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Abstract:-An investigation is made on the temperature distribution within the thermal boundary layer region 
due to the flow of a second-grade fluid around a heated circular cylinder, maintained at a constant temperature 
higher than that of the fluid at infinity in presence of magnetic field applied transversely to the direction of the 
main flow. The problem has been solved by the application of steepest descent method used by Meksyn. The 
impact of various pertinent parameters on flow characteristics have been discussed through graphical 
illustrations. Newtonian results are found to emerge as limiting cases of the present analysis. 
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1 Introduction 

The boundary layer concept has tremendous 
achievement in the interdisciplinary activities 
concerning engineering and technology 
developments. The mechanism of thermal boundary 
layer flow of magnetohydrodynamic  visco-elastic 
fluids are used in different manufacturing processes 
such as extrusion of plastic sheets, fabrication of 
adhesive tapes, coating layers into rigid surfaces etc. 

The influence    of magnetic field on an electrically 
conducting viscous incompressible fluid past a 
cylinder in presence of heat transfer has practical 
significance in many engineering applications viz. 
solar power collectors, compact heat exchanges and 
nuclear reactors. Dennis and Chang [1] have 
presented the numerical solutions for steady flow 
past a circular cylinder at Reynolds numbers up t o 
100. An experimental investigation of the steady 
separated flow past a c ircular cylinder has been 
studied by Grove et al. [2]. Fornberg [3] has 
analysed the numerical study of steady viscous flow 
past a circular cylinder. Steady two-dimensional 
viscous flow of an incompressible fluid past a 
Circular cylinder has been investigated by Takami 
and Keller [4]. Also, the authors viz. Thoman and 
Szewczyk [5], Kawaguti [6], Hamielec and Raal [7], 
Gschwendter [8], Sen et al. [9] etc. have remarkable 
contribution in this field. 

The study of visco-elastic fluid flow has been the 
objective of immense research due to its 
applications in industries of chemical processes such 
as food processing and polymer production etc. The 
differential models of visco-elastic fluid 
encountering the effects of shear thinning/thickening 
and normal stress differences are known as second-
grade fluids which follow from generalized Rivlin-
Ericksen’s fluid. The viscous feature of second-
grade fluid is caused by the transport phenomenon 
of the molecules of fluids whereas the elastic 
characteristic is assignable to the chemical structure 
and configuration of polymer molecules. Many 
scientists have contribution on this field but a few of 
them are mentioned here. The second-order thermal 
boundary layer equation for the flow of a second-
order fluid past heated body has been investigated 
by Srivastava [10] using the order of magnitude 
approach. The temperature distribution for the flow 
near a t wo-dimensional stagnation point occurring 
on a flat plate maintained at a temperature higher 
than that of the fluid at infinity has been analysed. 
The thermal boundary layer on a steadily rotating 
sphere in infinitely extending second-order fluid has 
been discussed by Bhatnagar and Palekar [11]. 
Srivastava and Maiti [12] have analysed the flow of 
a second-order fluid past a cylinder by expanding 
the flow functions in series and obtaining the first 
four terms by Karman-Pohlhausen method. The heat 
transfer in a sec ond-grade fluid for flow around a 
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circular cylinder by Karman-Pohlhausen method has 
been studied by Srivastava and Saroa [13].The heat 
transfer in the boundary layer region of a second-
order fluid past a plate by presenting a uniform 
constant suction and temperature at the plate has 
been studied by Agarwal and Bhatia [14]. Srivastava 
and Saroa [15] have investigated the heat transfer in 
a second-order fluid for flow around a circular 
cylinder. Numerical simulation of visco-elastic flow 
past a cylinder has been analysed by Hu and Joseph 
[16]. Chhabra et al. [17] has presented the steady 
non–Newtonian flow past a ci rcular cylinder: a 
numerical study. 

In this paper, we have studied the problem of flow 
and heat transfer of a second-order fluid around a 
circular cylinder in presence of magnetic field by 
series expansion used by Meksyn [18] and found 
that the point of separation for the Newtonian case 
comes out to be 109.09° whereas the exact value is 
109.6° [Schlichting,[19]]. Srivastava and Saroa [14] 
have obtained the separation point at 110.8° by 
taking the boundary layer thickness to be variable 
along the cylinder. By using Karman-Pohlhausen 
method, Srivastava and Maiti obtained the 
corresponding point of separation at 116.5°. 

The constitutive equation for the second-order 
incompressible fluid is taken in the form 

𝜎𝜎 = −𝑃𝑃𝑃𝑃 + 𝜇𝜇(1)𝐴𝐴(1) + 𝜇𝜇(2)𝐴𝐴(2) + 𝜇𝜇(3)𝐴𝐴(1)
2      (1)                            

where 𝜎𝜎 is the stress tensor, 𝐴𝐴(𝑛𝑛) (𝑛𝑛 = 1,2) are the 
kinematic Rivlin-Ericksen tensors, 𝜇𝜇(𝑛𝑛) (𝑛𝑛 = 1,2,3) 
are the material co-efficients describing the 
viscosity, elasticity and cross viscosity respectively. 
The case 𝜇𝜇(2) = 𝜇𝜇(3) = 0 corresponds to an 
incompressible Newtonian fluid. On thermodynamic 
considerations 𝜇𝜇(2) is found to be negative whereas 
𝜇𝜇(1) and 𝜇𝜇(3) are positive. Coleman and N oll [20] 
derived the equation from the simple fluid by 
assuming that stress is more sensitive to the recent 
deformation than to the deformation that occurred in 
the distant past. Markovitz and Brown determined 
experimentally the material constants for solutions 
of poly-isobutylene in cetane of various 
concentrations.  
 
