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Abstract: - Numerical simulation of the non-isothermal flow of viscoelastic polymeric liquid between two 
coaxial cylinders has been done on the basis of the rheological mesoscopic Pokrovskii–Vinogradov model. 
Boundary value problem for the nonlinear equation determining the velocity profile is posed. For solving it a 
pseudospectral numerical algorithm of increased accuracy based on Chebyshev approximations has been 
designed. The stationary numerical solutions of the posed problem are obtained for wide range of values of 
physical parameters and for record-low values of the radius 𝑟𝑟0 of inner cylinder. A posteriori estimates of the 
truncation and round-off errors of the algorithm has been derived. Numerical analysis of these errors depending 
on the number of grid nodes and on the values of radius 𝑟𝑟0 is also performed. 
 
Key-Words: - Polymeric liquid, Pokrovskii–Vinorgadov model, Chebyshev approximation, algorithm without 
saturation, pseudospectral method, stabilization method, truncation error, round-off error 
 
1 Introduction 

Nowadays additive manufacturing (3D printing) 
can be applied to different scopes. They include 
health and sport industries, aviation and space 
applications, etc. The active development of 3D 
printing using polymer materials causes a need in 
analysis and design of new mathematical models 
describing with high reliability the flow of solutions 
and melts of polymers in the channels of printing 
devices. However, the macromolecular structure of 
polymer is very difficult. When simulating the flow 
of their solutions and melts for industrial 
applications, it is important to simultaneously take 
into account such properties as viscosity, anisotropy, 
heat transfer upon the channel walls, gravity and 
others. To this end we use the modified rheological 
Pokrovskii–Vinogradov model, which is a system of 
nonlinear three-dimensional equations in partial 
derivatives [1]. This model describes the most 
important properties of the flows of polymeric 
liquids on the basis of the mesoscopic theory of 
polymer dynamics, [2]–[4]. In this paper, we 
explore the stationary numerical solutions that are 
qualitatively similar to classical Poiseuille ones. 

 

On the basis of the ideas from [5]–[7] we pose 
the boundary value problem for a second-order 
quasi-linear equation describing the distribution of 
the velocity of flow through the channel formed by 
two cylinders in the case of axial symmetry. 
Numerical solutions of the boundary value problem 
have been found by a nonlocal pseudospectral 
algorithm (see [8]) based on Chebyshev 
approximations. Numerical tests for a variety of 
regimes of flow have been done and the solutions 
for record-low values of the radius r0 of the inner 
cylinder have been obtained. 

 
It is worth noting, that the asymptotic of error of 

Chebyshev approximations and of the nonlocal 
algorithm strictly corresponds to that of the best 
polynomial approximations [9, 10] (in Russian 
literature this property is known as ”the absence of 
saturation of the algorithm”, see [11]). This enables 
us to derive the reliable and accurate error estimates 
for approximate solutions to the considered 
boundary value problem and to get rich information 
on its main singularities. The error of numerical 
solution is a sum of the truncation error 𝜀𝜀𝑀𝑀   and the 
round-off error 𝜀𝜀𝑅𝑅  . In this work the dependence of 
these two errors on the number of grid nodes and on 
the value of 𝑟𝑟0 is investigated up to extremely small 
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values of 𝑟𝑟0  =  0.0002. It should be noted, that 
exactly the case of extremely small 𝑟𝑟0 (when the 
inner cylinder is the thin heating element) is the 
most prospective technological solution, allowing 
for controlling the flows of polymeric liquid while 
printing, see [7]. 
 
 
2 Problem Formulation 

Let two cylinders with radii 𝑟𝑟0 and 1 (𝑟𝑟0  ≤  𝑟𝑟 ≤
 1) form the channel in a 3D printing machine (see 
Fig. 1) and let (𝑥𝑥,𝑦𝑦, 𝑧𝑧) be the Cartesian coordinate 
system. We will consider non-isothermal flows of a 
polymeric liquid similar to Poiseuille ones, that are 
the flows under a constant pressure drop along x-
axis with zero transverse components of the velocity 
vector and with all variables depending only on two 
coordinates 𝑦𝑦 and 𝑧𝑧. In [6] after cumbersome trans-
formations of the mesoscopic rheological 
Pokrovskii–Vinogradov model the resolving 
equation in cross-section of the channel was 
obtained. In [7] after passage to the polar coordinate 
system  𝑟𝑟,𝜑𝜑 (𝑦𝑦 =  𝑟𝑟 cos𝜑𝜑 , 𝑧𝑧 =  𝑟𝑟 sin𝜑𝜑 )  and 
accounting for the axial symmetry of our problem, 
we have derived the following ordinary differential 
equation for the longitudinal component 𝑢𝑢 =
 𝑢𝑢(𝑟𝑟), 0 <  𝑟𝑟0  ≤  𝑟𝑟 ≤  1, of the velocity vector 

 
  𝑟𝑟𝑟𝑟𝑢𝑢′′ + Γ𝑢𝑢′ = −𝑟𝑟𝐺𝐺�𝐾𝐾               (1) 
 
where 

𝑟𝑟 =
(1 −ᴂ2 �͂�𝑡2)(1 + �͂�𝑡2)

𝑄𝑄
, 

Γ = 1 + �̅�𝜃
Φ − 𝑟𝑟(𝐸𝐸�𝐴𝐴 + Φ)

ln 𝑟𝑟0Φ2 
, 

                𝐺𝐺� = 𝐷𝐷� + 𝔗𝔗Φ−1
θ�

, 𝐾𝐾 = 𝐾𝐾�
𝐽𝐽

,  (2) 

𝐾𝐾� =
Λ(1 + ᴂ2 �̃�𝑡2)

2�̃�𝑡
, 𝐷𝐷� = 𝑅𝑅𝑅𝑅�̂�𝐴, 

 ᴂ2 =
1 + 𝜌𝜌
1 − 𝜌𝜌

, 𝜌𝜌 = 2𝛽𝛽 − 1, 

 
𝛽𝛽 (0 <  𝛽𝛽 <  1) is the phenomenological 

parameter of rheological model that takes into 
account the orientation of macromolecular coil (see 
[5, 6]),  

𝐽𝐽 = exp �−𝐸𝐸�𝐴𝐴
Φ − 1
Φ

� , �̃�𝑡 =
1

𝑔𝑔� + �𝑔𝑔�2 − 1 
,  

𝑔𝑔� =
1 + √1 + 4Λ2

2Λ
, Λ = �1 − 𝜌𝜌2𝑊𝑊�̅�𝜏0𝜆𝜆, 

       �̅�𝜏0 = 𝐽𝐽/Φ,  𝜆𝜆2 = (𝑢𝑢′)2, (𝜆𝜆 = |𝑢𝑢′ |),  (3) 

𝑄𝑄 = 1 −ᴂ2 �̃�𝑡4 −
6𝜌𝜌�̃�𝑡2

1 − 𝜌𝜌
+

4Λ𝑡𝑡 �(1 − �̃�𝑡2)
1 − 𝜌𝜌

, 

G = Ra
Pr

 (Grashof       number),   𝔗𝔗 = Ra  Re
Pr

,   Ra 
(Rayleigh number),   Pr (Prandtl number),  
Re (Reynolds number),  E�A  (activation      energy),  
�̂�𝐴 (dismensionless pressure drop in the channel), W 
(Weissenberg number),  �̅�𝜃 (relative temperature 
difference between outer and inner cylinders, if 
heating from the inside, then  𝜃𝜃�  > 0, if heating from 
the outside, then �̅�𝜃 < 0) are the constant parameters 
described in [5]–[7]. 

