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Abstract: - In this paper, we worked on methods to reduce the input data set to the mathematical models developed 

to simulate blood flow through human arteries. In general, any mathematical model designed to mimic a natural 

process needs specific information on its model parameters. In our models, the inputs to these parameters are 

from the human arterial system, i.e., the anatomical data on arteries and physiological information on blood. 

Besides, few other parameters in the models describe mechanisms, such as the arteries' elastic behaviour. These 

mechanisms described using mathematical relations help assign values to the parameters satisfying specific 

mathematical requirements. In general, the clinical data or the mathematical requirements provide a range of 

permissible values for the model parameters. However, we assign only a finite number of values in the range to 

the parameters to carry out simulations. Even though the values assigned to the parameters significantly differ 

from each other in magnitude, there is a possibility that some of these data sets mimic the same state of the system 

(arterial system).  And identifying such data sets is not an apparent task but requires robust procedures. Thus, in 

this work, we attempt to shed light on a data size reduction technique to identify all such values and remove them 

from the input data set. We propose the statistical testing procedures to identify a significant difference in the 

dependent variables' values (computed using the developed mathematical models) with the independent variables 

(the model parameters).   

 

Key-Words: - Mathematical model, elastic pipe, arterial blood flow, simulation, non-parametric test, statistical 

analysis.  
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Abbreviations 

�⃗� – Velocity vector 

𝑝 – Thermodynamic pressure 

𝜌 – Density (kg/m3) 

𝜏𝑖𝑗 – Deviatoric stress tensor 

𝛿𝑖𝑗 – Kronecker symbol 

𝜇 – Viscosity (Pa. s) 

𝑒𝑖𝑗 – Rate of deformation tensor 

𝑡𝑖𝑗 – Non-symmetric stress tensor 

𝑚𝑖𝑗 – Couple Stress tensor 

𝑡𝑖𝑗
(𝑠)

 – Symmetric part of 𝑡𝑖𝑗 

𝑡𝑖𝑗
(𝐴)

 – Skew-symmetric part of 𝑡𝑖𝑗 

𝑑𝑖𝑗 – Rate of deformation tensor 

𝑐𝑘 – 𝑘-component of body moment vector 

𝜀𝑖𝑗𝑘 – Levi-Civita symbol 

𝑚 – Trace of 𝑚𝑖𝑗 

𝜆 – Couple stress viscosity coefficient 

𝐻1
N – 1st Homotopy function in Newtonian 

Model 

𝜂1, 𝜂1
′  – Couple stress momentum coefficients 

𝐶 – Dimensionless couple stress parameter  

𝑐 – Body moment per unit mass 

𝜎 – Couple stress parameter 

𝑎0 – Average blood pressure (Pa. m-1) 

𝑎1 – Pulse difference (Pa. m-1) 

Ω – Frequency of oscillations (2𝜋 ⋅ 𝐻𝑅) 

𝐻𝑅 – Heart rate 

𝑓 – Taper fraction  

𝐿 – Length of the artery   

𝑅0 – Inlet radius (at 𝑡 = 0) 

𝛽 – Contracting/Expanding parameter  

Δ – Aspect ratio (
𝑅0

𝐿
) 

𝛼 – Womersley number (√
𝜌Ω𝑅0

2

𝜇
 )  

WSS – Wall shear stress (N. m-2) 

QF – Volumetric flow rate (m3.s-1) 

𝐻1
𝐶  – 1st Homotopy function in Couple Stress 

   Model 
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𝐻2
N – 2nd Homotopy function in Newtonian 

Model 

𝐻2
𝐶  – 2nd Homotopy function in Couple Stress 

   Model 

 

1 Introduction 
Scientific modelling of a natural or biological 

phenomenon helps understand a complicated 

process's underlying mechanism and identify the 

factors that affect it. These models can be physical, 

conceptual, or mathematical. One chooses a 

convenient mode based on the problem chosen for 

study and their objectives. As seen in the literature 

concerning the research on the arterial blood flow in 

humans, most researchers adopted mathematical 

modelling for the problem. One possible reason could 

be that the blood flow in human arteries involves 

several complicated mechanisms that need precise 

models for drawing reliable conclusions. Another 

motive could be the ease with which simulations can 

be carried with the developed mathematical models 

to mimic the arterial system's various states, as seen 

in the following works.  

Tu et al. described how computational 

hemodynamics could be applied to the cardiovascular 

system study [1]. Quarteroni (2001) has touched 

upon several challenges in modelling the human 

cardiovascular system mathematically [2]. Sankar 

and Lee studied the blood flow through the artery 

with mild stenosis, considering the flow to be 

pulsatile and the blood as Heschel–Bulkley fluid [3]. 

Blanco et al. developed a 1D-3D coupled model to 

study the complex interactions in the arterial network 

and specific arterial segments. They provided some 

applications of their model that are of potential 

clinical interest  [4]. Formaggia et al. modelled pulse 

(blood)  propagation in compliant arteries using a 

family of 1D non-linear systems [5]. Ho et al. 

performed CFD analysis on cerebral aneurysms by 

using the coupled 1D-3D approach. They constructed 

the arterial tree's geometric model in 1D and the 

aneurysm in 3D from a 3D Computed Tomography 

Angiography image [6]. Kroon et al. simulated the 

vascular hemodynamics using a coupled 0D-1D 

model. The large arteries are modelled using a 1D 

wave propagation model, and the small arteries in the 

periphery using a 0D lumped model [7]. Liang et al. 

developed a multiscale model of the cardiovascular 

system by coupling a 1D model with a 0D lumped 

parameter model to study the effects of aortic 

valvular and arterial stenoses on global 

hemodynamics. Their model predicted a significant 

effect of the location of stenoses on global 

hemodynamics [8]. Malossi et al. devised a 

numerical scheme for solving implicitly coupled 

1D/3D model developed for blood flow in compliant 

vessels [9].  Olufsen et al. considered the 

axisymmetric flow of blood in large systemic arteries 

modelled as tapered and compliant vessels. Their 

simulations agreed well with a person's magnetic 

resonance measurements in nine peripheral locations 

and the ascending aorta [10].  Bartosik studied 

turbulent blood flow in the aorta and examined the 

effects of frictional losses on yield shear stress [11].  

The present work also adopts mathematical 

modelling. We aim to tune the blood flow models 

developed for large and small arteries to mimic the 

arterial system for different age groups among male 

and female populations. This work on fine-tuning the 

developed mathematical models to suit different age 

groups and genders is possibly the first of its kind and 

thus taken for study.  

Firstly, we develop mathematical models for the 

small and large arteries in the human arterial system 

and simulate them to mimic the different arterial 

states. The mathematical models are developed, 

incorporating the system's salient features. We used 

the published data on the human arterial system's 

anatomy and physiology for different age groups and 

genders to carry out simulations. Besides these, we 

also input a few data based on the mathematical 

specifications of the developed models. In most 

cases, we see that the data assume values over a 

specified range, and one needs to choose a finite 

number of values from that range to carry out 

simulations. In doing so, our perception is that some 

of the data sets mimic the same arterial state, and 

identifying such data sets (if any) forms our next 

objective. 

The mathematical model built to mimic the blood 

flow in the human arterial system has to include 

specific means, through mathematical expressions to 

describe the system's salient features, such as (i) the 

pulsatile pressure gradient induced by the heart to 

enable the blood flow (ii) blood, a complex fluid that 

is a suspension of particles and (iii) the arteries, 

elastic pipes with tapering and branching. These 

mathematical expressions comprise parameters to 

describe the arterial system's features. Based on their 

function, we classified these parameters into three 
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sets: flow, fluid, and mechanical, and they assume 

inputs to mimic the arterial system's different states.  

As mentioned earlier, in general, the inputs to 

model parameters are either from clinical data or due 

to mathematical constraints imposed by the 

mathematical models used. For instance, parameters, 

such as heart rate, blood pressure, blood viscosity, 

etc., assume values over a range based on the 

anatomical and physiological data related to the 

blood flow in human arteries. And parameters used 

to describe mechanisms or processes like an artery's 

response under various stress conditions are assigned 

values from a specified range based on the 

mathematical requirements/ constraints. To identify 

the data sets that mimic the same arterial state, we 

work on statistical tests and refine the input data set. 