2        Basic Equations 

Consider an incompressible MHD second-grade 
fluid moving with a uniform velocity 𝑈𝑈∞  at infinity 
in presence of a f ixed circular cylinder of radius 𝑎𝑎 
maintained at a constant temperature 𝑇𝑇𝑤𝑤 . Let the 
temperature of the fluid at infinity be 𝑇𝑇∞  where 

𝑇𝑇𝑤𝑤 > 𝑇𝑇∞ . Let (𝑟𝑟,𝜃𝜃, 𝑧𝑧) be the cylindrical polar co-
ordinates with 𝑧𝑧-axis coincides with the axis of the 
cylinder. The fluid flow is two-dimensional in 𝑟𝑟 and 
𝜃𝜃 directions. 

The two-dimensional velocity boundary layer 
equations are 

𝑢𝑢 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝜈𝜈1
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕 2 + 𝜈𝜈2 �

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕 2 + 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕 2 +

𝑢𝑢 𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 2 + 𝑣𝑣 𝜕𝜕3𝑢𝑢

𝜕𝜕𝜕𝜕 3�+ 𝜎𝜎𝐵𝐵𝜕𝜕 2

𝜌𝜌
(𝑈𝑈 − 𝑢𝑢) + 𝑈𝑈 𝜕𝜕𝑈𝑈

𝜕𝜕𝜕𝜕
           (2)                            

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

= 0                                                        (3)             

where 𝜕𝜕 = 𝑟𝑟 − 𝑎𝑎, 𝜕𝜕 = 𝑎𝑎𝜃𝜃 and 𝑢𝑢, 𝑣𝑣 are velocity 
components along 𝜕𝜕 and 𝜕𝜕-axis respectively within 
the viscous boundary layer region, 𝑈𝑈 is the main 
stream velocity, 𝜌𝜌 is the fluid density, 𝐵𝐵𝜕𝜕  is the 
strength of the magnetic field and 𝜈𝜈𝑖𝑖 = 𝜇𝜇𝑖𝑖

𝜌𝜌
, (𝑖𝑖 = 1,2). 

Also, equations (2) and (3) are independent of the 
curvature of the wall and thus are applicable to the 
case of a flat wall. 

Srivastava [1967] has derived the thermal boundary 
layer equation for the second-grade incompressible 
fluid against a heated wall as: 

𝜌𝜌𝐶𝐶𝑝𝑝 �𝑢𝑢
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
� = 𝜇𝜇1 �

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
�

2
+ 𝜇𝜇2 �𝑣𝑣

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕 2 +

𝑢𝑢 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� + 𝑘𝑘 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕 2                                             (4) 

where 𝐶𝐶𝑝𝑝  is the specific heat, 𝑘𝑘 is the thermal 
conductivity and 𝑇𝑇 is the temperature. This equation 
is valid within the boundary layer over both a 
curved wall and a flat wall when 𝜕𝜕-axis is taken in 
the tangential direction and 𝜕𝜕-axis along the normal 
to the surface. 

The relevant boundary conditions are, 

𝑢𝑢 = 0, 𝑣𝑣 = 0,𝑇𝑇 = 𝑇𝑇𝑤𝑤   at  𝜕𝜕 = 0    (5) 

𝑢𝑢 → 𝑈𝑈,𝑇𝑇 → 𝑇𝑇∞   in   𝜕𝜕 → ∞           (6) 

The velocity distribution 𝑈𝑈 outside the velocity 
boundary layer region created by the cylinder is 
given by, 

𝑈𝑈(𝜃𝜃) = 2𝑈𝑈∞ sin𝜃𝜃  
 
and the stream-function 𝜓𝜓 is given by, 
 

𝜓𝜓 = �
𝜈𝜈1𝑎𝑎
2𝑈𝑈∞

�2𝑈𝑈∞𝜃𝜃𝑓𝑓1(𝜂𝜂)− 8
3!
𝑈𝑈∞𝜃𝜃3𝑓𝑓3(𝜂𝜂) +

12
5!
𝑈𝑈∞𝜃𝜃5𝑓𝑓5(𝜂𝜂)− 16

7!
𝑈𝑈∞𝜃𝜃7𝑓𝑓7(𝜂𝜂) + ⋯�                (7) 
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where 𝜂𝜂 = 𝜕𝜕 �2𝑈𝑈∞
𝜈𝜈1𝑎𝑎

�
1
2 

 
Now, the velocity components 𝑢𝑢 and 𝑣𝑣 within the 
velocity boundary layer region are given by, 
 
𝑢𝑢 = 𝜕𝜕𝜓𝜓

𝜕𝜕𝜕𝜕
= 2𝑈𝑈∞𝜃𝜃 �𝑓𝑓1

′(𝜂𝜂) − 2
3
𝜃𝜃2𝑓𝑓3

′(𝜂𝜂) +
1

20
𝜃𝜃4𝑓𝑓5

′(𝜂𝜂) − 1
630

𝜃𝜃6𝑓𝑓7
′(𝜂𝜂) + ⋯�                   (8) 