 
Remark 1 The function Φ is stationary solution 

of the heat conduction equation 
 

Φ𝑡𝑡 + (𝒖𝒖,∇)Φ = ∆𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧Φ/Pr,   (4) 
 
with boundary conditions 
 
Φ = 1 + �̅�𝜃 𝑎𝑎𝑎𝑎 𝑟𝑟 = 𝑟𝑟0, Φ = 1 𝑎𝑎𝑎𝑎 𝑟𝑟 = 1. 

 
Here 𝒖𝒖 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the vector of velocity of 

the flow, ∆𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧  is Laplace operator,  

Φ = 1 + 𝜃𝜃�(𝑇𝑇−𝑇𝑇0)
𝜃𝜃

, �̅�𝜃 = 𝜃𝜃
𝑇𝑇0

, T is temperature, 𝑇𝑇0  is the 
mean value of the temperature, 𝜃𝜃 is the constant 
temperature difference between the outer and the 
inner cylinders. Assuming that Φ = Φ(𝑦𝑦, 𝑧𝑧), 𝑢𝑢 =
𝑢𝑢(𝑦𝑦, 𝑧𝑧), 𝑣𝑣 = 𝑤𝑤 ≡ 0, after passage in (4) to the polar 
coordinate system, one obtains  
Φ = 1 + �̅�𝜃 ln 𝑟𝑟

ln 𝑟𝑟0
.  

 

 
 

Fig. 1: Channel formed by two coaxial cylinders 
 
It is necessary to complement the equation (1) 

with boundary (no-slip) conditions 
 
                               𝑢𝑢|𝑟𝑟=𝑟𝑟0,1 = 0.                          (5) 
     
We pay attention to the case when 𝑟𝑟0 is small. In 

this case the boundary value problem (1), (5) has 
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singularity in the neighborhood of the left boundary 
𝑟𝑟 = 𝑟𝑟0 (near the wall of the inner cylinder). This sin-
gularity affects the solution significantly and 
presents a fundamental difficulty for the most 
commonly used numerical methods. 

 
 

3 Design of the numerical algorithm 
We rewrite (1) in the form  
 
𝑢𝑢𝑟𝑟𝑟𝑟 = (−𝐺𝐺�𝐾𝐾 − Γ𝑢𝑢𝑟𝑟/𝑟𝑟)/𝑟𝑟 = 𝑓𝑓(𝑟𝑟,𝑢𝑢𝑟𝑟).             (6) 

 
For solving (6) we use the iterative time-stepping 

stabilization technique. To this end, we introduce a 
fictive time variable 𝑡𝑡 that will be used for iterations 
and the regularizing operator (the regularization) 𝐵𝐵𝑡𝑡 . 
Assuming that 𝑢𝑢 = 𝑢𝑢(𝑟𝑟, 𝑡𝑡) we seek the solution of 
(6) as the limit of solutions of the evolution equation  

 
   𝐵𝐵𝑡𝑡𝑢𝑢 = 𝑢𝑢𝑟𝑟𝑟𝑟 − 𝑓𝑓(𝑟𝑟, 𝑢𝑢𝑟𝑟)    (7) 
 

as 𝑡𝑡 → ∞. 
Here 𝐵𝐵𝑡𝑡  is the Sobolev’s regularization 𝐵𝐵𝑡𝑡 =

�𝑘𝑘1 − 𝑘𝑘2
 𝜕𝜕2

𝜕𝜕𝑟𝑟2�
𝜕𝜕
𝜕𝜕𝑡𝑡

,   where 𝑘𝑘1,𝑘𝑘2 > 0  are constants. 
Introducing the grid with respect to t with the step 𝜏𝜏 
and the nodes 𝑡𝑡𝑛𝑛 = 𝑛𝑛𝜏𝜏, 𝑛𝑛 = 1,2, … and denoting   
𝑢𝑢[𝑛𝑛] = 𝑢𝑢[𝑛𝑛](𝑟𝑟) = 𝑢𝑢(𝑟𝑟, 𝑡𝑡𝑛𝑛) we approximate the 
derivative 𝑢𝑢𝑡𝑡  by the difference relation  
(𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛−1])/𝜏𝜏. As a result, we obtain the 
following formula  

 

𝑘𝑘1𝑢𝑢[𝑛𝑛] − (𝑘𝑘2 + 𝜏𝜏)𝑢𝑢𝑟𝑟𝑟𝑟
[𝑛𝑛] = �𝑘𝑘1 − 𝑘𝑘2

 𝜕𝜕2

𝜕𝜕𝑟𝑟2�𝑢𝑢
[𝑛𝑛−1] 

               −𝜏𝜏𝑓𝑓 �𝑟𝑟,𝑢𝑢𝑟𝑟
[𝑛𝑛−1]� = 𝑓𝑓�𝑟𝑟,𝑢𝑢[𝑛𝑛−1]�.  (8) 

    
The idea of method consists in finding the 

solution 𝑢𝑢[𝑛𝑛] of (8) on the current time step using its 
values 𝑢𝑢[𝑛𝑛−1] from the previous step. These 
operations are repeated until the difference between 
the solutions at the previous and next time steps 
becomes small enough. We use the stopping criteria  

 
       ‖𝐵𝐵𝑡𝑡𝑢𝑢‖ < 𝜀𝜀𝑆𝑆 ,               (9) 

 
where 𝜀𝜀𝑆𝑆 is the error (or residual) of the stabilization 
process, ‖⋅‖ is the uniform norm of function (it is 
assumed to be continuous). Below we use 𝜀𝜀𝑆𝑆 =
10−14. 

To approximate the function u and its derivatives 
with respect to r in regularized equations the 
modified interpolation polynomial with Chebyshev 
nodes written in the Lagrange form is used  

 

𝑢𝑢(𝑟𝑟) ≈ 𝑝𝑝(𝑢𝑢, 𝑟𝑟) = �
𝑎𝑎��̃�𝑟, 𝑟𝑟𝑗𝑗 �𝑇𝑇𝑁𝑁(�̃�𝑟)
��̃�𝑟 − 𝑟𝑟𝑗𝑗 �𝑇𝑇𝑁𝑁′ �𝑟𝑟𝑗𝑗 �

𝑢𝑢��̃�𝑟𝑗𝑗 �,
𝑁𝑁

𝑗𝑗=1

 

𝑎𝑎��̃�𝑟, 𝑟𝑟𝑗𝑗 � = 1−𝑟𝑟̃2

1−𝑟𝑟�̃�𝑗
2 , 𝑟𝑟𝑗𝑗 = cos 2𝑗𝑗−1

2𝑁𝑁
𝜋𝜋,               (10) 

    
where 𝑇𝑇𝑁𝑁(�̃�𝑟) = cos(𝑁𝑁arccos 𝑟𝑟�),  𝑟𝑟� = 2

1−𝑟𝑟0
�𝑟𝑟 −

1+𝑟𝑟0
2

 � ∈ [−1,1], �̃�𝑟𝑗𝑗 = 𝑟𝑟𝑗𝑗
1−𝑟𝑟0

2
+ 1+𝑟𝑟0

2
.   

