WSEAS Transactions on Environment and Development

Print ISSN: 1790-5079
E-ISSN: 2224-3496

Volume 13, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Volume 13, 2017

A New Genetic Algorithm Model-Based Prognostic Approach Applied to Onboard Electrohydraulic Servomechanisms

AUTHORS: M. D. L. Dalla Vedova, G. Bonanno, P. Maggiore

Download as PDF

ABSTRACT: The ever green solution of the electro hydraulic actuator (EHA) applications for the control of modern primary flight commands, justified by the superiority of hydraulic systems in furnishing more efficient solutions for power supplying in a controlled manner, brings us to focus on the need to make the EHA as efficient and reliable as possible. To this purpose, it must be noted that reliability of modern systems is increasingly more based on the valid support of diagnostics and prognostics; in fact, these two are the most robust instruments which mitigate life cycle costs without losing reliability and guarantee, in compliance with regulations, the bases for health management of integrated components, subsystems and systems. Developing a fault detection algorithm able to identify the precursors of EHA faults and their degradation patterns is thus beneficial for anticipating the incoming failure and alerting the maintenance crew so as to properly schedule the servomechanism replacement. About that, this paper proposes a new EHA model-based fault detection and identification method (FDI) that makes use of deterministic and heuristic solvers in order to converge to the actual state of wear of the tested actuator. The proposed FDI algorithm has been tested on three different types of progressive failures (the clogging of the first stage of the flapper-nozzle valve, the rising of friction between spool and sleeve and finally the rising of friction between jack and cylinder): to this purpose, a dedicated simulation test environment was developed. Results showed an adequate robustness and a suitable confidence was gained about its ability to early identify EHA malfunctions with low risk of false alarms or missed failures.

KEYWORDS: EHA, aeronautical servomechanism, numerical modeling, fault detection/identification (FDI), prognostics, genetic algorithm.


[1] G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, Wiley, 2006, ISBN: 978-0-471-72999-0.

[2] C. S. Byington, W. Watson, D. Edwards, P. Stoelting, A Model-Based Approach to Prognostics and Health Management for Flight Control Actuators, IEEE Aerospace Conference Proceedings, 2014, USA. Cases Value1 Value2 err1 err2 K1 Kintas 0,3 0,315347 0,298426 1,534677 0,157381 K2 FSS 0,3 0,293906 0,303541 0,609375 0,354085 K3 FDJ 0,3 0,3 0,299304 2,78E-14 0,069618 0 0 0,714684 0,193695 0,520989 K1 Kintas 0,3 0,419308 0,295381 11,93079 0,461934 K2 FSS 0,6 0,485938 0,610053 11,40625 1,005346 K3 FDJ 0,3 0,3 0,3 2,78E-14 2,78E-14 0 0 7,779014 0,489093 7,289921 K1 Kintas 0,6 0,707749 0,598059 10,77491 0,194063 K2 FSS 0,6 0,419844 0,606258 18,01562 0,625801 K3 FDJ 0,3 0,30025 0,30025 0,025 2,50E-02 0 0 9,605179 0,281621 9,323558 K1 Kintas 0,6 0,707749 0,598062 10,77491 0,193846 K2 FSS 0,6 0,419844 0,606253 18,01562 0,62527 K3 FDJ 0,6 0,599928 0,599928 0,00715 0,00715 9,599229 0,275422 9,323807 3 4 Parameters Open loop test resuls 1 2 Cases Value1 Value2 err1 err2 K1 Kintas 0,3 0,294593 0,302977 0,540715 0,297695 K2 FSS 0,3 0,303581 0,294149 0,358053 0,585067 K3 FDJ 0,3 0,300026 0,299999 0,002639 6,44E-05 0,300469 0,294275 0,006194 K1 Kintas 0,3 0,294778 0,300862 0,522175 0,086175 K2 FSS 0,6 0,468279 0,59343 13,17215 0,657039 K3 FDJ 0,3 0,299984 0,300004 0,001572 0,000369 4,565299 0,247861 4,317438 K1 Kintas 0,6 0,679822 0,597723 7,98223 0,227672 K2 FSS 0,6 0,525945 0,607861 7,405464 0,786098 K3 FDJ 0,3 0,300042 0,300002 0,004237 0,000221 5,130644 0,337997 4,792647 K1 Kintas 0,6 0,6035 0,601521 0,350046 0,152124 K2 FSS 0,6 0,534835 0,594485 6,51646 0,551489 K3 FDJ 0,6 0,60004 0,600002 0,003979 0,000242 2,290162 0,234619 2,055543 4 1 2 3 Close loop test Parameters

[3] L. Borello, M.D.L. Dalla Vedova, G. Jacazio, M. Sorli, A Prognostic Model for Electro hydraulic Servovalves, Annual Conference of the Prognostics and Health Management Society, San Diego, CA, 2009.