  

and 𝑣𝑣 = −𝜕𝜕𝜓𝜓
𝜕𝜕𝜕𝜕

= −�2𝜈𝜈1𝑈𝑈∞
𝑎𝑎

�𝑓𝑓1(𝜂𝜂)− 2𝜃𝜃2𝑓𝑓3(𝜂𝜂) +
1
4
𝜃𝜃4𝑓𝑓5(𝜂𝜂)− 1

90
𝜃𝜃6𝑓𝑓7(𝜂𝜂) + ⋯�                       (9) 

                                                          
Here prime denotes differentiations w.r.t  𝜂𝜂. 
The temperature 𝑇𝑇 within the thermal boundary 
layer region should be taken in the form 
 
𝑇𝑇∗ = 𝑇𝑇−𝑇𝑇∞

𝑇𝑇𝑤𝑤−𝑇𝑇∞
= 4𝐸𝐸{𝑇𝑇1(𝜂𝜂)− 𝜃𝜃2𝑇𝑇3(𝜂𝜂) + 𝜃𝜃4𝑇𝑇5(𝜂𝜂)−

𝜃𝜃6𝑇𝑇7(𝜂𝜂) + ⋯ }                                            (10) 
  
where 𝐸𝐸 is the Eckert number and it is given by 
𝐸𝐸 = 𝑈𝑈∞2

𝐶𝐶𝑝𝑝 (𝑇𝑇𝑤𝑤−𝑇𝑇∞ )
 . For simplicity, we shall confine 

ourselves to terms up to 𝑓𝑓7(𝜂𝜂) and 𝑇𝑇7(𝜂𝜂) only. 
 
Now, the boundary conditions of 𝑓𝑓𝑖𝑖(𝜂𝜂) and 
𝑇𝑇𝑖𝑖(𝜂𝜂), (𝑖𝑖 = 1,3,5,7) are, 
 
At 𝜂𝜂 = 0; 𝑓𝑓𝑖𝑖(𝜂𝜂) = 0, 𝑓𝑓𝑖𝑖′(𝜂𝜂) = 0, 𝑇𝑇1 = 1

4𝐸𝐸
 , 𝑇𝑇3 =

𝑇𝑇5 = 𝑇𝑇7 = 0            (11) 
                                                             
In 𝜂𝜂 → ∞;  𝑓𝑓1

′ → 1, 𝑓𝑓3
′ → 1

4
 ,𝑓𝑓5

′ → 1
6

 ,𝑓𝑓7
′ → 1

8
 ,𝑇𝑇𝑖𝑖 →

0                             (12)                            

Now, substituting the values of 𝑢𝑢 , 𝑣𝑣 and 𝑇𝑇 from 
equations (8) to (10) into (2) and (4) and equating 
the co-efficient of like powers of 𝜃𝜃 with the neglect 
of higher order terms on both sides of the equations 
we have, 

𝑓𝑓1
′′′ + 𝑓𝑓1𝑓𝑓1

′′ = −1 + 𝑀𝑀(𝑓𝑓1
′ − 1) + 𝑓𝑓1

′2 +
𝛼𝛼1(𝑓𝑓1

′′ 2 + 𝑓𝑓1𝑓𝑓1
′′′′ − 2𝑓𝑓1

′𝑓𝑓1
′′′ )                

                                                    (13) 
 
𝑓𝑓3
′′′ + 𝑓𝑓1𝑓𝑓3

′′ = −1 + 𝑀𝑀�𝑓𝑓3
′ − 1

4
� + 4𝑓𝑓1

′𝑓𝑓3
′ −

3𝑓𝑓3𝑓𝑓1
′′ + 𝛼𝛼1[−4(𝑓𝑓1

′ 𝑓𝑓3
′′′ + 𝑓𝑓3

′ 𝑓𝑓1
′′′ ) + 4𝑓𝑓1

′′ 𝑓𝑓3
′′ +

(𝑓𝑓1𝑓𝑓3
′′′′ + 3𝑓𝑓3𝑓𝑓1

′′′′ )]  
                                               (14)                                                                        
 

𝑓𝑓5
′′′ + 𝑓𝑓1𝑓𝑓5

′′ = − 8
3

+ 𝑀𝑀�𝑓𝑓5
′ − 1

6
� + 6𝑓𝑓1

′𝑓𝑓5
′ −

5𝑓𝑓5𝑓𝑓1
′′ + 80

3
(𝑓𝑓3

′2 − 𝑓𝑓3𝑓𝑓3
′′ ) + 𝛼𝛼1 �−6(𝑓𝑓1

′𝑓𝑓5
′′′ +

𝑓𝑓5
′ 𝑓𝑓1

′′′ ) + 6𝑓𝑓1
′′ 𝑓𝑓5

′′ + (𝑓𝑓1𝑓𝑓5
′′′′ + 5𝑓𝑓5𝑓𝑓1

′′′′ ) +
80
3

(−2𝑓𝑓3
′𝑓𝑓3
′′′ + 𝑓𝑓3𝑓𝑓3

′′′′ + 𝑓𝑓3
′′ 2)�                 (15) 