To perform statistical analysis, we test the input data 

set for its significance on two physical quantities: 

wall shear stress (WSS) and volumetric flow rate 

(QF) computed from the mathematical models built.  

 

The paper is organised as follows: Section 2 

details the mathematical description of the human 

arterial system's various features: the blood, the 

artery, and the blood flow. To incorporate the human 

arterial system's salient features:  Blood is taken as a 

Newtonian [12] or a non-Newtonian fluid described 

via the models in the works [13-15]. In this paper,  we 

chose to develop two models, one with blood as the 

Newtonian fluid and the other as the couple stress 

fluid. The artery is modelled as a tapered circular pipe 

with elastic nature described by an 

expanding/contracting parameter [16, 17]. The blood 

flow is assumed to be under the influence of a 

pulsatile pressure gradient described by Mandal [18]. 

Mathematical models are developed using the flow 

governing equations in transport phenomena with 

appropriate boundary conditions. In Section 3, we 

brief the Homotopy Analysis Method (HAM) to 

solve the models developed [19, 20]. Section 4 

presents the data (as Tables) on healthy humans to 

carry out simulations. These tables show the 

anatomical data on human arteries and physiological 

data on blood flow for male and female populations 

of different age groups ranging from 19 to 60 [21-

25]. We also see the fluid and mechanical parameters' 

values satisfying the required mathematical 

constraints as detailed in references [13, 16, 21]. In 

Section 5, the statistical testing process wherein the 

objectives, the test statistic, and result analysis are 

detailed. We present the conclusions and remarks in 

Section 6.  

 

2 Mathematical Model 

As mentioned earlier, blood flow through the human 

artery is modelled as the fluid flow in a circular, and 

tapered elastic pipe wherein an oscillatory pressure 

gradient drives the flow. Cylindrical polar coordinate 

system (𝑟, 𝜃, 𝑧) (where 𝑟 and 𝑧 are the radial and 

axial coordinates, respectively, and 𝜃 is the azimuthal 

angle) is used to describe the problem's geometry, 

and the fluid (blood) flow is assumed to be in the 𝑧-

direction. Further, the fluid is considered 

incompressible and the flow axisymmetric so that the 

components of the velocity (�⃗�) , and the 

thermodynamic pressure, denoted by 𝑝, are functions 

only of 𝑟, 𝑧 and time 𝑡. Thus, the velocity vector is 

�⃗�(𝑟, 𝑧, 𝑡) = (𝑢(𝑟, 𝑧, 𝑡), 0, 𝑤(𝑟, 𝑧, 𝑡)), and the 

thermodynamic pressure 𝑝 is 𝑝(𝑟, 𝑧, 𝑡). 

 

2.1 Mathematical formulation of the problem 
Fluid (blood) flow is governed by the Navier-Stokes 

equations that take the form: [12]  

 
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0              (1) 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
−

1

𝜌
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟) +

𝜕

𝜕𝑧
(𝜏𝑟𝑧))       (2) 

 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
−

1

𝜌
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) +

𝜕

𝜕𝑧
(𝜏𝑧𝑧))   (3) 

 

We assumed that the radial flow velocity and the 

convective acceleration terms are of a smaller order 

of magnitude with respect to the axial flow velocity 

and the local acceleration terms, respectively [12]. 

Hence the radial momentum equation (2) reduces to:   

 −
𝜕𝑝

𝜕𝑟
= 0            (4)  

 
Equation (4) indicates that the pressure function is 

independent of r.  

 

2.2 Model for the human artery 
Since arteries are tapered and elastic pipes, we 

modified the models proposed by Uchida and Aoki         

Fig. 1: Schematic diagram showing the expansion phase 
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[16] and Karthik et al. [17] as follows to incorporate 

the elastic behaviour as described in [16] and the 

taper in [17] as follows: 

 𝑅(𝑧, 𝑡) = 𝑅0 (1 − 𝑓
𝑧

𝐿
) (1 − 𝛽Ω𝑡)

1

2 (5) 

Here 𝛽 is a contraction/expansion coefficient that 

takes any real value. Positive values of 𝛽 indicate the 

contraction state of the pipe, while negative values of 

this parameter describe the expansion state. 𝑅0 

denotes the pipe's radius at the inlet when the time 

𝑡 = 0. 𝑓 is the fraction of tapering that takes any 

value between 0 and 1.  𝐿 is the pipe's length and Ω =
2𝜋 ⋅ 𝐻𝑅/60, 𝐻𝑅 being the number of heartbeats per 

minute [16, 17].  

 

2.3 Model for the blood 
As mentioned earlier, we considered two 

mathematical models, namely, Newtonian and 

Couple Stress fluid, to describe the fluid, i.e., the 

blood [12, 13]. The Newtonian model describes 

blood as having a linear stress-strain relationship, 

most accurate for its large arteries flow. The Couple 

Stress fluid model is a non-Newtonian model best 

suited to describe the artery's non-linear stress-strain 

relationship. 

 

2.3.1 Newtonian fluid model 

Constitutive equation for Newtonian fluid is given by 

[12] 

 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗              (6) 

Using the constitutive equation (6), equations (1) 

and (3) take the form: 

 

       
𝜕𝑢

𝜕𝑟
+  

1

𝑟
 𝑢 +

𝜕𝑤

𝜕𝑧
= 0              (7) 

 

 𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+

𝜇 (
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) +

𝜕2𝑤

𝜕𝑧2 ).    (8) 

 

By introducing the dimensionless variables, 

 

𝑤∗ =
𝑤

𝜔𝐿
, 𝑡∗ = 𝑡𝜔, 𝑢∗ =

𝑢 

𝜔𝑅0
, 𝑧∗ =

𝑧

𝐿
 and 𝑟∗ =

𝑟

𝑅0
 

      (9) 

 equations (7) and (8) take the form (after dropping 

*), 

 
𝜕𝑢

𝜕𝑟
+

1

𝑟
 𝑢 +

𝜕𝑤

𝜕𝑧
= 0                         (10) 

 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
= −𝑃∗ −

1

𝛼2 (
𝜕2𝑤

𝜕𝑟2 +

1

𝑟

𝜕𝑤

𝜕𝑟
+ Δ2 𝜕2𝑤

𝜕𝑧2 )                (11) 

 

where 𝑃∗ = −
1

𝜌Ω2𝐿2

𝜕𝑃

𝜕𝑧
   is the non-dimensional 

pressure gradient,  Δ =
𝑅0

𝐿
  is termed as the aspect 

ratio and 𝛼 = √
𝜌Ω𝑅0

2

𝜇
 is the Womersley number. 

The boundary conditions in the non-dimensional 

form are: 

 

 𝑢 =
𝜕𝑅

𝜕𝑡
(𝑧, 𝑡), 𝑤 = 0 on 𝑟 = 𝑅(𝑧, 𝑡)  

 𝑢 = 0,
𝜕𝑤

𝜕𝑟
= 0 at 𝑟 = 0                       (12) 

 

where, 𝑅(𝑧, 𝑡) = (1 − 𝑓𝑧)(1 − 𝛽𝑡)0.5 (the non-

dimensional form of expression (5)             (13) 

 

2.3.2 Couple stress fluid model 

The couple stress fluid model assumes that the fluid 

medium can sustain couple stresses [13]. Thus the 

non-symmetric stress tensor 𝑡𝑖𝑗 and the couple stress 

tensor 𝑚𝑖𝑗 are given by:  𝑡𝑖𝑗 = 𝑡𝑖𝑗
(𝑠)

+ 𝑡𝑖𝑗
(𝐴)

, 

where, 𝑡𝑖𝑗
(𝑠)

= −𝑝𝛿𝑖𝑗 + 𝜆𝑑𝑖𝑣(�⃗�)𝛿𝑖𝑗 + 2𝜇𝑑𝑖𝑗, and 

 

𝑡𝑖𝑗
(𝐴)

= −
1

2
𝜀𝑖𝑗𝑘(𝑚,𝑘 − 4𝜂1𝜔𝑖,𝑗𝑘𝑘 + 𝜌𝑐𝑘).            (14) 

𝑚𝑖𝑗 =
1

3
𝑚𝛿𝑖𝑗 + 4𝜂1𝜔𝑗,𝑖 + 4𝜂1

′ 𝜔𝑖,𝑗.             (15) 

 

Here 𝑡𝑖𝑗
(𝑠)

 is the symmetric part of the stress tensor, 

𝑡𝑖𝑗
(𝐴)

 is the skew-symmetric part of the stress tensor, 

𝜔𝑖,𝑗 =
𝜕𝜔𝑖

𝜕𝑥𝑗
 is the derivative of the 𝑖𝑡ℎ component of 

�⃗⃗⃗� =
1

2
𝑐𝑢𝑟𝑙 �⃗�, 𝑑𝑖𝑗 is the rate of deformation tensor, 𝑐𝑘 

is the 𝑘-component of body moment vector, 𝛿𝑖𝑗 

denotes Kronecker symbol, 𝜀𝑖𝑗𝑘 is the Levi-Civita 

symbol, 𝑚 is the trace of the couple stress tensor 𝑚𝑖𝑗, 

and 𝑚,𝑘 = 𝑔𝑟𝑎𝑑(𝑚), 𝜔𝑖,𝑗𝑘𝑘 represents 

𝑔𝑟𝑎𝑑(𝛻2𝜔𝑖).  

