jacobian matrix for grid points shown in Fig. 2 

is given in Table 1.  

 

Table 1. Global count representation of all the 

points on the grid with appropriate neighbors. 

 

To formulate the eigenvalue problem given by (34), 

the partial differential equations are discretized on a 

uniform grid using the finite-difference method. 

Central differences are used for all the interior 

nodes, while forward or backward difference of 

second-order accuracy are used at the boundaries. 

2.3 Method of solution of the eigenvalue 

problem 

The critical eigenvalue is the leading value that 

crosses the imaginary axis as the control parameter 

increases. The instability of system (34) occurs 

when the real component of the critical eigenvalue 

crosses the imaginary axis from the right to the left 

half of the complex plane.  Therefore, only the 

eigenvalues with the smallest real part are probed in 

this work.  

When only one or few eigenvalues and eigenvectors 

are desired, the commonly used technique is the 

simultaneous iterative method. This method finds 

the eigenvalues with the smallest norm and the 

associated eigenvectors.  

The simultaneous iterative method was developed 

by Bauer [21] and discussed in detail by Wilkinson 

[22]. The method described by Stewart and Jennings 

[23] captures the desired number of eigenvalues 

(say, m) with the smallest magnitude.  

 

3 Framework validation 
 

3.1 Double-glazing problem 
The flow in a double-glazing or a two-dimensional 

air-filled rectangular cavity with differentially 

heated sidewalls and conducting horizontal surfaces 

along with Boussinesq approximation is an excellent 

test case for thermal instability since it is 

challenging to obtain accurate solutions for 

increasing Rayleigh numbers. Winters [10] studied 

the stability of this problem by computing the 

eigenvalues of the Jacobian matrix and mass matrix 

of the corresponding steady flow to determine the 

Hopf bifurcation point. Winters [10] concentrated 

on verification of the measurements published by 

Briggs and Jones [24], who had conducted similar 

experiments on the double-glazing problem by 

maintaining the vertical sidewalls at fixed 

temperatures. The results that Briggs and Jones [24] 

have published give the Rayleigh number regimes in 

which the flow is stable and also the critical 

Rayleigh number at which oscillatory behavior in 

the flow can be observed. 

A pictorial representation of geometry and boundary 

conditions for double glazing problem is shown in 

Figure 3. For this case study, the non-

dimensionalization of Navier-Stokes and energy 

equations is accomplished by three scales [10]. 

These scales are the temperature scale ST which is 

Grid 

point 

Global 

count 

Storage location 

for 1x'  

Storage location 

for 2x'  

i,j m 2m-1 2m 

i-1,j m1 2m1-1 2m1 

i,j-1 m2 2m2-1 2m2 

i+1,j m3 2m3-1 2m3 

i,j+1 m4 2m4-1 2m4 
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the temperature difference between the hot and cold 

side walls, the length scale SL being the width of the 

cavity, and the velocity scale  LS Ra  where 

Ra is Rayleigh number and   is the thermal 

diffusivity. The non-dimensional form of continuity, 

momentum and energy equation is written as   

0.u =  (35) 
2Pr

0
u u u p u

u v
t x y x Ra

    
    

   
 

(36a) 

2Pr
Pr

v v v p v
u v

t x y y Ra


    
    

   
 

(36b) 

21
.

t Ra


 


   


u  

(37) 

The control parameters, namely the Prandtl number, 

Pr, and the aspect ratio (γ) are set to the values that 

have been used earlier, i.e., Pr = 0.71 and γ=1.0 

[10]. The above equations contain two non-

dimensional groups, the Rayleigh number 
3 /T LRa g S S    and Prandtl number  

Pr   , where g is the acceleration due to 

gravity,   is the coefficient of volumetric 

expansion and   is the kinematic viscosity.

  

The base temperature distribution for such problem 

at a particular Rayleigh number and at different time 

instants is found by using the temperature lattice 

Boltzmann equation (TLBE). The grids for both the 

base flow and eigenvalue problems are the same and 

uniform. 

The procedure for locating the Hopf bifurcation 

points is as follows. Steady solutions are obtained at 

Rayleigh numbers 6 6 61.0×10 1.5×10 and2.0×10, . 