 
𝑓𝑓7
′′′ + 𝑓𝑓1𝑓𝑓7

′′ = −8 + 𝑀𝑀�𝑓𝑓7
′ − 1

8
� + 8𝑓𝑓1

′𝑓𝑓7
′ −

7𝑓𝑓7𝑓𝑓1
′′ + 168𝑓𝑓3

′ 𝑓𝑓5
′ − 63𝑓𝑓3𝑓𝑓5

′′ − 105𝑓𝑓5𝑓𝑓3
′′ +

𝛼𝛼1[−8(𝑓𝑓1
′𝑓𝑓7
′′′ + 𝑓𝑓7

′ 𝑓𝑓1
′′′ ) + (𝑓𝑓1𝑓𝑓7

′′′′ + 7𝑓𝑓7𝑓𝑓1
′′′′ )−

168(𝑓𝑓3
′ 𝑓𝑓5

′′′ + 𝑓𝑓3
′′′ 𝑓𝑓5

′) + (105𝑓𝑓5𝑓𝑓3
′′′′ + 63𝑓𝑓3𝑓𝑓5

′′′′ ) +
168𝑓𝑓3

′′ 𝑓𝑓5
′′ + 8𝑓𝑓1

′′ 𝑓𝑓7
′′ ]                              (16) 

 
 
𝑇𝑇1
′′ + 𝑃𝑃𝑟𝑟𝑓𝑓1𝑇𝑇1

′ = 0                   (17) 
 
 
𝑇𝑇3
′′ + 𝑃𝑃𝑟𝑟𝑓𝑓1𝑇𝑇3

′ = Pr[2𝑇𝑇3𝑓𝑓1
′ − 2𝑓𝑓3𝑇𝑇1

′ + 𝑓𝑓1
′′ 2 +

𝛼𝛼1{𝑓𝑓1
′′ (𝑓𝑓1

′ 𝑓𝑓1
′′ − 𝑓𝑓1𝑓𝑓1

′′′ )}]                          (18) 
 
𝑇𝑇5
′′ + 𝑃𝑃𝑟𝑟𝑓𝑓1𝑇𝑇5

′ = Pr �4𝑇𝑇5𝑓𝑓1
′ − 2𝑓𝑓3𝑇𝑇3

′ + 4
3
𝑇𝑇3𝑓𝑓3

′ −
1
4
𝑓𝑓5𝑇𝑇1

′ + 4
3
𝑓𝑓1
′′ 𝑓𝑓3

′′ + 2
3
𝛼𝛼1{𝑓𝑓1

′′ (𝑓𝑓1
′′ 𝑓𝑓3

′ + 4𝑓𝑓1
′ 𝑓𝑓3

′′ )−

𝑓𝑓1
′′ (𝑓𝑓1𝑓𝑓3

′′′ + 3𝑓𝑓3𝑓𝑓1
′′′ ) − 𝑓𝑓1𝑓𝑓1

′′′ 𝑓𝑓3
′′ }�         (19) 

                                                                     
𝑇𝑇7
′′ + 𝑃𝑃𝑟𝑟𝑓𝑓1𝑇𝑇7

′ = Pr �6𝑇𝑇7𝑓𝑓1
′ − 2𝑓𝑓3𝑇𝑇5

′ + 8
3
𝑇𝑇5𝑓𝑓3

′ −
1
4
𝑓𝑓5𝑇𝑇3

′ + 1
10
𝑇𝑇3𝑓𝑓5

′ − 1
90
𝑓𝑓7𝑇𝑇1

′ + 1
10
𝑓𝑓1
′′ 𝑓𝑓5

′′ + 4
9
𝑓𝑓3
′′ 2 +

𝛼𝛼1 �
1

20
𝑓𝑓1
′′ (−𝑓𝑓1𝑓𝑓5

′′′ + 6𝑓𝑓1
′ 𝑓𝑓5

′′ + 𝑓𝑓1
′′ 𝑓𝑓5

′ − 5𝑓𝑓5𝑓𝑓1
′′′ )−

4
9
𝑓𝑓3
′′ (𝑓𝑓1𝑓𝑓3

′′′ + 3𝑓𝑓3𝑓𝑓1
′′′ − 4𝑓𝑓1

′′ 𝑓𝑓3
′) + 1

60
(80𝑓𝑓1

′ 𝑓𝑓3
′′ 2 −

80𝑓𝑓1
′′ 𝑓𝑓3

′′′ 𝑓𝑓3 − 3𝑓𝑓5
′′ 𝑓𝑓1

′′′ 𝑓𝑓1)��                    (20) 
 
where 𝛼𝛼1 = 2𝑈𝑈∞ 𝜈𝜈2

𝑎𝑎𝜈𝜈1
  is the visco-elastic parameter, 

𝑃𝑃𝑟𝑟 = 𝜌𝜌𝜈𝜈1𝐶𝐶𝑝𝑝
𝑘𝑘

 is the Prandtl number and 𝑀𝑀 = 𝜎𝜎𝐵𝐵2𝑎𝑎
2𝑈𝑈∞𝜌𝜌

  is 
the magnetic parameter. 
 