The quantities 𝜆 and 𝜇 are the couple stress 

viscosity coefficients, while 𝜂1 and 𝜂1
′  are the couple 

stress momentum coefficients. These coefficients are 

material constants and are constrained by the 

inequalities:  

 

𝜇 ≥ 0, 3𝜆 + 2𝜇 ≥ 0, 𝜂1 ≥ 0, |𝜂1
′ | ≤ 𝜂1.             (16) 

 

Under the assumptions on the flow mentioned 

earlier and using the constitutive equations given in 

(14)-(15),  the continuity equation and the 

momentum equation shown in (1) and (3) reduce to 

  

 
𝜕𝑢

𝜕𝑟
+  

1

𝑟
 𝑢 +

𝜕𝑤

𝜕𝑧
= 0              (17) 
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𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
− 𝜇 (

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) −

𝜂1 (
𝜕4𝑤

𝜕𝑟4 −
2

𝑟

𝜕3𝑤

𝜕𝑟3 −
1

𝑟2

𝜕2𝑤

𝜕𝑟2 +
1

𝑟3

𝜕𝑤

𝜕𝑟
+

1

𝑟

𝜕3𝑤

𝜕𝑟𝜕𝑧2 +

𝜕4𝑤

𝜕𝑟2𝜕𝑧2 +
𝜕4𝑤

𝜕𝑧4 )                (18) 

 

By using the dimensionless variables introduced 

in (9), equation (18) (after dropping *) takes the form: 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
= −𝑃∗ −

1

𝛼2 (
𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) −

𝐶 (
𝜕4𝑤

𝜕𝑟4 −
2

𝑟

𝜕3𝑤

𝜕𝑟3 −
1

𝑟2

𝜕2𝑤

𝜕𝑟2 +
1

𝑟3

𝜕𝑤

𝜕𝑟
+ Δ2 (

1

𝑟

𝜕3𝑤

𝜕𝑟𝜕𝑧2 +

𝜕4𝑤

𝜕𝑟2𝜕𝑧2 + Δ2 𝜕4𝑤

𝜕𝑧4 ))               (19) 

where Δ =
𝑅0

𝐿
 termed as the aspect ratio, 𝑃∗ =

1

𝜌Ω2𝐿2

𝜕𝑝

𝜕𝑧
 is the dimensionless pressure, 𝛼 = √

𝜌Ω𝑅0
2

𝜇
 is 

the Womersley number, and 𝐶 =
𝜂1

𝜌Ω𝑅0
4   is the couple 

stress parameter. 

The mathematical representation of the boundary 

conditions in the non-dimensional form is, 

(i) 𝑢 =
𝑑𝑅

𝑑𝑡
, 𝑤 = 0 on 𝑟 = 𝑅(𝑧, 𝑡)  

 (no-slip boundary condition), 

(ii) 
𝜕2𝑤

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤

𝜕𝑟
= 0 on 𝑟 = 𝑅(𝑧, 𝑡) with 𝜎 =

𝜂1

𝜂1
′ ,  

(couple stresses vanish on the wall),  

(iii) 
𝜕2𝑤

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤

𝜕𝑟
 is finite at 𝑟 =  0, 

(iv) 
𝜕𝑤

𝜕𝑟
= 0 at 𝑟 = 0  

(velocity is finite at the center of the tube).      

                 (20) 

2.4 Model for the blood flow 
Because of the oscillatory nature of the blood flow, 

the pressure gradient takes the form: 

 −
𝜕𝑝

𝜕𝑧
= 𝑎0 + 𝑎1 cos Ω𝑡 , 𝑡 ≥ 0             (21) 

where 𝑎0 is the average blood pressure, 𝑎1 is the 

constant amplitude of the pressure gradient (Pa. m-1) 

and Ω = 2𝜋 ⋅ 𝐻𝑅/60, 𝐻𝑅 being the number of 

heartbeats per minute [18]. 

 

3 Method of Solution 
We used the HAM (Homotopy Analysis method) to 

find the solution to the developed mathematical 

models. This method introduced by Liao is an 

extension of the He's Homotopy perturbation method 

(HPM), a semi-analytical method to solve non-linear 

ordinary and partial differential equations [19, 20]. 

The key feature of the HAM lies in introducing an 

auxiliary parameter in the Homotopy function to 

accelerate the solution's convergence. Given its 

complexity, we chose the HAM to determine the 

radial and axial components of the velocity vector in 

both the models developed in this work. 

 

To begin with, in this HAM, the velocity 

components 𝑢(𝑟, 𝑧, 𝑡) and 𝑤(𝑟, 𝑧, 𝑡) are written in the 

form of series expansions in terms of an embedding 

parameter 𝑝 (0 ≤ 𝑝 ≤ 1) as follows:  

 𝑢(𝑟, 𝑧, 𝑡) = 𝑢0(𝑟, 𝑧, 𝑡) + 𝑢1(𝑟, 𝑧, 𝑡) ∗ 𝑝 +
𝑢2(𝑟, 𝑧, 𝑡) ∗ 𝑝2 + 𝑢3(𝑟, 𝑧, 𝑡) ∗ 𝑝3 + ⋯             (22) 

and 

 𝑤(𝑟, 𝑧, 𝑡) = 𝑤0(𝑟, 𝑧, 𝑡) + 𝑤1(𝑟, 𝑧, 𝑡) ∗ 𝑝 +
𝑤2(𝑟, 𝑧, 𝑡) ∗ 𝑝2 + 𝑤3(𝑟, 𝑧, 𝑡) ∗ 𝑝3 + ⋯              (23) 

This step is followed by defining homotopy 

functions for each of the governing equations. For the 

Newtonian fluid model, the homotopy functions for 

the continuity equation and the momentum equation 

in 𝑧-direction are shown in expressions (24) and (25) 

respectively: 

𝐻1
N(𝑝) = (1 − 𝑝) (

𝜕2𝑢

𝜕𝑟2) + ℎ ∗ 𝑝 ∗ (
𝜕𝑢

𝜕𝑟
+

1

𝑟
 𝑢 +

𝜕𝑤

𝜕𝑧
) 

                  (24) 

and 

𝐻2
N(𝑝) = (1 − 𝑝) (

𝜕2𝑤

𝜕𝑟2 ) + 𝑘 ∗ 𝑝 ∗ (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+

𝑤
𝜕𝑤

𝜕𝑧
+ 𝑃∗ −

1

𝛼2 (
𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
+ Δ2 𝜕2𝑤

𝜕𝑧2 ))             (25) 

For the Couple Stress fluid model, they are defined 

as: 

𝐻1
𝐶(𝑝) = (1 − 𝑝) (

𝜕𝑢

𝜕𝑟
−

𝜕𝑢0

𝜕𝑟
) + 𝑙 ∗ 𝑝 (

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
 +

𝜕𝑤

𝜕𝑧
)

                  (26) 

𝐻2
𝐶(𝑝) = (1 − 𝑝) (

𝜕4𝑤

𝜕𝑟4 −
𝜕4𝑤0

𝜕𝑟4 ) + 𝑛 ∗ 𝑝 (
𝜕𝑤

𝜕𝑡
+

𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
+ 𝑃∗ +

1

𝛼2 (
𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) + 𝐶 (

𝜕4𝑤

𝜕𝑟4 −

2

𝑟

𝜕3𝑤

𝜕𝑟3 −
1

𝑟2

𝜕2𝑤

𝜕𝑟2 +
1

𝑟3

𝜕𝑤

𝜕𝑟
+ Δ2 (

1

𝑟

𝜕3𝑤

𝜕𝑟𝜕𝑧2 +
𝜕4𝑤

𝜕𝑟2𝜕𝑧2 +

𝛥2 𝜕4𝑤

𝜕𝑧4 )))                           (27) 

where ℎ, 𝑘, 𝑙 and 𝑛 are the auxiliary parameters. 