Subsequently, at each of the Rayleigh numbers, the 

complex eigenvalue spectrum of the mass and 

Jacobian matrix is explored. It is found that one 

complex eigenvalue crosses the imaginary axis onto 

a left half plane at Rayleigh number of 62.0×10 .  

This indicates that one Hopf bifurcation from the 

steady solution occurs for Rayleigh number in the 

range 6 61.5×10 and2.0×10 . It is found that at 

6=1.87×10Ra   the leading eigenvalues are on right 

half of imaginary axis and no unstable mode is 

present. At 6=1.88×10Ra   two complex conjugate 

unstable modes start to appear with the eigenvalue 

pair crossing the imaginary axis onto the left half 

plane.  
 

 

 

Figure 4(a) shows part of the eigenvalues spectrum 

at four Rayleigh numbers. Only the eigenvalues of 

the positive imaginary part are plotted. The crossing 

Figure 3. (a) Enclosure geometry and 

boundary conditions and (b) temperature 

boundary condition along the bottom and top 

walls of the square enclosure. 

 

 

 

 

Figure 4. (a) Plots of the complex eigenvalues 

spectrum at four critical values of the Rayleigh 

number. Only eigenvalues with a positive imaginary 

part are shown. Dashed lines join eigenvalues 

computed at the same Rayleigh number (b) 

Comparison of results with Winters [10]. 
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of the eigenvalue pair at Real(σ) = 0 represents a 

Hopf bifurcation and marks the onset of oscillations 

in the flow field of the double-glazing problem. 

In this problem, the start of oscillations is predicted 

at a Rayleigh number of 61.88×10   which is in good 

agreement with the value 62.109×10  predicted by 

Winters [10]. The comparison of results with 

Winters [10] at Rayleigh number of 62.04×10  is 

shown in Figure 4(b). 

The steady-state contours and eigenvectors (real and 

imaginary part) of stream function and isotherms at 

Rayleigh number of 61.87×10   are plotted in Figure 

5.  

 

 

On observing the spatial flow pattern arising near 

the vertical walls the presence of a fixed 

temperature, either high or low, which builds up the 

thermal boundary layer at the vertical walls can be 

easily noticed. It is also apparent that where the 

eigenvectors are much broader, the base temperature 

and momentum boundary layers are narrower. The 

eigenvector plots at Rayleigh number of   have a 

reflectional symmetry about the vertical and 

horizontal axes which pass through the center of the 

cavity. 

 

4 Results and Discussion 
To demonstrate the applicability of the proposed 

discrete linear stability framework, we performed 

numerical simulations for a standard fluid flow 

problem as described below. In this case, LBM is 

used for base flow computation, the finite-difference 

formulation is used for formation of eigenvalue 

problem, and the simultaneous iteration method is 

used for the solution of the eigenvalue problem. 

 

4.1 Uniform flow past a square cylinder 
An analysis of uniform flow past a square cylinder 

is presented to capture the instability leading to 

shedding of vortices from the cylinder surface. The 

controlling parameter in this flow is Reynolds 

number, Re U a   defined in terms of free-

stream velocity U , length of a side of the solid 

cylinder a  and the kinematic viscosity of the fluid  

 . At low Reynolds number  1Re   , no separation 

takes place at bluff body surface because viscous 

forces dominate. Further, on increasing the 

Reynolds number, flow separation starts to appear 

with symmetrical vortex formation. The transition 

of vortex shedding from symmetric to asymmetric 

wake pattern occurs at a critical Reynolds number. 

When this critical Reynolds number is exceeded, the 

well-known Von Karman vortex street is formed 

with vortices shed periodically behind the cylinder.  

The flow around bluff bodies has been studied by 

many groups who primarily focused on circular 

cylinder under free-flow conditions. However, there 

is a wide range of critical Reynolds number that has 

been reported in the literature. These critical values 

have been shown to depend on the blockage ratio, 

defined as the ratio of the cross-stream projection of 

the square (characteristic dimension of the cylinder) 

to the domain width. Kelkar and Patankar [25] 

determined Re = 53 based on numerical linear 

stability analysis of the steady flow at a blockage of 

14.2%, while Davis et al. [26] found the critical 

value of Reynolds number experimentally within the 

range of 47 ± 2 . Sohankar et al. [12] determined the 

critical value of Reynolds number as 51.2 ±1.0   for 

a 5% blockage based on numerical simulations by 

using linearized Stuart-Landau equation and found 

that critical Reynolds number increases with 

increasing blockage.  