3     Solution of the Problem 
The equations (13) to (20) subject to the boundary 
conditions (11) and (12) have been solved by the 
application of steepest decent method used by 
Meksyn followed by the method of Laplace. In this 
method we express the functions 𝑓𝑓𝑖𝑖(𝜂𝜂) and 𝑇𝑇𝑖𝑖(𝜂𝜂) in 
power series of 𝜂𝜂 as  
 
𝑓𝑓𝑖𝑖(𝜂𝜂) = 𝐴𝐴𝑖𝑖

2!
𝜂𝜂2 + 𝐵𝐵𝑖𝑖

3!
𝜂𝜂3 + 𝐶𝐶𝑖𝑖

4!
𝜂𝜂4 + 𝐷𝐷𝑖𝑖

5!
𝜂𝜂5 + 𝐸𝐸𝑖𝑖

6!
𝜂𝜂6 + ⋯                    

                                                              (21)    
                         
𝑇𝑇1(𝜂𝜂) = 1

4𝐸𝐸
+ 𝑎𝑎1𝜂𝜂 + 𝑏𝑏1

2!
𝜂𝜂2 + 𝑐𝑐1

3!
𝜂𝜂3 + 𝑑𝑑1

4!
𝜂𝜂4 + 𝑒𝑒1

5!
𝜂𝜂5 +

⋯                                                               (22)              
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𝑇𝑇𝑗𝑗 (𝜂𝜂) = 𝑎𝑎𝑗𝑗 𝜂𝜂 + 𝑏𝑏𝑗𝑗
2!
𝜂𝜂2 + 𝑐𝑐𝑗𝑗

3!
𝜂𝜂3 + 𝑑𝑑𝑗𝑗

4!
𝜂𝜂4 + 𝑒𝑒𝑗𝑗

5!
𝜂𝜂5 +⋯                               

                                                                (23) 
 
where  𝑖𝑖 = 1,3,5,7 and  𝑗𝑗 = 3,5,7. 
 
We have taken the above forms of 𝑓𝑓𝑖𝑖  , 𝑇𝑇1 and 𝑇𝑇𝑗𝑗  for 
sufficiently small values of 𝜂𝜂 and all of them satisfy 
the boundary conditions (11) at 𝜂𝜂 = 0. Now 
substituting the expressions of 𝑓𝑓𝑖𝑖  , 𝑇𝑇1 and 𝑇𝑇𝑗𝑗  from 
(21), (22) and (23) into (13) to (20) and equating the 
co-efficient of different powers of 𝜂𝜂 to zero,  we 
obtain the constants 𝐵𝐵𝑖𝑖  ,𝐶𝐶𝑖𝑖  ,𝐷𝐷𝑖𝑖  ,𝐸𝐸𝑖𝑖 …; 𝑏𝑏𝑗𝑗  , 𝑐𝑐𝑗𝑗  ,𝑑𝑑𝑗𝑗  , 𝑒𝑒𝑗𝑗 … 
as functions of 𝐴𝐴𝑖𝑖’s and 𝑎𝑎𝑖𝑖’s only. So, if 𝐴𝐴𝑖𝑖  and 𝑎𝑎𝑖𝑖  
are known, the velocity and the temperature 
distributions are completely determined. 
Now we write equations (13) to (16) and (17) to 
(20) in the following forms: 
 
𝑓𝑓𝑖𝑖′′′ + 𝑓𝑓1𝑓𝑓𝑖𝑖′′ = 𝐻𝐻𝑖𝑖(𝜂𝜂) , 𝑖𝑖 = 1,3,5,7           (24) 
                                                 
and 
 
𝑇𝑇𝑖𝑖′′ + 𝑃𝑃𝑟𝑟𝑓𝑓1𝑇𝑇𝑖𝑖′ = 𝑀𝑀𝑖𝑖(𝜂𝜂) , 𝑖𝑖 = 1,3,5,7       (25) 
                                                
 
Here we have denoted the right-hand sides of the 
equations (13) to (16) and (17) to (20) by 𝐻𝐻𝑖𝑖(𝜂𝜂) and 
𝑀𝑀𝑖𝑖(𝜂𝜂) respectively. Now integrating twice the 
equations (24) and (25) w.r.t ‘𝜂𝜂’ from 0 to 𝜂𝜂, we get 
 
𝑓𝑓𝑖𝑖′(𝜂𝜂) = ∫ 𝑒𝑒−𝐹𝐹(𝜂𝜂)𝜙𝜙𝑖𝑖(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂                (26) 
 
𝑇𝑇𝑖𝑖(𝜂𝜂) = 𝑎𝑎0 + ∫ 𝑒𝑒−𝐺𝐺(𝜂𝜂)𝜓𝜓𝑖𝑖(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂       (27)     
   
where 
 
𝐹𝐹(𝜂𝜂) = ∫ 𝑓𝑓1(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂  
𝐺𝐺(𝜂𝜂) = 𝑃𝑃𝑟𝑟 ∫ 𝑓𝑓1(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂  
𝜙𝜙𝑖𝑖(𝜂𝜂) = 𝐴𝐴𝑖𝑖 + ∫ 𝑒𝑒𝐹𝐹(𝜂𝜂)𝐻𝐻𝑖𝑖(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂  
𝜓𝜓𝑖𝑖(𝜂𝜂) = 𝑎𝑎𝑖𝑖 + ∫ 𝑒𝑒𝐺𝐺(𝜂𝜂)𝑀𝑀𝑖𝑖(𝜂𝜂)𝜂𝜂

0 𝑑𝑑𝜂𝜂  
 
Now, taking  𝜂𝜂 → ∞ in the equations (26) and (27) 
we get, 
 
 