[4] M.S. Mamis, M. Arkan, C. Keles, Transmission lines fault location using transient signal spectrum, Int. Journal of Electrical Power and Energy Systems, Vol.53, pp. 714-718, 2013.

[5] M.D.L. Dalla Vedova, P. Maggiore, L. Pace, Proposal of Prognostic Parametric Method Applied to an Electrohydraulic Servo mechanism Affected by Multiple Failures, WSEAS Transactions on Environment and Development, Vol.10, pp. 478-490, 2014.

[6] M.D.L. Dalla Vedova, P. Maggiore, L. Pace, A New Prognostic Method Based on Simulated Annealing Algorithm to Deal with the Effects of Dry Friction on Electromechanical Actuators, International Journal of Mechanics, Vol.9, 2015. ISSN: 1998-4448.

[7] H. Su, K.T. Chong, Induction machine condition monitoring using neural network modelling, IEEE Transactions on Industrial Electronics, Vol.54, No.1, pp. 241-249, 2007.

[8] S. Hamdani, O. Touhami, R. Ibtiouen, M. Fadel, Neural network technique for induction motor rotor faults classification - dynamic eccentricity and broken bar faults, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), pp. 626-631, 2011.

[9] S.S. Refaat, H. Abu-Rub, M.S. Saad, E.M. Aboul-Zahab, A. Iqbal, ANN-based for detection, diagnosis the bearing fault for three phase induction motors using current signal, IEEE International Conference on Industrial Technology (ICIT), pp. 253-258, 2013.

[10] I. Chopra, R. Ganguli, D.J. Haas, Detection of Helicopter Rotor System Simulated Faults Using Neural Networks, 37th Structures, Structural Dynamics and Materials Conf., 1996

[11] M.D.L. Dalla Vedova, D. De Fano, P. Maggiore, Neural Network Design for Incipient Failure Detection on Aircraft EM Actuator, International Journal of Mechanics and Control (JoMaC), Vol.17, No.1, June 2016, pp. 77-83, ISSN: 1590-8844.

[12] P. Maggiore, M.D.L. Dalla Vedova, L. Pace, A Desando, Proposal of fault analysis parametric method applied to an electromechanical servo mechanisms affected by failures, Int. Journal of Prognostics and Health Management, Vol.6, No.1, 2015, ISSN: 2153-2648.

[13] L. Borello, M.D.L. Dalla Vedova, A Dry Friction Model and Robust Computational Algorithm for Reversible or Irreversible Motion Transmission, International Journal of Mechanics and Control (JoMaC), Vol.13, No.2, 2012, pp. 37-48.

[14] G. Jacazio, L. Borello, Mathematical Models of Electrohydraulic Servovalves for Fly-by-Wire Flight Control Systems, Mathematical Computational Modelling, Vol.11, pp. 563- 569, Pergamon Press, 1988.

[15] A. Raie, V. Rashtchi, Using a genetic algorithm for detection and magnitude determination of turn faults in an induction motor, Electrical Engineering, Vol.84, No.5, 2002, pp. 275-279.

[16] M. Alamyal, S.M. Gadoue, B. Zahawi, Detection of induction machine winding faults using genetic algorithm, 9th IEEE Int. Symp. on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2013.

[17] M. Mitchell, An introduction to genetic algorithms, Cambridge, MIT press, 1996, ISBN: 978-0-262-13316-6.

[18] M.D.L. Dalla Vedova, A. Germanà, P. Maggiore, Proposal of a model-based fault identification genetic technique for moreelectric aircraft flight control EM actuators, Proceedings of the Third European Conference of the Prognostics and Health Management Society 2016, Bilbao, 5-8 July 2016.

WSEAS Transactions on Environment and Development, ISSN / E-ISSN: 1790-5079 / 2224-3496, Volume 13, 2017, Art. #45, pp. 431-440

Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board


The editorial board is accepting papers.

WSEAS Main Site