Since the variables 𝑢(𝑟, 𝑧, 𝑡) and 𝑤(𝑟, 𝑧, 𝑡) are 

expressed in series expansion form as in (22), (23), 

the homotopy functions also transform to series. 

Assuming 𝑢0(𝑟, 𝑧, 𝑡) and 𝑤0(𝑟, 𝑧, 𝑡) to be zero, the 

coefficients of each exponent of 𝑝, starting from 𝑝1, 

in the R.H.S of (24), (25), (26) and (27), which are 

systems of PDEs in 𝑢𝑖 and 𝑤𝑖 are collected and 

equated to zero. These PDE systems are subsequently 

solved along with appropriate boundary conditions, 

as shown below in Sections 3.1 (Newtonian fluid 

model) and 3.2 (Couple Stress fluid model). 

Known the velocity components, we derived the 

expression for WSS (Wall Shear Stress)  for the 
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Newtonian model using the constitutive equation 

given in [6] and for the couple stress model using 

[14]. We also obtained the volumetric flux (QF) for 

both models. These expressions evaluated for various 

model parameters  ( termed as independent variables) 

form the inputs ( termed as dependant variables) to 

the statistical models presented in Section 5.   

 

3.1 Newtonian Fluid Model 
The first iteration involves solving the PDEs 

formed by collecting the coefficients of 𝑝1 from the 

R.H.S of (24) and (25) and equating them to zero. The 

PDEs, along with the boundary conditions, are given 

by: 

   
 𝜕2𝑢1

𝜕𝑟2 = 0,               (28) 

  𝑘
𝑎0+𝑎1 cos 𝑡

𝜌Ω2𝐿2 +
𝜕2𝑤1

𝜕𝑟2 = 0                        (29) 

and 

  𝑢1 =
𝜕𝑅

𝜕𝑡
, 𝑤1 = 0 on 𝑟 = 𝑅(𝑧, 𝑡) 

  𝑢1 = 0,
𝜕𝑤1

𝜕𝑟
= 0  at 𝑟 = 0                      (30) 

The above PDEs, along with the boundary 

conditions, are solved for 𝑢1 and 𝑤1 using 

MATHEMATICA software. Similarly, the 

expressions for 𝑢2 and 𝑤2 are obtained by collecting 

the coefficients of 𝑝2 from the homotopy functions. 

The PDEs and boundary conditions leading to 𝑢2 and 

𝑤2 are given by: 

 

 −
ℎ𝛽

1−𝛽𝑡
− ℎ𝑘𝑓(1 − 𝑓𝑧)(1 − 𝛽𝑡)

𝑎0+𝑎1 cos 𝑡

𝜌Ω2𝐿2 +

𝜕2𝑢2

𝜕𝑟2 = 0,                         (31) 

 

 (𝑘 +
𝑘2

𝛼
+

𝑘2

𝑟𝛼
−

Δ2𝑘2𝑓2(1−𝛽𝑡)

𝛼
−

𝑘2𝛽(1−𝑓𝑧)2

2
)

𝑎0+𝑎1 cos 𝑡

𝜌Ω2𝐿2 + (𝑘2𝑟2 − 𝑘2(1 − 𝑓𝑧)2(1 −

𝛽𝑡))
𝑎1 sin 𝑡 

2 𝜌Ω2𝐿2 +
𝜕2𝑤2

𝜕𝑟2 = 0                (32) 

and 

  𝑢2 = 0, 𝑤2 = 0 on 𝑟 = 𝑅(𝑧, 𝑡) 

  𝑢2 = 0,
𝜕𝑤2

𝜕𝑟
= 0  at 𝑟 = 0                     (33) 

In the same way, the subsequent approximations 

of 𝑢𝑖, 𝑤𝑖 for 𝑖 = 3,4,5, … are obtained by solving the 

PDEs obtained from the coefficients of 𝑝3, 𝑝4, 𝑝5, … 

along with the boundary conditions similar to (33). 

We have calculated the expressions of 𝑢𝑖 and 𝑤𝑖 for 

𝑖 = 1 to 5 and thus, 

  𝑢(𝑟, 𝑧, 𝑡) = ∑ 𝑢𝑖(𝑟, 𝑧, 𝑡)5
𝑖=1 ,  

  𝑤(𝑟, 𝑧, 𝑡) = ∑ 𝑤𝑖(𝑟, 𝑧, 𝑡)5
𝑖=1               (34) 

which are functions of 𝑟, 𝑧 and 𝑡 consisting of the 

auxiliary parameters ℎ and 𝑘 whose values are 

determined as described by Liao [19, 20]. 

For this, we fixed the values as, 𝑧 = 0.5, 𝑡 = 1, 𝑓 =
0.01, 𝛽 = 0.1, 𝛿 = 0.001, 𝐻𝑅 = 72 bpm, 𝑎0 =
12352.46 Pa.m-1 and 𝑎1 = 5465.3 Pa.m-1, Now, 𝑢 

and 𝑤 become functions of 𝑟 alone consisting of the 

auxiliary parameters ℎ and 𝑘. Since it is impossible 

to determine both the parameters at a time,  using the 

trial and hit method, we fixed the value of ℎ as 

−0.00007. Now, using 'ℎ-curves' which are traced 

by plotting 
𝑑2𝑢

𝑑𝑟2|
𝑟=0

  and 
𝑑2𝑤

𝑑𝑟2 |
𝑟=0

 against 𝑘, the point 

on 𝑥-axis where the ℎ-curves are almost flat is noted, 

and that value is assigned to 𝑘. From Fig 2, we see 

that the value of 𝑘 is −0.06.  Fig 3. shows the plots 

of the first five approximations of 𝑢(𝑟, 𝑧, 𝑡)  and 

𝑤(𝑟, 𝑧, 𝑡) clearly depicting the convergence of 

solutions. 

 
Fig. 2. h-curves to identify the range for the auxiliary parameter 

'k.' 
 

Fig. 3. Graphs depicting the convergence of 𝑢(𝑟, 𝑧, 𝑡)  and 

𝑤(𝑟, 𝑧, 𝑡) 
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A similar exercise is carried out to identify the values 

of parameters ℎ and 𝑘 for the other sets of model 

parameters. 

 

3.2 Couple Stress Fluid Model 
From expressions (26) and (27), PDEs and the 

respective boundary conditions for finding the first 

approximation is as below: 

  
𝜕𝑢1

𝜕𝑟
= − (

𝜕𝑤0

𝜕𝑧
+

𝑢0

𝑟
),               (35) 

  
𝜕4𝑤1

𝜕𝑟4 = −𝑛 (
𝜕𝑤0

𝜕𝑡
+ 𝑢0

𝜕𝑤0

𝜕𝑟
+ 𝑤0

𝜕𝑤0

𝜕𝑧
+ 𝑃∗ +

1

𝛼2 (
𝜕2𝑤0

𝜕𝑟2 +
1

𝑟

𝜕𝑤0

𝜕𝑟
) + 𝐶 (

𝜕4𝑤0

𝜕𝑟4 −
2

𝑟

𝜕3𝑤0

𝜕𝑟3 −
1

𝑟2

𝜕2𝑤0

𝜕𝑟2 +

1

𝑟3

𝜕𝑤0

𝜕𝑟
+ Δ2 (

1

𝑟

𝜕3𝑤0

𝜕𝑟𝜕𝑧2 +
𝜕4𝑤0

𝜕𝑟2𝜕𝑧2 + Δ2 𝜕4𝑤0

𝜕𝑧4 )))       (36)  

And the conditions are  

 

𝑢1 =
𝜕𝑅

𝜕𝑡
, 𝑤1 = 0, 

𝜕2𝑤1

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤1

𝜕𝑟
= 0 on 𝑟 = 𝑅(𝑧, 𝑡),  

𝜕2𝑤1

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤1

𝜕𝑟
 is finite at 𝑟 = 0 and 

𝜕𝑤1

𝜕𝑟
= 0 at 𝑟 = 0.