�

∫ 𝑒𝑒−𝐹𝐹(𝜂𝜂)𝜙𝜙1(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 1

∫ 𝑒𝑒−𝐹𝐹(𝜂𝜂)𝜙𝜙3(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 1

4

∫ 𝑒𝑒−𝐹𝐹(𝜂𝜂)𝜙𝜙5(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 1

6

∫ 𝑒𝑒−𝐹𝐹(𝜂𝜂)𝜙𝜙7(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 1

8⎭
⎪
⎬

⎪
⎫

                   (28) 

 

 and 
 

�

∫ 𝑒𝑒−𝐺𝐺(𝜂𝜂)𝜓𝜓1(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = − 1

4E

∫ 𝑒𝑒−𝐺𝐺(𝜂𝜂)𝜓𝜓3(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 0

∫ 𝑒𝑒−𝐺𝐺(𝜂𝜂)𝜓𝜓5(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 0

∫ 𝑒𝑒−𝐺𝐺(𝜂𝜂)𝜓𝜓7(𝜂𝜂)∞
0 𝑑𝑑𝜂𝜂 = 0 ⎭

⎪
⎬

⎪
⎫

                 (29) 

 
 
The above integrals can be evaluated asymptotically 
by Laplace’s method. Putting  𝐹𝐹(𝜂𝜂) = 𝐺𝐺(𝜂𝜂) = 𝛿𝛿, 
transforming the equations (28) and (29) to the 
variable 𝛿𝛿 and integrating in the gamma functions, 
we have, 
 
 

�

𝑚𝑚10Γ1
3

+ 𝑚𝑚11Γ2
3

+ 𝑚𝑚12Γ1 + 𝑚𝑚13Γ4
3

+

𝑚𝑚14Γ5
3

+ ⋯ = 1

𝑚𝑚30Γ1
3

+ 𝑚𝑚31Γ2
3

+ 𝑚𝑚32Γ1 + 𝑚𝑚33Γ4
3

+

𝑚𝑚34Γ5
3

+ ⋯ = 1
4

𝑚𝑚50Γ1
3

+ 𝑚𝑚51Γ2
3

+ 𝑚𝑚52Γ1 + 𝑚𝑚53Γ4
3

+

𝑚𝑚54Γ5
3

+ ⋯ = 1
6

𝑚𝑚70Γ1
3

+ 𝑚𝑚71Γ2
3

+ 𝑚𝑚72Γ1 + 𝑚𝑚73Γ4
3

+

𝑚𝑚74Γ5
3

+ ⋯ = 1
8

     

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

      (30) 

                                                                
                                                     
 

�

𝑛𝑛10Γ1
3

+ 𝑛𝑛11Γ2
3

+ 𝑛𝑛12Γ1 + 𝑛𝑛13Γ4
3

+𝑛𝑛14Γ5
3

+ ⋯ = − 1
4𝐸𝐸

𝑛𝑛30Γ1
3

+ 𝑛𝑛31Γ2
3

+ 𝑛𝑛32Γ1 + 𝑛𝑛33Γ4
3

+𝑛𝑛34Γ5
3

+ ⋯ = 0

𝑛𝑛50Γ1
3

+ 𝑛𝑛51Γ2
3

+ 𝑛𝑛52Γ1 + 𝑛𝑛53Γ4
3

+𝑛𝑛54Γ5
3

+ ⋯ = 0

𝑛𝑛70Γ1
3

+ 𝑛𝑛71Γ2
3

+ 𝑛𝑛72Γ1 + 𝑛𝑛73Γ4
3

+𝑛𝑛74Γ5
3

+ ⋯ = 0

              

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

       (31) 

                                                  
 
where the constants  ar e not presented here due to 
sake of brevity. Now solving the equations (30) and 
(31) using MATLAB, we get the values of  𝐴𝐴𝑖𝑖’s and 
𝑎𝑎𝑖𝑖’s (𝑖𝑖 = 1,3,5,7) for different flow parameters 
involved in the equations (Tables 1 to 5). 
Throughout the computations, we use different 
values of magnetic parameter 𝑀𝑀, Prandtl number 𝑃𝑃𝑟𝑟 
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and visco-elastic parameter 𝛼𝛼1 with fixed value of 
Eckert number 𝐸𝐸 = 0.1. In the study, the Newtonian 
fluid flow phenomenon is illustrated by 𝛼𝛼1 = 0 and 
𝛼𝛼1 ≠ 0 characterizes the visco-elastic fluid. Now 
using the values of 𝐴𝐴𝑖𝑖’s and 𝑎𝑎𝑖𝑖’s in equations (21) to 
(23), we get the expressions for 𝑓𝑓𝑖𝑖  , 𝑇𝑇1 and 𝑇𝑇𝑗𝑗  . 
Finally putting the values of 𝑓𝑓𝑖𝑖  , 𝑇𝑇1 and 𝑇𝑇𝑗𝑗  in 
equations (8) to (10) we get the analytical 
expressions for velocity components 𝑢𝑢, 𝑣𝑣 within the 
velocity boundary region and temperature 𝑇𝑇P

* within 
the thermal boundary layer region. 
 
4      Results and Discussion 

Knowing the velocity and temperature fields, we 
obtain some important flow characteristics of the 
problem viz. wall shear stress and local heat flux. 