In the present study, the focus is on the use of linear 

stability analysis to predict the critical Reynolds 

number for the onset of vortex shedding behind the 

square cylinder that will lead to unsteadiness in the 

flow and to locate the point of bifurcation. This is 

attempted by capturing the base flow at steady state 

and using it to determine its stability for various 

values of Re using the method outlined in section 

2.2. The layout of the computational domain used in 

this work along with the location of the fixed square 

cylinder and imposed boundary conditions is shown 

in Figure 6.  Incompressible flow with constant fluid 

properties is considered. All geometrical lengths are 

Figure 5. (a) Stream function and (b) isotherm 

twenty evenly spaced contours between -0.025 

(blue) and +0.025 (red) for the steady-state solution 

and the real and imaginary parts of the eigenvector 

at critical Rayleigh number of 61.87×10 .   
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scaled with a. The parameter which plays a 

dominant role in finding the critical value of 

Reynolds number is the blockage ratio of the 

domain, defined as B a / H , where H is the 

domain height.  The blockage ratio in this work is 

fixed at 1/ 20B    or 5%.  

The procedure for locating the onset of vortex 

shedding is as follows. Steady solutions were 

obtained at Reynolds number of 45, 50 and 55 on a 

regular grid as fine as 700 × 400Δx Δy . At each of 

the Reynolds numbers, the complex eigenvalue 

spectrum of the mass and sparse Jacobian matrices 

were explored by using simultaneous iteration 

method [23]. Figure 7 shows part of the eigenvalues 

spectrum at three different Reynolds numbers. 
 

 

 

The crossing of the eigenvalue pair at Real(σ) = 0 

represents a Hopf bifurcation and marks the onset of 

periodicity in the square cylinder wake. It was found 

that one complex conjugate eigenvalue pair crosses 

the imaginary axis onto a left half plane when 

Reynolds number reached 55. This behavior 

indicates that one Hopf bifurcation from the steady 

solution occurs for Reynolds numbers between 50 

and 55. 

 

Further, it is observed that all eigenvalues are on 

right half of imaginary axis at a Reynolds number of 

51 and no unstable mode is present, while unstable 

patterns start to appear and one complex conjugate 

eigenvalue pair cross the imaginary axis onto the 

left half plane at Reynolds number of 52. To obtain 

a better understanding of solutions at different 

Reynolds numbers, the lift coefficient is selected as 

the raw signal and its instantaneous value at 

52Re    is plotted in Figure 8. The abscissa is 

normalized with respect to the characteristic 

timescale t a U . The insets show flow patterns 

at different time instants of the simulation. Figure 8 

shows that the instability in the flow resulting in the 

onset of periodic vortex shedding manifests due to 

round-off only after ~ 400t  . A more precise 

determination of the critical Re requires a simulation 

for an even longer time duration which sometimes 

may not be even computationally feasible. On the 

other hand, the linear stability analysis method 

allows the use of a seemingly steady-state base flow 

to be used for determining its stability with excellent 

accuracy. The beginning of oscillations in this 

problem is determined at a Reynolds number of 52 

which is very close to the results obtained by 

Sohankar et al. [12] and Kelkar and Patankar [25]. 

 

 

The eigenvalue analysis also yields complex 

eigenvectors. The spatial form of the eigenvectors at 

the bifurcation point corresponding to Re = 51 and 

critical point (i.e. Re = 52) is shown in Figure 9 and 

10, respectively.  

 

 

Figure 6. Layout of the computational domain 

with the imposed boundary conditions. 

Figure 8. The onset of vortex shedding at Re = 52 

 

Figure 9.  (a) vorticity and (b) stream function 

twenty evenly spaced contours between -0.60 

(blue) and +0.60 (red) for the steady-state 

solution and the real and imaginary parts of the 

eigenvector at critical Reynolds number of 51. 