                  (37) 

The second approximation is then calculated in the 

same way using the boundary conditions: 

 

 𝑢2 = 0, 𝑤2 = 0 on 𝑟 = 𝑅(𝑧, 𝑡), 

 
𝜕2𝑤2

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤2

𝜕𝑟
= 0 on 𝑟 = 𝑅(𝑧, 𝑡), 

 
𝜕2𝑤2

𝜕𝑟2 −
𝜎

𝑟

𝜕𝑤2

𝜕𝑟
  is finite at 𝑟 = 0 and 

 
𝜕𝑤2

𝜕𝑟
= 0 at 𝑟 = 0                                     (38) 

We obtained convergence in the third approximation 

for 𝑙, 𝑛 identified as −0.0007 and −0.0003, 
respectively       (calculated by following the similar 

procedure described for the Newtonian model). The 

plots presented in Fig. 4 show the convergence of the 

velocity components. 

 

 
Fig. 4. Convergence plots of 𝑢(𝑟, 𝑧, 𝑡) and 𝑤(𝑟, 𝑧, 𝑡) 

 

 

3.3 Validation 
We compared our findings with the benchmark 

problems to verify our work, and the particulars 

are as in Table 1. We compared the axial velocity 

component computed at various points along the 

radial line for the first age group using the next 

section's data in Tables 2 to 5. By considering the 

values of various parameters as, 𝑅0 =  0.0041 𝑚, 

𝑎0 = 12352.4 𝑃𝑎, 𝑎1 = 0, 𝐻𝑅 =  72 beats per 

minute, 𝜌 =  1058.1 𝑘𝑔. 𝑚−3, 𝜇 = 0.00619 𝑃𝑎. 𝑠 in 

the Poiseuille flow model and our model (with 𝐹 and 

𝛽 zero), the axial velocity is computed and is 

presented in Table 1. 

 
Table 1. Comparison of the axial velocity component 

 

𝒓 
Present 

(Model-1) 

Poiseuille 

Model 

𝑅0 -1.0842(-19) 0 

𝑅0/2 -0.0628973 -0.0628973 

𝑅0/4 -0.0786216 -0.0786216 

0 -0.0838631 -0.0838631 

 

The findings are well in line with the values measured 

using the models used for validation. 

 

4 Data 
Table 2(a) presents the Newtonian model and the 

Couple Stress fluid model's parameter values based 

on the respective mathematical requirements 

(presented in Section 2).   
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Table 2(a). Values of the material parameters of the pipe 

(artery). 

𝒇 𝜷 

𝚫 

Newtonian 

Model 

Couple 

Stress 

Model 

0.01(𝑓1) 

0.03 (𝑓2) 

0.05 (𝑓3) 

0.07 (𝑓4) 

0.09 (𝑓5) 

0.1 (𝑓6) 

-0.05 (𝛽1) 

-0.01 (𝛽2) 

0 (𝛽3) 

0.01 (𝛽4) 

0.05 (𝛽5) 

0.001 

0.00001 

0.01 

0.001 

0.0001 

0.00001 

Table 2(b) provides a healthy individual's blood 

density and viscosity values from clinical data [22- 

25]. Further, these tables also show mathematical 

notations for each of the model parameters' values 

used in this paper's later sections.  For instance, 𝑓1 

denotes the value of 0.01 of the taper fraction, 

similarly 𝛽1 stands for the value of -0.05 of the 

expanding/contracting parameter and so on. Table 

2(c) shows values assigned to the couple stress fluid 

parameter. 
 

Table 2(b).  Values of fluid parameters 

𝝆 𝝁 

1055 (𝜌1) 

1058.1 (𝜌2) 

1061.2 (𝜌3) 

1055 (𝜌1) 

1058.1 (𝜌2) 

1061.2 (𝜌3) 

 

Table 2(c). Values assumed for fluid parameters in Couple 

Stress Fluid Model in addition to those in Table 1(b). 
𝝈 

0.1(𝜎1) 

0.3(𝜎2) 

0.5(𝜎3) 

0.7(𝜎4) 

0.9(𝜎5) 

Based on the values of Δ, shown in Table 2(a), we 

categorised the arteries as small and large arteries, 

wherein Δ = 0.001 in the Newtonian model and Δ =

0.01 in the Couple stress fluid model describe large 

artery, and Δ = 0.00001 in both the models, a small 

artery.  

While the parameters presented in Tables 2(a)-

2(c) are uniform for all age groups and genders, 

parameters such as the heart rate values and blood 

pressure are age and gender-specific and presented in 

Table 3. This table provides data from the literature 

on the heart rate and the average blood pressure for 

each age group for male and female populations. 

Furthermore, the third and fifth columns show the 

heart rate values taken to carry out the simulations. 

 

5 Statistical test 
This section presents the details of the statistical tests 

performed and the analyses. Wall shear stress (WSS) 

and volumetric flow rate (QF) are assumed to be 

dependent on taper fraction (𝒇), expanding/ 

contracting parameter (𝜷), couple stress parameter 

(𝝈), density (𝝆), viscosity (𝝁), heart rate (HR) and 

blood pressure (BP). Most importantly, this study 

defines all these independent variables as categorical, 

and tests are carried out to identify their significant 

values. 

 

5.1 Preliminary Analysis 
We performed a normality test on the data generated 

using the Newtonian model to identify the two 

dependent variables, i.e., WSS and QF behaviour. 

Since the independent variables are assumed 

categorical, we used Kolmogorov – Smirnov 

normality test in the SPSS package at a 0.1 level of 

significance. The test details in the case of large 

arteries are presented in Table 4. The Q-Q plots 

depict these two variables' deviation from normality 

in Fig. 2 and 3. 

Test for normality of the two continuous variables 

WSS and QF in the Couple Stress fluid model's data 

is also performed. Results demonstrate that the two 

dependent variables are also not normal variates. 
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 Kolmogorov-Smirnova  

Statistic df Sig. 

 
Newtonian 

Model 

Couple Stress 

Fluid Model 

Newtonian 

Model 

Couple Stress 

Fluid Model 

Newtonian 

Model 

Couple Stress 

Fluid Model 

WSS 0.067 .238 7290 36450 <.001 <.001 

QF 0.076 .229 7290 36450 <.001 <.001 

a. Lilliefors Significance Correction

Fig. 5: Plots showing the deviation of WSS and QF from Normality in the Newtonian Fluid Model

Age 

Group 

Heart Rate (HR) 
Blood 

Pressure[26] 

Female Male 
Female Male Data from the 

literature [25] 
Values considered 

Data from the 

literature [25] 
Values considered 

19-24 (𝑔1 ) 70-73 70 (𝑐1),72 (𝑐2),73 (𝑐3) 70-73 70(𝑑1),72(𝑑3),73(𝑑4) 120/79 120/79 

25-29 (𝑔2) 73-76 73 (𝑐3),75 (𝑐5),76 (𝑐6) 71-74 71(𝑑2),73(𝑑4),74(𝑑5) 120/80 121/80 

30-35 (𝑔3 ) 73-76 73 (𝑐3),75 (𝑐5),76 (𝑐6) 71-74 71(𝑑2),73(𝑑4),74(𝑑5) 122/81 123/82 

36-39 (𝑔4 ) 74-78 74 (𝑐4),76 (𝑐6),78 (𝑐8) 71-75 71(𝑑2),73(𝑑4),75(𝑑6) 123/82 124/83 

40-45 (𝑔5 ) 74-78 74 (𝑐4),76 (𝑐6),78 (𝑐8) 71-75 71(𝑑2),73(𝑑4),75(𝑑6) 124/83 125/83 

46-49 (𝑔6 ) 74-77 74 (𝑐4),76 (𝑐6),77 (𝑐7) 72-76 72(𝑑3),74(𝑑5),76(𝑑7) 126/84 127/84 

50-55 (𝑔7 ) 74-77 74 (𝑐4),76 (𝑐6),77 (𝑐7) 72-76 72(𝑑3),74(𝑑5),76(𝑑7) 129/85 128/85 

56-59 (𝑔8 ) 74-77 74 (𝑐4),76 (𝑐6),77 (𝑐7) 72-75 72(𝑑3),74(𝑑5),75(𝑑6) 130/86 131/87 

≥60  (𝑔9 ) 73-76 73 (𝑐3),75 (𝑐5),76 (𝑐6) 70-73 70(𝑑1),72(𝑑3),73(𝑑4) 134/84 135/88 

Table 3. Values of heart rate and blood pressure in Newtonian and Couple stress fluid models. 