The non-dimensional shearing stress 𝜏𝜏 at the wall 
𝜂𝜂 = 0 is given by, 
𝜏𝜏 = 𝜎𝜎𝜕𝜕𝜕𝜕

2𝜌𝜌𝑈𝑈∞ �
2𝜈𝜈1𝑈𝑈∞

𝑙𝑙 �
1
2

= �𝜃𝜃𝑓𝑓1
′′ (𝜂𝜂)−  4

3!
𝜃𝜃3𝑓𝑓3

′′ (𝜂𝜂) +

6
5!
𝜃𝜃5𝑓𝑓5

′′ (𝜂𝜂) − 8
7!
𝜃𝜃7𝑓𝑓7

′′ (𝜂𝜂) +⋯�
𝜂𝜂=0

                    (32) 

                             
We get the location of the point of separation if the 
shearing stress at the wall vanishes. The conditions 
for which the shearing stress 𝜏𝜏 vanishes at the 
surface of the wall for 𝛼𝛼1 = 0, −0.01, and − 0.03 
with magnetic parameter 𝑀𝑀 = 0.08 are given by, 
 
0.022009 𝑋𝑋3 − 0.14664 𝑋𝑋2 + 0.481624 𝑋𝑋 −
0.8664 = 0         (33) 
 
0.024521 𝑋𝑋3 − 0.14839 𝑋𝑋2 + 0.492758 𝑋𝑋 −
0.8692 = 0         (34) 
 
0.030386 𝑋𝑋3 − 0.15226 𝑋𝑋2 + 0.516892 𝑋𝑋 −
0.875 = 0           (35) 
 
respectively with 𝑋𝑋 = 𝜃𝜃2. 
 
The acceptable roots after solving these cubic 
equations (33), (34) and (35) are 𝑋𝑋 = 3.6218 , 𝑋𝑋 =
3.2282 and 𝑋𝑋 = 2.6753 respectively. Thus the 
points of separation for 𝛼𝛼1 = 0, −0.01, and − 0.03 
occur at 𝜃𝜃 = 109.09P

°, 𝜃𝜃 = 102.99P

° and 𝜃𝜃 = 93.76P

° 
respectively. Thus, we observe that the separation 
point diminishes with the enhancement of absolute 
value of visco-elastic parameter. Again, if we 
increase the value of magnetic parameter, (𝑀𝑀 =
0.15) then we get the separation point for 𝛼𝛼1 = 0,
−0.01, and − 0.03 at 𝜃𝜃 = 111.09P

°, 𝜃𝜃 = 104.32P

° 
and 𝜃𝜃 = 94.42P

° respectively. So, it can be remarked 

that the enhancement of magnetic parameter 
increases the value of separation point in both 
Newtonian and non-Newtonian cases. 
The heat generation flux 𝑔𝑔 from the cylinder to the 
fluid is given by, 
 
𝑔𝑔 = −𝑘𝑘 �𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
�
𝜕𝜕=0

= − 4𝑘𝑘𝐸𝐸√𝑅𝑅𝑒𝑒
𝑎𝑎

(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞){𝑇𝑇1
′(𝜂𝜂) −

𝜃𝜃2𝑇𝑇3
′(𝜂𝜂) + 𝜃𝜃4𝑇𝑇5

′(𝜂𝜂)− 𝜃𝜃6𝑇𝑇7
′(𝜂𝜂)}𝜂𝜂=0               (36) 

                  
where 𝑅𝑅𝑒𝑒 = 2𝑈𝑈∞𝜌𝜌

𝑎𝑎𝜇𝜇1
  is the Reynolds number. 

 
Defining the Nusselt number 𝑁𝑁𝑢𝑢 = 𝑎𝑎𝑔𝑔

𝑘𝑘(𝑇𝑇𝑤𝑤−𝑇𝑇∞ )  we 
have, 
 
𝑁𝑁𝑢𝑢 = −4𝐸𝐸√𝑅𝑅𝑒𝑒{𝑇𝑇1

′(𝜂𝜂)− 𝜃𝜃2𝑇𝑇3
′(𝜂𝜂) + 𝜃𝜃4𝑇𝑇5

′(𝜂𝜂) −
𝜃𝜃6𝑇𝑇7

′(𝜂𝜂)}𝜂𝜂=0                                                   (37)            
 
Figures 1 to 5 demonstrate the variation of shearing 
stress 𝜏𝜏 and 𝑁𝑁𝑢𝑢

√𝑅𝑅𝑒𝑒
 against 𝜃𝜃 with various values of 

other flow parameters. The various angles (in 
degrees) are converted in radians (1˚= 0.0175 
radian) while plotting the graphs in different cases. 
The graphs reveal that the shearing stress 𝜏𝜏 and 𝑁𝑁𝑢𝑢

√𝑅𝑅𝑒𝑒
  

gradually diminish for Newtonian and non-
Newtonian fluids. Also, it is observed that the 
growth of absolute value of visco-elastic parameter 
𝛼𝛼1, decelerate the shearing stress 𝜏𝜏  and 𝑁𝑁𝑢𝑢

√𝑅𝑅𝑒𝑒
 in 

comparison with Newtonian fluid flow 
phenomenon. The rising values of magnetic 
parameter 𝑀𝑀 accelerate the shearing stress for both 
types of fluids (Figures 1 and 2). Again from the 
figures 3, 4 and 5, it can be revealed that the growth 
of magnetic parameter increases 𝑁𝑁𝑢𝑢

√𝑅𝑅𝑒𝑒
  but an 

opposite trend is demonstrated during the growing 
behaviour of Prandtl number 𝑃𝑃𝑟𝑟. It has been 
observed that the Meksyn method is useful and 
depicts better result when skin friction, heat flux etc. 
are calculated at the wall of the solid body. 
 