The factor 𝑎𝑎(�̃�𝑟, 𝑟𝑟𝑗𝑗 )  automatically provides 
accounting for homogenous boundary conditions (5) 
for function 𝑢𝑢, therefore we called the polynomial 
(10) as "modified". 

For solving the equation (8) we use the 
expansion (10) and the collocation method. The 
expansion (10) was differentiated with respect to 𝑟𝑟. 
Further we shall use the notations  𝑈𝑈 = 𝑈𝑈[𝑛𝑛] =
�𝑢𝑢(�̃�𝑟1), … ,𝑢𝑢(�̃�𝑟𝑁𝑁)�𝑇𝑇 ,𝑈𝑈𝑟𝑟 = �𝑢𝑢′(�̃�𝑟1), … , 𝑢𝑢′(�̃�𝑟𝑁𝑁)�𝑇𝑇 ,
𝑈𝑈𝑟𝑟𝑟𝑟 = �𝑢𝑢′′(�̃�𝑟1), … ,𝑢𝑢′′(�̃�𝑟𝑁𝑁)�𝑇𝑇. Here the upper index 
"[𝑛𝑛]" of the components of vectors is omitted. 

 
𝑝𝑝′(𝑢𝑢, 𝑟𝑟) = 2

1−𝑟𝑟0
∑ (−1)𝑗𝑗−1𝑢𝑢𝑗𝑗 ⋅𝑁𝑁
𝑗𝑗=1              (11) 

⋅ �2𝑟𝑟̃𝑟𝑟𝑗𝑗−𝑟𝑟̃2−1

𝑁𝑁�𝑟𝑟̃−𝑟𝑟𝑗𝑗 �
2𝑞𝑞𝑗𝑗

𝑇𝑇𝑁𝑁(�̃�𝑟) + 𝑞𝑞
𝑞𝑞𝑗𝑗 �𝑟𝑟̃−𝑟𝑟𝑗𝑗 �

�1 − 𝑇𝑇𝑁𝑁2(�̃�𝑟)�,         

 
𝑝𝑝′′ (𝑢𝑢, 𝑟𝑟) = 4

(1−𝑟𝑟0)2 ∑ (−1)𝑗𝑗−1𝑢𝑢𝑗𝑗 ⋅𝑁𝑁
𝑗𝑗=1  (12) 

⋅ �
2𝑞𝑞𝑗𝑗

2−𝑁𝑁2�𝑟𝑟̃−𝑟𝑟𝑗𝑗 �
2

𝑁𝑁�𝑟𝑟̃−𝑟𝑟𝑗𝑗 �
3𝑞𝑞𝑗𝑗

𝑇𝑇𝑁𝑁(�̃�𝑟)− (𝑟𝑟̃2−3𝑟𝑟̃𝑟𝑟𝑗𝑗+2)

𝑞𝑞𝑞𝑞𝑗𝑗 �𝑟𝑟̃−𝑟𝑟𝑗𝑗 �
2 �1 − 𝑇𝑇𝑁𝑁2(�̃�𝑟)�,   

  

where 𝑞𝑞 = √1 − 𝑟𝑟2, 𝑞𝑞𝑗𝑗 = �1 − 𝑟𝑟𝑗𝑗2. 

The limit expressions of the first-order and of the 
second-order derivatives (11), (12) as 𝑟𝑟 →  �̃�𝑟𝑖𝑖  were 
obtained using l’Hospital’s rule. 

 

𝑝𝑝′(𝑢𝑢, 𝑟𝑟𝑖𝑖) = 𝐶𝐶𝑟𝑟0

⎝

⎜
⎛
�(−1)𝑖𝑖+𝑗𝑗 𝔞𝔞𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗 − 𝔫𝔫𝑖𝑖𝑢𝑢𝑖𝑖

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖 ⎠

⎟
⎞

, 

𝑝𝑝′′ (𝑢𝑢, 𝑟𝑟𝑖𝑖) =  𝐶𝐶𝑟𝑟0
2

⎝

⎜
⎛
�(−1)𝑖𝑖+𝑗𝑗−1𝑎𝑎𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗 − 𝜈𝜈𝑖𝑖𝑢𝑢𝑖𝑖

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖 ⎠

⎟
⎞

, 

 
where  
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𝐶𝐶𝑟𝑟0 = 2
1−𝑟𝑟0

, 𝔞𝔞𝑖𝑖𝑗𝑗 = (−1)𝑖𝑖+𝑗𝑗 𝑞𝑞𝑖𝑖
𝑞𝑞𝑗𝑗 �𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗 �

,   

𝑎𝑎𝑖𝑖𝑗𝑗 = (−1)𝑖𝑖+𝑗𝑗 2𝑞𝑞𝑖𝑖
2+3𝑟𝑟𝑖𝑖�𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗 �

𝑞𝑞𝑗𝑗 𝑞𝑞𝑖𝑖�𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗 �
2  ,               (15) 

𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗,  
 
  𝔫𝔫𝑖𝑖 = − 3𝑟𝑟𝑖𝑖

2𝑞𝑞𝑖𝑖
2,             (16) 

𝜈𝜈𝑖𝑖 = −((𝑁𝑁2 + 5)𝑞𝑞𝑖𝑖2 + 3𝑟𝑟𝑖𝑖2)/(3𝑞𝑞𝑖𝑖4), 𝑖𝑖 = 1, … ,𝑁𝑁.  
   
Now we can form the 𝑁𝑁 × 𝑁𝑁 matrices  
 

𝔄𝔄 = 𝐶𝐶𝑟𝑟0 �

𝔫𝔫1 𝔞𝔞12 ⋯ 𝔞𝔞1𝑁𝑁
𝔞𝔞21 𝔫𝔫2 ⋯ 𝔞𝔞2𝑁𝑁
⋮ ⋮ ⋯ ⋮
𝔞𝔞𝑁𝑁1 𝔞𝔞𝑁𝑁2 ⋯ 𝔫𝔫𝑁𝑁

�,             (17)  

 

      𝐴𝐴 = 𝐶𝐶𝑟𝑟0
2 �

𝜈𝜈1 𝑎𝑎12 ⋯ 𝑎𝑎1𝑁𝑁
𝑎𝑎21 𝜈𝜈2 ⋯ 𝑎𝑎2𝑁𝑁
⋮ ⋮ ⋯ ⋮
𝑎𝑎𝑁𝑁1 𝑎𝑎𝑁𝑁2 ⋯ 𝜈𝜈𝑁𝑁

�             (18)  

   
approximating the first-order and the second-order 
derivatives:  

 
  𝑈𝑈𝑟𝑟 ≈ 𝔄𝔄𝑈𝑈,𝑈𝑈𝑟𝑟𝑟𝑟 ≈ 𝐴𝐴𝑈𝑈.             (19) 
   
We construct the algorithm, using the spectral 

decomposition of the matrix A approximating the 
second-order derivatives:  

 
   𝐴𝐴 = 𝑅𝑅𝐴𝐴𝐷𝐷𝐴𝐴𝑅𝑅𝐴𝐴−1,               (20) 
 

where 𝑅𝑅𝐴𝐴 is the matrix of eigenvectors of A; 𝐷𝐷𝐴𝐴 is 
the diagonal matrix containing the eigenvalues 𝑑𝑑𝐴𝐴

𝑗𝑗  of 
𝐴𝐴, 𝑗𝑗 = 1, . . . ,𝑁𝑁. The decomposition (20) should be 
done once before running the iterative process. This 
helps us to reduce the computational costs of the 
algorithm. 