 

Table 4. Tests of Normality for all age groups– Newtonian and Couple Stress Fluid Models. 
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  Fig. 6: Plots showing the deviation of WSS and QF from Normality in Couple Stress Fluid Model.

 

5.2 Primary analyses 
This section presents the descriptive statistics of the 

variables used in the analyses in section 5.2.1, the 

statistical tests used, and the conclusions drawn based 

on the test's outputs in the subsequent sections. 

 

5.2.1 Descriptive statistics 
Tables 5 to 8 provide the descriptive statistics for 

each age group in the female population for the 

Newtonian and the Couple Stress models.

Table 5. Agewise Descriptive Statistics for Newtonian Fluid Large Artery Model for Female Population. 

𝒈𝟏 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 71.67 1.25 

𝒂𝟎  810 12352.50 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 6.75 .56 

QF 810 -8.16E-13 2.73E-13 
 

𝒈𝟐 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 12441.30 .00 

𝒂𝟏  810 5332.00 .00 

WSS 810 6.76 .56 

QF 810 -8.17E-13 2.74E-13 
 

𝒈𝟑 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 12619.10 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 6.86 .57 

QF 810 -8.27E-13 2.77E-13 
 

𝒈𝟒 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 76.00 1.63 

𝒂𝟎  810 12752.40 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 6.93 .58 

QF 810 -8.38E-13 2.81E-13 
 

𝒈𝟓 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 76.00 1.63 

𝒂𝟎  810 12885.70 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 6.99 .58 

QF 810 -8.45E-13 2.84E-13 
 

𝒈𝟔 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13063.40 .00 

𝒂𝟏  810 5598.60 .00 

WSS 810 7.10 .59 

QF 810 -8.58E-13 2.88E-13 
 

𝒈𝟕 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13285.60 .00 

𝒂𝟏  810 5865.20 .00 

WSS 810 6.75 .56 

QF 810 -8.16E-13 2.73E-13 
 

𝒈𝟖 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13418.90 .00 

𝒂𝟏  810 5865.20 .00 

WSS 810 7.30 .61 

QF 810 -8.83E-13 2.97E-13 
 

𝒈𝟗 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 13418.90 .00 

𝒂𝟏  810 6665.00 .00 

WSS 810 7.42 .62 

QF 810 -8.97E-13 3.01E-13 
 

 
Table 6. Agewise Descriptive Statistics for Newtonian Fluid Small Artery Model for Female Population. 

𝒈𝟏 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 71.67 1.25 

𝒂𝟎  810 12352.50 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 2.20E19 9.74E18 

𝒈𝟐 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 12441.30 .00 

𝒂𝟏  810 5332.00 .00 

WSS 810 1.80E19 7.95E18 

𝒈𝟑 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 12619.10 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 1.74E19 7.78E18 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2021.16.7

 
Karthik Alasakani, 

Radhika S.l. Tantravahi, Praveen Kumar Ptv

E-ISSN: 2224-347X 72 Volume 16, 2021



QF 810 -2.56 1.27 
 

QF 810 -2.09 1.03 
 

QF 810 -2.03 1.01 
 

𝒈𝟒 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 76.00 1.63 

𝒂𝟎  810 12752.40 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 1.69E19 7.57E18 

QF 810 -1.97 .98 
 

𝒈𝟓 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 76.00 1.63 

𝒂𝟎  810 12885.70 .00 

𝒂𝟏  810 5465.30 .00 

WSS 810 1.71E19 7.65E18 

QF 810 -1.99 .99 
 

𝒈𝟔 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13063.40 .00 

𝒂𝟏  810 5598.60 .00 

WSS 810 1.77E19 7.80E18 

QF 810 -2.06 1.01 
 

𝒈𝟕 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13285.60 .00 

𝒂𝟏  810 5865.20 .00 

WSS 810 1.80E19 7.97E18 

QF 810 -2.10 1.03 
 

𝒈𝟖 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 75.67 1.25 

𝒂𝟎  810 13418.90 .00 

𝒂𝟏  810 5865.20 .00 

WSS 810 1.82E19 8.03E18 

QF 810 -2.12 1.04 
 

𝒈𝟗 

 N Mean 

Std. 

Deviation 

𝑯𝑹  810 74.67 1.25 

𝒂𝟎  810 13418.90 .00 

𝒂𝟏  810 6665.00 .00 

WSS 810 1.97E19 8.72E18 

QF 810 -2.30 1.13 
 

 
Table 7. Agewise Descriptive Statistics for Couple Stress Fluid Large Artery Model for Female Population.

𝒈𝟏 

 N Mean 

Std. 

Deviation 

𝑯𝑹  4050 71.67 1.25 

𝒂𝟎  4050 12352.50 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 .26 .25 

QF 4050 -2.08E-3 2.27E-3 
 

𝒈𝟐 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 12441.30 .00 

𝒂𝟏  4050 5332.00 .00 

WSS 4050 .24 .23 

QF 4050 -1.93E-3 2.10E-3 
 

𝒈𝟑 

 N Mean Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 12619.10 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 .24 .24 

QF 4050 -1.96E-3 2.13E-3 
 

𝒈𝟒 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 76.00 1.63 

𝒂𝟎  4050 12752.40 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 .24 .23 

QF 4050 -1.91E-3 2.08E-3 
 

𝒈𝟓 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 76.00 1.63 

𝒂𝟎  4050 12885.70 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 .24 .23 

QF 4050 -1.92E-3 2.10E-3 
 

𝒈𝟔 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13063.40 .00 

𝒂𝟏  4050 5598.60 .00 

WSS 4050 .24 .24 

QF 4050 -1.97E-3 2.14E-3 
 

𝒈𝟕 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13285.60 .00 

𝒂𝟏  4050 5865.20 .00 

WSS 4050 .25 .24 

QF 4050 -2.01E-3 2.19E-3 
 

𝒈𝟖 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13418.90 .00 

𝒂𝟏  4050 5865.20 .00 

WSS 4050 .25 .25 

QF 4050 -2.03E-3 2.21E-3 
 

𝒈𝟗 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 13418.90 .00 

𝒂𝟏  4050 6665.00 .00 

WSS 4050 .26 .26 

QF 4050 -2.11E-3 2.30E-3 
 

 
Table 8. Agewise Descriptive Statistics for Couple Stress Fluid Small Artery Model for Female Population 

𝒈𝟏 

 N Mean 

Std. 

Deviation 

𝑯𝑹  4050 71.67 1.25 

𝒂𝟎  4050 12352.50 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 1.82E+6 3.98E+6 

QF 4050 -14.51 36.20 
 

𝒈𝟐 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 12441.30 .00 

𝒂𝟏  4050 5332.00 .00 

WSS 4050 1.55E+6 3.39E+6 

QF 4050 -12.35 30.80 
 

𝒈𝟑 

 N Mean Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 12619.10 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 1.58E+6 3.44E+6 

QF 4050 -12.54 31.28 
 

𝒈𝟒 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 76.00 1.63 

𝒂𝟎  4050 12752.40 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 1.48E+6 3.25E+6 

𝒈𝟓 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 76.00 1.63 

𝒂𝟎  4050 12885.70 .00 

𝒂𝟏  4050 5465.30 .00 

WSS 4050 1.50E+6 3.28E+6 

𝒈𝟔 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13063.40 .00 

𝒂𝟏  4050 5598.60 .00 

WSS 4050 1.54E+6 3.37E+6 
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QF 4050 -11.81 29.51 
 

QF 4050 -11.92 29.78 
 

QF 4050 -12.29 30.66 
 

𝒈𝟕 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13285.60 .00 

𝒂𝟏  4050 5865.20 .00 

WSS 4050 1.58E+6 3.44E+6 

QF 4050 -12.54 31.28 
 

𝒈𝟖 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 75.67 1.25 

𝒂𝟎  4050 13418.90 .00 

𝒂𝟏  4050 5865.20 .00 

WSS 4050 1.59E+6 3.47E+6 

QF 4050 -12.65 31.56 
 

𝒈𝟗 

 N Mean 
Std. 