 

Figure 7. Distribution of smallest eigenvalues 

for normal mode, at Re = 51, 52 and 53. 
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It is clear from Figure 9 that both vorticity and 

stream function eigenvectors for steady flow have 

reflectional symmetry about the horizontal axis. On 

the other hand, and as shown in Figure 10, this 

symmetry breaks for Re = 52 due to the eigenvalue 

becomes negative. 

 

 

 

4 Conclusion 
This present work was directed towards formulation 

and development of a discrete linear stability 

analysis framework to numerically examine the 

onset of vortex sheading in the flow past a square 

cylinder. The two-dimensional base flow associated 

with the square cylinder at different Reynolds 

numbers are computed using the lattice Boltzmann 

method. The equations that govern the evolution of 

perturbations in the base flow constitute a 

generalized eigenvalue problem for the normal 

mode growth. The discrete version of this 

eigenvalue problem is first utilized to form the 

Jacobian and sparse mass matrices and then 

simultaneous iteration method is used for computing 

the eigenvalue spectrum. The results indicate that in 

the case of flow past a square cylinder the onset of 

two-dimensional vortex shedding is found at Re=52 

which is in good agreement with earlier reported 

range  47 53Re  . At Re = 51 eigenvector 

patterns is symmetric about the x-axis, while they 

lose their symmetry at Re = 52 due to eigenvalue 

becomes negative. In this study, the highest degree 

of freedom used is 51.6×10 , which provides 

satisfactory results for two-dimension computation. 

Further improvement in the accuracy of locating the 

critical parameter requires an increase in the degrees 

of freedom that can be brought about by the 

parallelization of the present numerical analysis. 

The finite-difference method is ideally suited to 

linear stability analysis studies as it is easy to 

modify and to handle complex flows and geometries 

where the mathematics is not tractable. The 

framework that we have developed is sufficient to 

predict at the outset whether a hydrodynamic or a 

thermal system will unstable or not after some time, 

greatly reducing computational cost and time in 

making an accurate prediction. As presented, if the 

real part of the smallest eigenvalue is positive and 

the eigenvectors have a symmetry then there is no 

instability. On the other hand, the flow asymmetry 

transpired when the real part of the smallest 

eigenvalue pair crosses the imaginary axis onto the 

left half-plane, accompanied by the breaking down 

of corresponding eigenvector symmetry.  

The flow past a square cylinder and double-glazing 

problems are only a few from the vast varieties of 

problems where the developed method may find 

applications. An interesting application of the 

developed framework is to predict the onset of 

instability due to the transition of vortex shedding 

from symmetric to asymmetric that leads to 

propulsion in a rigid or flexible wing plunging into a 

quiescent medium [27]. It is anticipated that this 

analysis will provide guidance for the onset of 

propulsion that can be attained for given controlling 

parameters and will be of significance in the design 

of systems with similar concepts. This will be the 

subject of a future publication. 

 

Nomenclature: 

a length of a side of the solid cylinder, [m] 

B blockage ratio of the domain, [-] 

g acceleration due to gravity, [m/s2] 

h domain height, [m] 

J Jacobian matrix, [-] 

M mass matrix, [-] 

p Pressure, [N/m2] 

Pr Prandtl number  

( Pr   ), [-] 

Ra Rayleigh number  

( 3 /T Lg S S  ), [-] 

Re Reynolds number ( U a  ), [-] 

SL length scale, [m] 

ST temperature scale, [K] 

t  characteristic timescale  

( a U ), [s] 

t Time, [s] 

u the velocity vector of the fluid, [m/s]  

U
 free-stream velocity, [m/s] 

x Eigenvector, [-] 

Figure 10.  (a) vorticity and (b) stream function 

twenty evenly spaced contours between -0.60 

(blue) and +0.60 (red) for the steady-state 

solution and the real and imaginary parts of the 

eigenvector at critical Reynolds number of 52. 
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Greek letters 

  coefficient of volumetric expansion, [K-1] 

  kinematic viscosity of the fluid, [m2/s] 

  complex growth rate, [-] 

  thermal diffusivity, [m2/s] 

  stream function, [m2/s] 

  vorticity transport, [s-1] 
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