Solving (8) by using (10) and collocation method 
we reduce our problem to the problem of linear 
algebra with the matrix 𝑘𝑘1𝐸𝐸 − (𝑘𝑘2 + 𝜏𝜏)𝐴𝐴 (𝐸𝐸 is the 
identity matrix). Multiplying this system by the 
matrix 𝑅𝑅𝐴𝐴−1 from the left, we have  

 
𝑘𝑘1𝑉𝑉[𝑛𝑛] − (𝑘𝑘2 + 𝜏𝜏)𝐷𝐷𝐴𝐴𝑉𝑉[𝑛𝑛] = 𝐺𝐺[𝑛𝑛],             (21) 
 

where 𝑉𝑉[𝑛𝑛] = 𝑅𝑅𝐴𝐴−1𝑈𝑈[𝑛𝑛],𝐺𝐺[𝑛𝑛] = 𝑅𝑅𝐴𝐴−1𝐹𝐹�(𝑈𝑈[𝑛𝑛−1]) are 
vectors of the size 𝑁𝑁,𝐹𝐹� = 𝐹𝐹�(𝑈𝑈[𝑛𝑛−1]) is the vector of 
values of 𝑓𝑓(𝑟𝑟,𝑢𝑢[𝑛𝑛−1])  in the collocation nodes �̃�𝑟𝑗𝑗 , 
𝑗𝑗 = 1, . . . ,𝑁𝑁. As a result, we come to the formula 
expressing the components of the vector 𝑉𝑉[𝑛𝑛] 
through the values of components 𝑔𝑔𝑗𝑗  of the vector 
𝐺𝐺[𝑛𝑛]:  

 
            𝑣𝑣𝑗𝑗 = 𝑔𝑔𝑗𝑗

𝑘𝑘1−(𝑘𝑘2+𝜏𝜏)𝑑𝑑𝐴𝐴
𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁.             (22)

    
     After finding the components of the vector 

𝑉𝑉[𝑛𝑛] on the 𝑛𝑛th time step, we can get the solution: 
𝑈𝑈[𝑛𝑛] = 𝑅𝑅𝐴𝐴𝑉𝑉[𝑛𝑛]. The formulas (22) imply that the 
conditions necessary for convergence of the 
proposed method are satisfied, i.e.  

 
  𝜏𝜏 ≠ 𝑘𝑘1

𝑑𝑑𝐴𝐴
𝑗𝑗 − 𝑘𝑘2,∀𝑗𝑗.                          (23) 

    
Note, that the number of operations required for 

computing the solution on each time step is 
determined by the products of matrices and vectors, 
namely 𝐺𝐺[𝑛𝑛] = 𝑅𝑅𝐴𝐴−1𝐹𝐹�(𝑈𝑈[𝑛𝑛−1]) and 𝑈𝑈[𝑛𝑛] = 𝑅𝑅𝐴𝐴𝑉𝑉[𝑛𝑛]. It 
is equal to 2𝑁𝑁2 by the order of the magnitude of 𝑁𝑁. 

A significant advantage of the proposed 
algorithm is the use of (10). It guarantees, that the 
numerical solution will asymptotically satisfy the 
estimates of error of the best polynomial 
approximations for any order of smoothness (or 
regularity) of the desired solution. More precisely, 
in the case of finite order of smoothness (𝑢𝑢 ∈
𝐶𝐶𝑟𝑟[𝑟𝑟0, 1] ), we get the algebraic rate of convergence 
of the order 𝜌𝜌 ∈ [𝑟𝑟, 𝑟𝑟 + 1],  
[9, 10]; in the case of infinite smoothness the 
geometric rate of convergence can be achieved for 
functions with singularities in the complex plain and 
the super-geometric rate is observed for entire 
functions, see [12,13]. In numerical tests we 
checked, that our algorithm does not reduce the rate 
of convergence of its approximation while solving 
differential equations, i.e. its rate is close to that for 
the best polynomial approximations. Therefore, the 
algorithm does not have saturation [11], that 
enables us to set the strict correspondence between 
its rate of convergence and the order of smoothness 
(or regularity) of the sought-for solution and also 
gives an opportunity to use the error estimates of the 
best polynomial approximations for calculating the 
truncation error. Thereby, the described algorithm 
enables us to obtain the approximate solution to the 
problem (1), (5) with the error control for record-
low values of 𝑟𝑟0 (which is the most important for 
industrial applications). 

 
 
4 Estimation of the round-off error 

The implementation of any method on computer 
with floating point arithmetic implies the rounding 
of real numbers. The reason is that the length of 
mantissa of real number in the computer’s memory 
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is always restricted by finite number of digits 𝑙𝑙 
(usually for float format 𝑙𝑙=8, for double format 𝑙𝑙 
=16, for quadruple format 𝑙𝑙 =32, etc). All the digits 
that do not fit within these restrictions are dropped 
and, while writing the number 𝑎𝑎 into computer’s 
memory, this causes the occurrence of the error 𝛿𝛿𝑎𝑎 , 
i.e. 𝑎𝑎 → 𝑎𝑎 + 𝛿𝛿𝑎𝑎 . The value 𝛿𝛿𝑎𝑎  is usually unknown, 
but there is the estimate |𝛿𝛿𝑎𝑎 | ≤ 𝛿𝛿|𝑎𝑎|, where 𝛿𝛿  is the 
relative round-off error, 𝛿𝛿 = 10−𝑙𝑙+1. During 
calculations the round-off errors accumulate. It may 
lead to the catastrophic loss of accuracy. Thus, one 
needs the reliable and accurate estimate describing 
the behavior of round-off error 𝜀𝜀𝑅𝑅  of the obtained 
solution. Such estimates are usually derived for 
problems of linear algebra using the methods of 
interval analysis [14, 15], or by means of 
construction of a priory estimates [16, 17]. 