Deviation 

𝑯𝑹  4050 74.67 1.25 

𝒂𝟎  4050 13418.90 .00 

𝒂𝟏  4050 6665.00 .00 

WSS 4050 1.70E+6 3.72E+6 

QF 4050 -13.55 33.80 
 

 

5.2.2 Primary Objectives  
In this section, we present the objectives taken for the 

study. As our primary aim is to identify in-significant 

values of each model parameter; hence, we 

formulated the following eight objectives: 

(1) To study if there is a significant difference in WSS 

with 𝑓 in a given age group. 

(2) To study if there is a significant difference in WSS 

with 𝛽 in a given age group. 

(3) To study if there is a significant difference in WSS 

with σ in a given age group. 

(4) To study if there is a significant difference in WSS 

with 𝜇 in a given age group. 

(5) To study if there is a significant difference in WSS 

with 𝜌 in a given age group. 

(6) To study if there is a significant difference in WSS 

with 𝐻𝑅 in a given age group. 

(7) To study if there is a significant difference in QF 

with the above set of parameters in a given age 

group. 

(8) To study the pairwise significance of the values of 

each of the independent variables in a given age 

group. 

 

These objectives are all tested among each age 

group for the two mathematical models in male and 

female populations. Sample analysis for the objective 

(1) test is shown in section 5.2.3. 

 

 

5.2.3 Analysing objective (1) 

Since our preliminary study indicated that WSS is a 

non-normal variate, we performed the Kruskal-

Wallis 1–way ANOVA test to study the significant 

difference in WSS with 𝑓 in each age group.  Tables 

9 and 10 present the test's details for the female 

population's first age group in the Newtonian model. 

 

5.2.3a Conclusion on Objective (1) 

Table 9 shows that there is a significant difference in 

WSS values computed for different taper fraction 

values for blood flow in large arteries.  

However, there is no significant difference in WSS 

with 𝑓 in the small arteries, as seen in Table 10. Thus, 

we conclude that all six values assigned to 𝑓 (see 

Table 2(a)) mimic the same status of the arterial 

system in the case of small arteries. 

Table 9. Newtonian Female Large Artery for 𝑔1 – WSS 

Null 

Hypothesis 

Sig.a,b Test 

Statisticc 

Degrees 

of 

Freedom 

Decision 

The 

distribution 

of WSS is 

the same 

across 

categories of 

Taper 

Fraction 

<0.001 68.746 5 

Reject the 

null 

hypothesis 

a. The significance level is 0.1. 

b. Asymptotic significance (2-sided) is displayed.  

c. The test statistic is adjusted for the ties. 

 
Table 10. Newtonian Female Small Artery for 𝑔1 – WSS 

Null 

Hypothesis 
Sig.a,b Test 

Statisticc 

Degrees 

of 

Freedom 

Decision 

The 

distribution 

of WSS is 

the same 

across 

categories 

of Taper 

Fraction 

.860 1.922 5 

Retain the 

null 

hypothesis 

a. The significance level is 0.1. 

b. Asymptotic significance (2-sided) is displayed.  

c. The test statistic is adjusted for the ties. 

Further to the analysis presented in Table 9, we 

identify where the difference occurs by performing 

the Dunn-Bonferroni post hoc test, and the results are 

shown in Table 11. 
 

Table 11. Pairwise Comparison for Newtonian Model Large 

Artery for 𝑔1 – WSS 

Sample 1-

Sample 2a 

Test 

Statistic 

Std. Test 

Statistic 
Sig.b Adjusted 

Sig.b,c 

𝑓6 − 𝑓5 25.233 .886 .376 1.000 

𝑓6 − 𝑓4 68.122 2.392 .017 .251 

𝑓6 − 𝑓3 112.874 3.964 <0.001 <0.001 

𝑓6 − 𝑓2 154.359 5.420 <0.001 <0.001 

𝑓6 − 𝑓1 192.300 6.753 <0.001 <0.001 

𝑓5 − 𝑓4 42.889 1.506 .132 1.000 

𝑓5 − 𝑓3 87.641 3.077 .002 .031 

𝑓5 − 𝑓2 129.126 4.534 <0.001 <0.001 
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𝑓5 − 𝑓1 167.067 5.867 <0.001 <0.001 

𝑓4 − 𝑓3 44.752 1.571 .116 1.000 

𝑓4 − 𝑓2 86.237 3.028 .002 .037 

𝑓4 − 𝑓1 124.178 4.360 <0.001 <0.001 

𝑓3 − 𝑓2 41.485 1.457 .145 1.000 

𝑓3 − 𝑓1 79.426 2.789 .005 .079 

𝑓2 − 𝑓1 37.941 1.332 .183 1.000 

a. Each row tests the null hypothesis that Sample 1 and 

Sample 2 distributions are the same. 

b. Asymptotic significances (2-sided tests) are displayed. The 

significance level is 0.1. 

c. Significance values have been adjusted by the Bonferroni 

correction for multiple tests. 

This table indicates the significant values of 𝑓 on 

WSS for the group 𝑔1 as𝑓1, 𝑓3 and 𝑓5. 

 

5.2.3a Conclusion on Objective 1 (contd.) 

We carried out an analysis similar to this to test the 

objective (1) on data generated using the Couple 

Stress model and presented the details in Tables 12 

and 13. We see that, in this case, the taper fraction is 

significant on WSS in both large and small arteries. 
 

Table 12. Couple Stress Female Large Artery for 𝑔1 – WSS 

Null 

Hypothesis 
Sig.a,b Test 

Statisticc 

Degrees 

of 

Freedom 

Decision 

The 

distribution 

of WSS is 

the same 

across 

categories 

of Taper 

Fraction 

<0.001 26.903 5 

Reject the 

null 

hypothesis 

a. The significance level is 0.1. 

b. Asymptotic significance (2-sided) is displayed. 

c. The test statistic is adjusted for the ties. 

 

Table 13. Couple Stress Female Small Artery for 𝑔1 – WSS 

Null 

Hypothesis 
Sig.a,b Test 

Statisticc 

Degrees 

of 

Freedom 

Decision 

The 

distribution 

of WSS is 

the same 

across 

categories 

of Taper 

Fraction 

0.005 16.730 5 

Reject the 

null 

hypothesis 

a. The significance level is 0.1. 

b. Asymptotic significance (2-sided) is displayed.  

c. The test statistic is adjusted for the ties. 

 

Further, we discussed where the difference occurs by 

performing a pairwise analysis on the data of 𝑔1 using 

the Dunn-Bonferroni post hoc method, the results are 

in Tables 14 and 15.  

 

Table 14. Pairwise Comparison for Couple Stress Large Artery 

for 𝑔1 – WSS 

Sample 1-

Sample 2a 

Test 

Statistic 

Std. Test 

Statistic 
Sig.b Adjusted 

Sig.b,c 

𝑓6 − 𝑓5 30.218 .475 .635 1.000 

𝑓6 − 𝑓4 87.562 1.376 .169 1.000 

𝑓6 − 𝑓3 148.862 2.339 .019 .290 

𝑓6 − 𝑓2 212.349 3.336 .001 .013 

𝑓6 − 𝑓1 267.422 4.202 < .001 < .001 

𝑓5 − 𝑓4 57.344 .901 .368 1.000 

𝑓5 − 𝑓3 118.644 1.864 .062 .935 

𝑓5 − 𝑓2 182.131 2.862 .004 .063 

𝑓5 − 𝑓1 237.204 3.727 < .001 .003 

𝑓4 − 𝑓3 61.300 .963 .335 1.000 

𝑓4 − 𝑓2 124.787 1.961 .050 .749 

𝑓4 − 𝑓1 179.860 2.826 .005 .071 

𝑓3 − 𝑓2 63.487 .997 .319 1.000 

𝑓3 − 𝑓1 118.560 1.863 .062 .937 

𝑓2 − 𝑓1 55.073 .865 .387 1.000 

a. Each row tests the null hypothesis that Sample 1 and 

Sample 2 distributions are the same. 

b. Asymptotic significances (2-sided tests) are displayed. The 

significance level is 0.1. 

c. Significance values have been adjusted by the Bonferroni 

correction for multiple tests. 