5      Conclusion 
The flow and heat transfer of a v isco-elastic fluid 
around a circular cylinder in presence of a magnetic 
field has been analysed using the application of 
steepest descent method used by Meksyn. This 
study leads to the following conclusions: 
 

• The velocity and temperature fields are 
significantly affected by visco-elasticity. 
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• The point of separation for Newtonian case 
comes to be 109.09° whereas the exact 
value is 109.6°. 

• The point of separation has been found to 
shift towards the forward stagnation point 
due to the elasticity of the fluid. 

• The enhancement of the value of separation 
point is noticed for both Newtonian and 
visco-elastic fluids with the increasing 
value of magnetic parameter. 

• With the growth of the absolute value of 
the visco-elastic parameter, the shearing 
stress diminishes and the identical result is 
seen for Nusselt number. 

• Both the shearing stress and Nusselt 
number show diminishing trends with the 
increase of the angle 𝜃𝜃 in both types of 
fluids. 
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Fig. 1  Variation of 𝜏𝜏 against  𝜃𝜃 for 𝑀𝑀 = 0.08. 

                            

        

Fig. 2  Variation of 𝜏𝜏 against  𝜃𝜃 for 𝑀𝑀 = 0.15. 
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Fig. 3  Variation of 𝑁𝑁𝑢𝑢
√𝑅𝑅𝑒𝑒

 against  𝜃𝜃 for 𝑀𝑀 = 0.08,𝑃𝑃𝑟𝑟 = 3,𝐸𝐸 = 0.1.          

         

Fig. 4  Variation of 𝑁𝑁𝑢𝑢
√𝑅𝑅𝑒𝑒

 against  𝜃𝜃 for 𝑀𝑀 = 0.15,𝑃𝑃𝑟𝑟 = 3,𝐸𝐸 = 0.1. 

 

                     

        

Fig. 5  Variation of 𝑁𝑁𝑢𝑢
√𝑅𝑅𝑒𝑒

 against  𝜃𝜃 for  𝑀𝑀 = 0.08,𝑃𝑃𝑟𝑟 = 5,𝐸𝐸 = 0.1. 
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Table 1. Values of 𝐴𝐴𝑖𝑖( 𝑖𝑖 = 1,3,5,7) at 𝑀𝑀 = 0.08 

 

 
Table 2. Values of 𝐴𝐴𝑖𝑖( 𝑖𝑖 = 1,3,5,7) at 𝑀𝑀 = 0.15. 

       

       
 

Table 3. Values of 𝑎𝑎𝑖𝑖( 𝑖𝑖 = 1,3,5,7) at  𝑀𝑀 = 0.08, 𝑃𝑃𝑟𝑟 = 3 and 𝐸𝐸 = 0.1. 
 
 

 
  

𝛼𝛼1 0 -0.01 -0.03 

𝐴𝐴1 0.8664 0.8692 0.875 

𝐴𝐴3 0.7224 0.7391 0.7753 

𝐴𝐴5 2.9328 2.9678 3.0452 

𝐴𝐴7 13.756 15.3262 18.9918 

𝛼𝛼1 0 -0.01 -0.03 

𝐴𝐴1 0.8664 0.8692 0.875 

𝐴𝐴3 0.7224 0.7391 0.7753 

𝐴𝐴5 2.9328 2.9678 3.0452 

𝐴𝐴7 13.756 15.3262 18.9918 

𝛼𝛼1 0 -0.01 -0.03 

𝑎𝑎1 -0.0166 -0.0167 -0.0167 

𝑎𝑎3 -0.6608 -0.6632 -0.6681 

𝑎𝑎5 -1.5347 -1.5552 -1.6006 

𝑎𝑎7 -1.8638 -1.9205 -2.0488 
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Table 4. Values of 𝑎𝑎𝑖𝑖( 𝑖𝑖 = 1,3,5,7) at 𝑀𝑀 = 0.15,𝑃𝑃𝑟𝑟 = 3 and 𝐸𝐸 = 0.1 
 

                             
                    Table 5. Values of 𝑎𝑎𝑖𝑖( 𝑖𝑖 = 1,3,5,7) at 𝑀𝑀 = 0.08,𝑃𝑃𝑟𝑟 = 5 and 𝐸𝐸 = 0.1.

 

𝛼𝛼1 0 -0.01 -0.03 

𝑎𝑎1 -0.0167 -0.0167 -0.0167 

𝑎𝑎3 -0.8783 -0.8825 -0.891 

𝑎𝑎5 -1.3362 -1.3544 -1.3928 

𝑎𝑎7 -1.7736 -1.8257 -1.9417 

𝛼𝛼1 0 -0.01 -0.03 

𝑎𝑎1 -0.0257 -0.0257 -0.0257 

𝑎𝑎3 -1.0603 -1.0641 -1.0715 

𝑎𝑎5 -2.021 -2.0518 -2.1195 

𝑎𝑎7 -2.4416 -2.5225 -2.7049 
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