In order to estimate 𝜀𝜀𝑅𝑅  in our problem, let us 
recall the way of finding a solution to regularized 
equation (8) after its discretization: 

 
𝑈𝑈[𝑛𝑛] = (𝑘𝑘1𝐸𝐸 − (𝑘𝑘2 + 𝜏𝜏)𝐴𝐴)−1𝐹𝐹��𝑈𝑈[𝑛𝑛−1]� 

                            ⇒ 𝑈𝑈[𝑛𝑛] = 𝑆𝑆�𝑈𝑈[𝑛𝑛−1]�,            (24) 
 

where 𝑆𝑆:ℝ𝑁𝑁 → ℝ𝑁𝑁  is the nonlinear operator. 
We assume that the system of nonlinear 

equations written in collocation nodes has the 
solution. It means, that the sequence of solutions 
𝑈𝑈[𝑛𝑛] ∊ ℝ𝑁𝑁 under the action of operator 𝑆𝑆 should 
converge to the vector 𝑈𝑈[𝑛𝑛] ∊ ℝ𝑁𝑁 of values of 
polynomial 𝑝𝑝(𝑢𝑢, 𝑟𝑟) (see (10)) in collocation nodes, 
that satisfy exactly the initial nonlinear equation (1) 
in these nodes. The necessary and sufficient 
condition for such convergence is the requirement 
for 𝑆𝑆 to be the contraction mapping. 

According to the Banach fixed-point theorem, if 
𝑆𝑆 is the contraction mapping, then it has the unique 
fixed point and the stabilization iterations converge 
uniformly with geometric decay of the error. We use 
this fact to construct the round-off error estimate. 
Let us consider the Fig. 2.  

  

 
  

Fig. 2: Convergence of the stabilization method 
to the solution 𝑈𝑈 

 
On the time step 𝑛𝑛∗, when 𝑈𝑈[𝑛𝑛∗] approaches close 

enough to the vector 𝑈𝑈 (in the Figure this domain is 
denoted by oval), the uniform convergence fails. 
The subsequent solutions may leave this domain 
(the example is denoted by thin solid line) moving 
away from the solution 𝑈𝑈 further, than they were on 
the previous time steps. This happens by virtue of 
the round-off error 𝜀𝜀𝑅𝑅 . In case of absence of 𝜀𝜀𝑅𝑅  the 
sequence 𝑈𝑈[𝑛𝑛] would continue to converge to 
solution 𝑈𝑈 with the geometric decay of the norm 
�𝑈𝑈[𝑛𝑛] − 𝑈𝑈[𝑛𝑛−1]� as the dashed line shows. 

The idea is to estimate the length of the path 
from 𝑈𝑈[𝑛𝑛∗] to 𝑈𝑈. This length is the sum of lengthes 
of the segments denoted by dashed line. As soon as 
the given stabilization residual is reached, i.e. the 
inequality (9) is satisfied, we denote the number of 
this step by 𝑛𝑛 = 𝑛𝑛∗ and search the step 𝑛𝑛∗ > 𝑛𝑛∗ such 
that [𝑛𝑛∗,𝑛𝑛∗] is the largest segment of uniform 
convergence observed in numerical test. By the 
following formulas  

 

                            𝑧𝑧𝑛𝑛 = �𝑈𝑈[𝑛𝑛+1]−𝑈𝑈[𝑛𝑛 ]�
�𝑈𝑈[𝑛𝑛 ]−𝑈𝑈[𝑛𝑛−1]�

,                  (25) 

𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥𝑁𝑁 = max
𝑛𝑛=𝑛𝑛∗,…,𝑛𝑛∗

(𝑧𝑧𝑛𝑛),𝑈𝑈[𝑛𝑛] ∊ ℝ𝑁𝑁 , 

   
we calculate 𝑧𝑧𝑛𝑛  while 𝑛𝑛 increases starting from 𝑛𝑛∗. 
If 𝑧𝑧𝑛𝑛<1, then the convergence is uniform. If 𝑧𝑧𝑛𝑛 ≥1, 
i.e. the solution lays on the oval in Fig. 2, then the 
uniform convergence fails and the current 𝑛𝑛 = 𝑛𝑛∗ 
(these arguments are correct only if the parameters 
𝑘𝑘1,𝑘𝑘2, 𝜏𝜏 are chosen so that the convergence begins 
with the first step). In this moment we stop the 
iterations and computation of 𝑧𝑧𝑛𝑛  and calculate 
𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥𝑁𝑁 . The obtained value of 𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥𝑁𝑁  approximates the 
Lipschitz constant of 𝑆𝑆(𝑈𝑈) with high accuracy, 
since it is computed as a maximum over a large 
number of iterations 𝕂𝕂 = 𝑛𝑛∗ − 𝑛𝑛∗ (in our tests 𝕂𝕂>50 
always). Let 𝜀𝜀 𝑅𝑅

[𝑛𝑛∗] be the estimate of the distance 
from 𝑈𝑈[𝑛𝑛∗] to 𝑈𝑈. According to the Banach fixed-
point theorem one has  

 

                          𝜀𝜀𝑅𝑅
[𝑛𝑛∗] ≤

�𝑈𝑈 [𝑛𝑛∗]−𝑈𝑈[𝑛𝑛∗−1]� 

1−𝜒𝜒𝑚𝑚𝑎𝑎𝑥𝑥𝑁𝑁              (26) 
    
Below we estimate the growth of the round-off 

error 𝜀𝜀𝑅𝑅  while passing to the next (𝑛𝑛∗ + 1)th step. 
This characterizes the numerical stability of the 
proposed algorithm. To this end we carefully 
analyzed the scheme of algorithm and took into 
account that the multiplication of matrices by 
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vectors 𝐴𝐴𝑈𝑈 gives the following round-off error: 
‖𝛿𝛿𝐴𝐴𝑈𝑈‖ ≤ 𝑁𝑁𝐴𝐴∞(𝛿𝛿‖𝑈𝑈‖+ ‖𝛿𝛿𝑈𝑈‖), where 𝛿𝛿𝐴𝐴𝑈𝑈   is the 
matrix with elements (𝛿𝛿𝐴𝐴𝑈𝑈)𝑖𝑖𝑗𝑗  that are the numerical 
disturbances of the elements of matrix 𝐴𝐴𝑈𝑈 caused by 
the round-off error, 𝛿𝛿𝑈𝑈  is the vector with 
components (𝛿𝛿𝑈𝑈)𝑗𝑗  that are the numerical 
disturbances of the components of vector 𝑈𝑈, 
𝑁𝑁𝐴𝐴∞ = ‖𝐴𝐴‖∞ = max𝑗𝑗=1,…,𝑁𝑁 ∑ �𝑎𝑎𝑖𝑖𝑗𝑗 � 𝑁𝑁

𝑗𝑗=1 . 
By using the estimate |𝛿𝛿𝑎𝑎 | ≤ 𝛿𝛿|𝑎𝑎| and the Taylor 

expansion of the disturbances of each operation 
from the right hand side of (6) in the vicinity of 
𝛿𝛿 = 0 and by taking only the linear part of this 
expansion, we finally derived the estimate of 
�𝛿𝛿𝐹𝐹� � 𝜀𝜀𝑅𝑅

[𝑛𝑛∗]��. It enabled us to calculate the 
following a posteriori estimate:  

 𝜀𝜀𝑅𝑅
[𝑛𝑛∗+1] ≤ 𝛿𝛿 𝑁𝑁𝑅𝑅𝐴𝐴

∞ �𝑉𝑉[𝑛𝑛∗+1]� 

             +𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑅𝑅𝐴𝐴
∞ 𝛿𝛿�𝐹𝐹� � 𝜀𝜀𝑅𝑅

[𝑛𝑛∗]��+�𝛿𝛿𝐹𝐹�� 𝜀𝜀𝑅𝑅
[𝑛𝑛∗]��

min𝑗𝑗 |𝑘𝑘1−(𝑘𝑘2+𝜏𝜏)𝑑𝑑𝐴𝐴
𝑗𝑗 |

.       (27)           

    
Here 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑅𝑅𝐴𝐴

∞  is the condition number of matrix 𝑅𝑅𝐴𝐴. 
𝐹𝐹�  is a vector containing the values of right hand side 
of (6). 
 