 
Table 15. Pairwise Comparison for Couple Stress Small Artery 

for 𝑔1 – WSS 

Sample 1-

Sample 2a 

Test 

Statistic 

Std. Test 

Statistic 
Sig.b Adjusted 

Sig.b,c 

𝑓6 − 𝑓5 23.776 .374 .709 1.000 

𝑓6 − 𝑓4 70.006 1.100 .271 1.000 

𝑓6 − 𝑓3 116.625 1.832 .067 1.000 

𝑓6 − 𝑓2 165.462 2.600 .009 .140 

𝑓6 − 𝑓1 212.419 3.337 .001 .013 

𝑓5 − 𝑓4 46.230 .726 .468 1.000 

𝑓5 − 𝑓3 92.849 1.459 .145 1.000 

𝑓5 − 𝑓2 141.686 2.226 .026 .390 

𝑓5 − 𝑓1 188.643 2.964 .003 .046 

𝑓4 − 𝑓3 46.619 .732 .464 1.000 

𝑓4 − 𝑓2 95.456 1.500 .134 1.000 

𝑓4 − 𝑓1 142.413 2.238 .025 .379 

𝑓3 − 𝑓2 48.837 .767 .443 1.000 

𝑓3 − 𝑓1 95.794 1.505 .132 1.000 

𝑓2 − 𝑓1 46.957 .738 .461 1.000 

a. Each row tests the null hypothesis that Sample 1 and 

Sample 2 distributions are the same. 

b. Asymptotic significances (2-sided tests) are displayed. 

The significance level is 0.1. 

c. Significance values have been adjusted by the 

Bonferroni correction for multiple tests. 

From Tables 14 and 15, we see that the p-value  

between some pairs (𝑓𝑖 , 𝑓𝑗 ) is more than 0.1, and thus 

the data sets with these values of 'f 'form the 

redundant data set. The list of taper fraction values 

significant on WSS for both the models is 

summarised in Table 16. 
 

Table 16. The categories of 𝑓 significant on WSS for 𝑔1. 
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Newtonian Fluid 

Model 

Couple Stress 

Fluid Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝑓1 

𝑓3 

𝑓5 

𝑓3 

𝑓1 

𝑓3 

𝑓5 

𝑓1 

𝑓6 

 

An exercise similar to this is carried out to identify 

the list of significant taper fraction values on the 

volumetric flow rate (QF) in the group 𝑔1 and the 

results are shown in Table 17. We understand that f 

is significant on WSS in both large and small arteries. 
 

Table 17. The categories of 𝑓 significant on QF for 𝑔1. 

Newtonian Fluid 

Model 

Couple Stress 

Fluid Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝑓1 

𝑓3 

𝑓5 

𝑓1 

𝑓6 

𝑓1 

𝑓3 

𝑓5 

𝑓1 

𝑓3 

𝑓6 

We performed statistical tests for objectives stated 

from (2)-(8) and summarised the outcomes of each in 

Tables 18 to 21. 

Table 18. The significant categories of 𝛽 for 𝑔1.  

WSS QF 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Newtonian 

Fluid Model 

Couple 

Stress Fluid 

Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 

𝛽1 

𝛽3 

𝛽5 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 

𝛽1 

𝛽2 

𝛽4 

𝛽5 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

𝛽5 
 

Table 19. The significant categories of 𝜎 in Couple Stress 

Model. 

WSS QF 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝜎1 

𝜎2 

𝜎3 

𝜎4 

𝜎5 

𝜎1 

𝜎2 

𝜎3 

𝜎4 

𝜎5 

𝜎1 

𝜎2 

𝜎3 

𝜎4 

𝜎5 

𝜎1 

𝜎2 

𝜎3 

𝜎4 

𝜎5 

 

Table 20. The significant categories of 𝜌 for 𝑔1.  

WSS QF 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝜌2 𝜌2 𝜌2 𝜌2 𝜌2 𝜌2 𝜌2 𝜌2 

 

Table 21. The significant categories of 𝜇 for 𝑔1.  

WSS QF 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝜇2 

𝜇1 

𝜇2 

𝜇3 

𝜇2 

𝜇1 

𝜇2 

𝜇3 

𝜇1 

𝜇2 

𝜇3 

𝜇1 

𝜇2 

𝜇3 

𝜇2 

𝜇1 

𝜇2 

𝜇3 

It may be noted that the analyses and conclusions 

presented above are on the first age group in the 

female population. This analysis, when carried out, 

for the remaining age groups in the female population 

and among all the male population's age groups, 

resulted in similar results as presented in Tables 9-21.  

However, the significant heart rate values (𝐻𝑅) vary 

with the age groups in the female population; the 

details are in Table 22. 

Table 22. The significant categories of 𝐻𝑅 in each age group in 

female population. 

Age 

Group 

WSS QF 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Newtonian 

Fluid Model 

Couple Stress 

Fluid Model 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

Large 

Artery 

Small 

Artery 

𝑔1 𝑐2 
𝑐1,𝑐2, 

𝑐3 
𝑐1, 𝑐3 𝑐1, 𝑐3 𝑐2 

𝑐1,𝑐2, 

𝑐3 
𝑐1, 𝑐3 𝑐1, 𝑐3 

𝑔2 𝑐5 
𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 𝑐5 

𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 

𝑔3 𝑐5 
𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 𝑐5 

𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 

𝑔4 𝑐6 
𝑐4, 𝑐6, 

𝑐8 
𝑐4, 𝑐8 𝑐4, 𝑐8 𝑐6 

𝑐4, 𝑐6, 

𝑐8 
𝑐4, 𝑐8 𝑐4, 𝑐8 

𝑔5 𝑐6 
𝑐4, 𝑐6, 

𝑐8 
𝑐4, 𝑐8 𝑐4, 𝑐8 𝑐6 

𝑐4, 𝑐6, 

𝑐8 
𝑐4, 𝑐8 𝑐4, 𝑐8 

𝑔6 𝑐6 
𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 𝑐6 

𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 

𝑔7 𝑐6 
𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 𝑐6 

𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 

𝑔8 𝑐6 
𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 𝑐6 

𝑐4, 𝑐6, 

𝑐7 
𝑐4, 𝑐7 𝑐4, 𝑐7 

𝑔9 𝑐5 
𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 𝑐5 

𝑐3, 𝑐5, 

𝑐6 
𝑐3, 𝑐6 𝑐3, 𝑐6 

 

Finally, we could identify the model parameters' 

significant values on WSS and QF in each age group 

and for both male and female populations and 

thereby, the input set's redundant data.  The input data 

set is then refined, and a comparison of the dataset's 

size is presented in Tables 23 and 24. 
 

6 Conclusion 
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This paper proposed a novel technique for identifying 

redundancy in the input data set for the mathematical 

models developed for simulating the human arterial 

system. The input data set consisted of a finite 

number of values from a range of the permissible 

values derived from clinical observations or 

mathematical constraints on the model parameters. 

Though the values appear to differ significantly, it is 

presumed that some of the generated data sets mimic 

the same state of the system. For instance, the values 

of WSS in the Newtonian model, large arteries 

computed at the heart rates of 70, 72 and 73 bpm in 

the age group 𝑔1 with all other parameters fixed,  

were 7.7334, 7.73308 and 7.73301, respectively. 

Thus, we see not much difference in the values of 

WSS computed for these three data values. This 

paper presents statistical testing methods to identify 

such data values as these. We proposed the non-

parametric one-way and pairwise tests, and we see 

from Table 9-22 that the proposed methods could 

efficiently identify such redundant data sets. We then 

computed the input data set's size by removing all 

such redundant or insignificant values and presented 

the details in Tables 23 and 24. Since the data used 

for simulations is on healthy individuals, this radical 

reduction in the data set size looks no strange. We 

expect that the size reduction might not be this 

unusual for unhealthy arteries, which we wish to 

explore in our next work.  

 
Table 23. The size of input data before and after refining - 

Newtonian Model. 

 
Large Artery Small Artery 

Before After Before After 

WSS 7290 135 7290 243 

QF 7290 405 7290 432 

 

 

 

 

Table 24. The size of input data before and after refining - 

Couple Stress Model. 

 
Large Artery Small Artery 

Before After Before After 

WSS 36450 1350 36450 2700 

QF 36450 1350 36450 4050 
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