 
5  Estimation of the truncation error 

It is worth noting that the exact solution of (1) 
can’t be obtained by analytical methods. Therefore, 
the rate of convergence of the proposed algorithm 
could be estimated by Runge’s rule, which requires 
the increase of the number of collocation nodes in 
two times. This may lead to significant growth of 
computational costs. Therefore, we shall consider 
the modification of  Runge’s rule. Let us increase 
the number of nodes 𝑁𝑁 by unity and observe the 
value of ‖𝑃𝑃𝑁𝑁+1(𝑢𝑢)− 𝑃𝑃𝑁𝑁(𝑢𝑢)‖, where 𝑢𝑢 is the exact 
solution of the problem (1), (5) and 𝑃𝑃𝑁𝑁(𝑢𝑢) =
𝑃𝑃𝑁𝑁(𝑢𝑢)(𝑟𝑟) is its approximation of the form (10) that 
was obtained by the described algorithm with 𝑁𝑁 
collocation nodes. Thus, the following estimates 
take place  

 
‖𝑃𝑃𝑁𝑁(𝑢𝑢)− 𝑢𝑢‖ ≤ ‖𝑃𝑃𝑁𝑁(𝑢𝑢) − 𝑃𝑃𝑁𝑁+1(𝑢𝑢)‖+ 
+‖𝑃𝑃𝑁𝑁+1(𝑢𝑢) − 𝑢𝑢‖, 
‖𝑃𝑃𝑁𝑁(𝑢𝑢)− 𝑢𝑢‖ − ‖𝑃𝑃𝑁𝑁+1(𝑢𝑢)− 𝑢𝑢‖ ≤                       (28) 
≤ ‖𝑃𝑃𝑁𝑁(𝑢𝑢)− 𝑃𝑃𝑁𝑁+1(𝑢𝑢)‖, 

𝜀𝜀𝑀𝑀 = ‖𝑃𝑃𝑁𝑁(𝑢𝑢) − 𝑢𝑢‖ ≤
1

1 − 𝜘𝜘𝑁𝑁
‖𝑃𝑃𝑁𝑁(𝑢𝑢) − 𝑃𝑃𝑁𝑁+1(𝑢𝑢)‖. 

    
Here 𝜘𝜘𝑁𝑁 = ‖𝑃𝑃𝑁𝑁+1(𝑢𝑢)−𝑢𝑢‖

‖𝑃𝑃𝑁𝑁 (𝑢𝑢)−𝑢𝑢‖
, then 𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1 =

‖𝑃𝑃𝑁𝑁+1(𝑢𝑢)−𝑢𝑢‖
‖𝑃𝑃𝑁𝑁−1(𝑢𝑢)−𝑢𝑢‖

. As the Chebyshev approximation is 
uniform, we use the following expression  

 

𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1~
𝑅𝑅𝑁𝑁+1(𝑟𝑟)
𝑅𝑅𝑁𝑁−1 (𝑟𝑟), 

𝑅𝑅𝑁𝑁(𝑟𝑟) = |𝑃𝑃𝑁𝑁(𝑟𝑟) − 𝑢𝑢(𝑟𝑟)|,                  (29) 
𝑃𝑃𝑁𝑁(𝑟𝑟) = 𝑃𝑃𝑁𝑁(𝑢𝑢)(𝑟𝑟), 

 
where 𝑟𝑟 ∈ [𝑟𝑟0, 1] is an arbitrary point that does not 
coincide with any of collocation nodes, the sign 
’~’  means the asymptotical equivalence for large 𝑁𝑁. 
Taking into account the absence of saturation of the 
proposed algorithm (i.e. that the asymptotic of its 
error strictly corresponds to that of the best 
polynomial approximations) one can conclude, that 
for 𝑁𝑁 large enough three types of asymptotical 
estimates for 𝜘𝜘𝑁𝑁  are possible:  

1) if 𝑢𝑢 ∈ 𝐶𝐶𝑟𝑟([𝑟𝑟0, 1]), then according to Jackson 
inequality [9, 10] the algebraic convergence takes 
place, i.e. one has 𝜘𝜘𝑁𝑁~ (𝑁𝑁+1)−𝑟𝑟

𝑁𝑁−𝑟𝑟 = 𝑁𝑁𝑟𝑟

(𝑁𝑁+1)𝑟𝑟 ; ;  
2) if 𝑢𝑢 ∈ 𝐶𝐶∞([𝑟𝑟0, 1]),  has singularity in the 

complex plane, then according to Bernstain’s results 
[12, 18] the geometric convergence takes place, i.e. 
one obtains 𝜘𝜘𝑁𝑁~ 𝑞𝑞𝑁𝑁+1

𝑞𝑞𝑁𝑁
= 𝑞𝑞 < 1;  

3) if 𝑢𝑢 is entire and its 𝑁𝑁th derivative is bounded 
by the power function �𝑢𝑢(𝑁𝑁)� ≤ 𝑐𝑐𝑁𝑁 , then the 
estimates of the error of interpolation from [19] 
yield   

 
 𝜘𝜘𝑁𝑁~ 𝑞𝑞�𝑁𝑁+1

(𝑁𝑁+1)!
/ 𝑞𝑞�𝑁𝑁

𝑁𝑁!
= 𝑞𝑞�

𝑁𝑁+1
, 𝑞𝑞� > 0  depends on 𝑐𝑐. 

  
Let 𝑁𝑁 be odd, then 0 is the node of 𝑃𝑃𝑁𝑁 . We 

substitute these values into (29) and have  
 

𝑅𝑅𝑁𝑁(0) = 0, |𝑅𝑅𝑁𝑁+1(0)| = 𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1|𝑅𝑅𝑁𝑁−1(0)|. 
   
Solving our boundary value problem with 

𝑁𝑁 − 1,𝑁𝑁,𝑁𝑁 + 1 collocation nodes and accounting 
for |𝑃𝑃𝑁𝑁(𝑟𝑟) − 𝑃𝑃𝑁𝑁+1(𝑟𝑟)| = |𝑅𝑅𝑁𝑁(𝑟𝑟)− 𝑅𝑅𝑁𝑁+1(𝑟𝑟)| we 
introduce the quantity 𝜆𝜆𝑁𝑁:  

 

  𝜆𝜆𝑁𝑁 = �|𝑃𝑃𝑁𝑁 (0)−𝑃𝑃𝑁𝑁+1(0)|
|𝑃𝑃𝑁𝑁−1(0)−𝑃𝑃𝑁𝑁 (0)|

.             (30) 

    
Here  
 

𝜆𝜆𝑁𝑁 = �
|𝑅𝑅𝑁𝑁(0) − 𝑅𝑅𝑁𝑁+1(0)|
|𝑅𝑅𝑁𝑁−1(0)− 𝑅𝑅𝑁𝑁(0)|

= �
|𝑅𝑅𝑁𝑁+1(0)|
|𝑅𝑅𝑁𝑁−1(0)|

~�𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1.      (31) 
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There are three types of asymptotic relations 
between 𝜆𝜆𝑁𝑁 and 𝜘𝜘𝑁𝑁  for the mentioned types of 
convergence:  

In the first case one has �𝜘𝜘𝑁𝑁2 − 𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1� =
|𝑁𝑁2𝑟𝑟−�𝑁𝑁2−1�

𝑟𝑟 |
(𝑁𝑁+1)2𝑟𝑟 ~ 𝑟𝑟

𝑁𝑁2 as 𝑁𝑁 → ∞. Therefore 𝜆𝜆𝑁𝑁 → 𝜘𝜘𝑁𝑁 →
1 and 𝑟𝑟~ log 𝑁𝑁

𝑁𝑁+1
𝜆𝜆𝑁𝑁 as 𝑁𝑁 → ∞. 

In the second case 𝜘𝜘𝑁𝑁~𝜘𝜘𝑁𝑁−1~𝑞𝑞, it means that 
𝜆𝜆𝑁𝑁 → 𝜘𝜘𝑁𝑁 → 𝑞𝑞 as 𝑁𝑁 → ∞. , where 0 < 𝑞𝑞 < 1.  

In the third case �𝜘𝜘𝑁𝑁2 − 𝜘𝜘𝑁𝑁𝜘𝜘𝑁𝑁−1�~
𝑞𝑞  � 2

𝑁𝑁(𝑁𝑁+1)2 . 
Hence,   𝜆𝜆𝑁𝑁 → 𝜘𝜘𝑁𝑁 → 𝑞𝑞 as 𝑁𝑁 → ∞. 

For all of the considered cases we have 𝜆𝜆𝑁𝑁 →
𝜘𝜘𝑁𝑁 → 𝑞𝑞 as 𝑁𝑁 → ∞. This means that observing the 
value of 𝜆𝜆𝑁𝑁 for 𝑁𝑁 large enough, one can make the 
conclusions on the rate of convergence and 
consequently on the order of smoothness (or 
regularity) of the desired solution based on these 
observations. To calculate the right hand side of 
(28) one needs to know the value of norm 
‖𝑃𝑃𝑁𝑁+1(𝑢𝑢) − 𝑃𝑃𝑁𝑁(𝑢𝑢)‖. This value has been obtained 
in two steps. Firstly, the roots of 𝑃𝑃𝑁𝑁+1(𝑢𝑢) − 𝑃𝑃𝑁𝑁(𝑢𝑢) 
were found. Secondly, using the fundamental 
theorem of algebra, their extremes were located and 
obtained. On both steps the bisection method was 
used. Numerical tests showed, that this method is 
the most simple and stable for our problem. 
 
 
6  Numerical tests 

The described algorithm together with methods 
of computation of the errors was implemented in 
Matlab. The program has been run on the computer 
Intel Core i5-3337U, 1.8 GHz, 6 Gb DIMM DDR3 
RAM. During this investigation a variety of the 
stationary regimes of polymeric fluid flow has been 
simulated (see also [7]). Below we present the 
analysis of some of these solutions depending on the 
values of two parameters (they are the Weissenberg 
number 𝑊𝑊 and the dimensionless temperature 
difference  𝜃𝜃� ) that have strong influence on the flow. 
Here we set 𝛽𝛽 = 0.1, 𝐷𝐷� = −1,𝐸𝐸𝐴𝐴 = 9, 𝑟𝑟0 = 0.5. 

Figures 3, 4 present the dependence of the 
velocity of polymeric liquid 𝑢𝑢(𝑟𝑟) on the radial 
coordinate 𝑟𝑟 (graph a), the dependance of the 
modulus of rate of flow (graph b) and the maximum 
value of modulus of velocity (graph c) on the 
parameters 𝑊𝑊 and   𝜃𝜃�   . 

For small values of 𝑊𝑊 (points 1,2) the profiles 
are almost identical, the flow rate decreased 
insignificantly. With the increase of Weissenberg 
number, the velocity profile becomes more convex, 
which is due to the activation effect and the 

macromolecular structure of the polymers (see Fig. 
3). 

 From the Fig. 4 it can be seen how different 
forms of heating affect the flow of polymeric liquid. 
For  𝜃𝜃�   > 0 we have the heating of the inner 
cylinder wall, for  𝜃𝜃�  < 0 the heating of the outer 
cylinder wall. In the case of heating from outside, 
the velocity profile 𝑢𝑢(𝑟𝑟) is small. However, as soon 
as и� is positive, the velocity and the flow rate 
increase rapidly. It should be noted, that as heating 
of the inner wall increases, the profiles become less 
symmetric. This provides a new way for controlling 
the flows of polymeric liquid during 3D printing and 
presents a prospective technological solution for 
additive manufacturing. 

  

  
 
Fig. 3: Numerical analysis of the polymeric fluid 

flow for   𝜃𝜃� = −0.01 and different values of 𝑊𝑊: 
𝑊𝑊 = 0.01 (point 1), 𝑊𝑊 = 1 (point 2), 𝑊𝑊 = 3 (point 
3), 𝑊𝑊 = 5 (point 4), 𝑊𝑊 = 7 (point 5). Here are the 
velocity of flow vs. the coordinate 𝑟𝑟 (graph a); the 
rate of flow vs. 𝑊𝑊 (graph b) and the maximum 
velocity of flow vs. 𝑊𝑊 (graph c) 

 
In this work we also got the estimates of the 

truncation and round-off errors for the regime of 
flow with 𝛽𝛽 = 0.1,𝐷𝐷� = −1,𝐸𝐸𝐴𝐴 = 9,𝑊𝑊 =
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0.01,  𝜃𝜃�  = −0.01, while the values of 𝑟𝑟0 were 
decreasing starting from 𝑟𝑟0  =  0.2 up to 𝑟𝑟0  =
 0.0002 (see Figure 5). Firstly we compute the 
values of solution 𝑢𝑢(�̃�𝑟𝑗𝑗 ), 𝑗𝑗 = 1, . . . ,𝑁𝑁 using the 
described algorithm. Then, applying the formulas 
from the previous sections for these solutions we 
compute the estimates of truncation and round-off 
errors 𝜀𝜀𝑀𝑀  and 𝜀𝜀𝑅𝑅 , depending on the number of 
collocation nodes 𝑁𝑁. 

  

  
 
Fig. 4: Numerical analysis of the polymeric fluid 

flow for 𝑊𝑊 = 0.01 and different values of   𝜃𝜃� :  𝜃𝜃� =
−0.2 (point 1),  𝜃𝜃�  = −0.01 (point 2),   𝜃𝜃�  = 2 
(point 3),   𝜃𝜃� = 3 (point 4),   𝜃𝜃� = 5 (point 5). Here 
are the velocity of flow vs. the coordinate 𝑟𝑟 (graph 
a); the rate of flow vs.  𝜃𝜃�  (graph b) and the 
maximum velocity of flow vs.  𝜃𝜃�   (graph c). 

 
Characteristic 𝐷𝐷� of the pressure gradient and of 

the liquid viscosity for these tests was negative, 
therefore the velocity profiles are directed 
downwards. In Fig. 5 the large gradients caused by 
the presence of the small value of 𝑟𝑟0 in (1) near the 
inner cylinder wall can be observed. They are these 

gradients that cause the high complexity for many 
computational methods. 

 In Fig. 6 the values of 𝜆𝜆𝑁𝑁  (𝑁𝑁 ∈ ℕ 𝑖𝑖𝑎𝑎 𝑐𝑐𝑑𝑑𝑑𝑑) are 
shown for the three tests. From the graphs it can be 
seen that for small values of 𝑁𝑁 the oscillations of 𝜆𝜆𝑁𝑁 
are not large, and the convergence of them to some 
limit values 𝑞𝑞 = lim𝑁𝑁→∞ 𝜆𝜆𝑁𝑁 takes place. For large 
values of 𝑁𝑁, when the truncation error decreases up 
to the values 10−14 − 10−10, the large chaotic 
oscillations of 𝜆𝜆𝑁𝑁 caused by the round-off error are 
observed. Let 𝑁𝑁0 be the minimal value of 𝑁𝑁, 
ensuring the convergence of the stabilization 
method; 𝑁𝑁1 be the value of 𝑁𝑁 in which the chaotic 
oscillations start (it can be easily seen in the graphs). 
For determining the value of 𝑞𝑞 for the truncation 
error estimation we have approximated the values of 
𝜆𝜆𝑁𝑁 on the segment [𝑁𝑁0,𝑁𝑁1]  using the function 

 

 
 
Fig. 5: Numerical solutions to the problem (1), 

(5) with 𝛽𝛽 = 0.1,𝐷𝐷� = −1,𝐸𝐸𝐴𝐴 = 9,𝑊𝑊 = 0.01,  𝜃𝜃� =
−0.01 (𝔗𝔗 = −1) for different values of 𝑟𝑟0 (𝑟𝑟0 =
 0.2 is the test No. 1, 𝑟𝑟0 =  0.01 is test No. 2, 
𝑟𝑟0 =  0.0002 is test No. 3) 
 

 𝐴𝐴𝑡𝑡(𝑁𝑁) = 𝑏𝑏1arctan(𝑏𝑏2𝑁𝑁 + 𝑏𝑏3) + 𝑏𝑏4.    (32) 
 
The coefficients 𝑏𝑏1 – 𝑏𝑏4 were derived using the 

methods of nonlinear non-convex optimization 
implemented in OPTCON program package, see 
[20]. Minimization of the mean square deviation 
(MSD) between the approximation 𝐴𝐴𝑡𝑡(𝑁𝑁) and the 
data 𝜆𝜆𝑁𝑁 was done over all odd 𝑁𝑁 in the segment 
[𝑁𝑁0,𝑁𝑁1]. Taking into account that arctan(𝑥𝑥) →
𝜋𝜋/2 𝑎𝑎𝑎𝑎 𝑥𝑥 → ∞, we approximate the value of 𝑞𝑞 with 
a value 𝑞𝑞� = 𝑏𝑏1𝜋𝜋/2 + 𝑏𝑏4 (these values of 𝑞𝑞� are 
shown in Fig.6). By observing MSD we can draw 
conclusions on the accuracy of approximation (32). 
Note that in order to avoid mess in the Fig.  6, a 
considerable number of points presenting the values 
of 𝜆𝜆𝑁𝑁 was not put on the graph c, but all these 
values were taken into account, while computing the 
function 𝐴𝐴𝑡𝑡(𝑁𝑁). The values of 𝑁𝑁0, 𝑁𝑁1, 𝑏𝑏1 – 𝑏𝑏4, 𝑞𝑞� 
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and MSD obtained for the three considered tests are 
given in Table 1. 

In Fig. 7 the estimates of the truncation and round-
off errors are given in logarithmic scale. From the 
graphs it can be seen, that while 𝑁𝑁 is increasing, the 
values of 𝜀𝜀𝑀𝑀  show the geometric decay, and the 

values of 𝜀𝜀𝑅𝑅   grow approximately as the power 
function of 𝑁𝑁. This is caused by power growth of 
the norms of matrices approximating the derivatives 
that that enter the expression of right part in the 
estimate (27).  

Table 1:  Parameters of the approximation 𝐴𝐴𝑡𝑡(𝑁𝑁) 
𝑟𝑟0 [𝑁𝑁0,𝑁𝑁1] 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑞𝑞� MSD 
0.2 [10, 30] 0.858 2.267    -17.733    -1.0 0.34 8.7e-04 

   0.01    [10, 110] 0.170 0.200 -1.986 0.550 0.8170 5.8e-04 

0.0002 [196,𝑁𝑁], 
𝑁𝑁 > 340 

0.055 0.071 -3.496 0.886 0.9724 3.4e-07 

 
7 Conclusion 

In this work, the pseudospectral algorithm 
without saturation has been designed that enables us 
to simulate the stationary regimes of polymeric 
liquid flow between two coaxial cylinders with 
extremely small values of the radius of the inner 
cylinder 𝑟𝑟0 and with other parameters varying in 
wide ranges. These results are aimed at the 
development of the state-of-the-art technological 
solutions for the additive manufacturing industry. 

The absence of saturation of the proposed 
algorithm and the geometric rate of convergence of 
Chebyshev approximation confirmed by numerical 
tests ensure that the solution is infinitely smooth 
function having singularity in the complex plain. 
Moreover, the distance from it to the real value 
interval of the problem decays while the radius of 
inner cylinder decreases. The high numerical 
stability of the proposed algorithm is proved by the 
slow growth of the round-off error with the growth 
of number of collocation nodes. We believe that 
both the obtained numerical solutions and a 
posteriori estimates of their errors will be useful for 
practice. 
 

 
 
Fig. 6: Values of 𝜆𝜆𝑁𝑁 (large dots), graph of the 
function 𝐴𝐴𝑡𝑡(𝑁𝑁) (solid line), limit value 𝑞𝑞� (dots) for 
the cases 𝑟𝑟0 =  0.2 (𝑎𝑎), 𝑟𝑟0 =  0.01 (𝑏𝑏), 𝑟𝑟0 =
 0.0002 (𝑐𝑐) 
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Fig. 7: Values of log10 𝜀𝜀𝑀𝑀   and log10 𝜀𝜀𝑅𝑅  for the 
cases 𝑟𝑟0 =  0.2 (𝑎𝑎), 𝑟𝑟0 =  0.01 (𝑏𝑏), 𝑟𝑟0 =  0.0002 (𝑐𝑐) 
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