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Abstract: - Incipient failures of electromechanical actuators (EMA) of primary flight command, especially if 

related to progressive evolutions, can be identified with the employment of several different approaches.  

A strong interest is expected by the development of prognostic algorithms capable of identifying precursors of 

EMA progressive failures: indeed, if the degradation pattern is properly identified, it is possible to trig an early 

alert, leading to proper maintenance and servomechanism replacement. Given that these algorithms are strictly 

technology-oriented, they may show great effectiveness for some specific applications, while they could fail for 

other applications and technologies: therefore, it is necessary to conceive the prognostic method as a function 

of the considered failures. This work proposes a new prognostic strategy, based on artificial neural networks, 

able to perform the fault detection and identification of two EMA motor faults (i.e. coil short circuit and rotor 

static eccentricity). In order to identify a suitable data set able to guarantee an affordable ANN classification, 

the said failures precursors are properly pre-processed by means of Discrete Wavelet Transform extracting 

several features: in fact, these wavelets result very effective to detect fault condition, both in time domain and 

frequency domain, by means of the change in amplitude and shape of its coefficients. A simulation test bench 

has been developed for the purpose, demonstrating that the method is robust and is able to early identify 

incoming failures, reducing the possibility of false alarms or non-predicted problems. 
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1 Introduction 
In the recent years, the electromechanical actuator 

(EMA) is becoming one of the most common types 

of augmented flight control systems in fly-by-wire 

architectures. In this scenario, prognostic studies 

results fundamental in order to reduce maintenance 

costs for preserving safety. Differently from 

mechanical fatigue, which can be predicted with a 

certain confidence level, EMA electrical failures, 

like partial stator phase short-circuit of rotor 

eccentricity, are hard to detect by the means of an 

external analysis: these faults are often caused by 

unexpected causes like current peaks or stresses, and 

their consequences are undetectable in a large scale, 

as system performance and response could remain 

almost constant, while the initial incipient damage 

could rapidly degrades into a severe damage which 

compromise the system correct working, causing the 

actuator failure. The ability to analyze the behavior 

of components to determine their degradation 

pattern is the main objective of the Prognostics and 

Health Management (PHM) [1-3]. 

Its goal is to provide real-time data of the current 

status of the system and to calculate the Remaining 

Useful Life (RUL) [1] before a fault occurs. The 

main advantages gained applying the PHM 

strategies are evident when comparing their results 

with those obtained with classical monitoring and 

maintenance concepts (e.g. based on overhaul or 

life-limited parts). By means of proper PHM 

strategies, the considered progressive faults could be 

managed in a more effective way, obtaining a 

substantial reduction of system redundancies, 

operating costs, maintenance interventions and, at 

the same time, improving the aircraft safety and 

reliability and simplifying logistics [2].  

To these purposes, in this paper authors propose 

a new Fault Detection and Identification (FDI) 

technique [3], based on Artificial Neural Networks 

(ANNs), able to identify the failure precursors and 

evaluate the corresponding damage entity. In order 

to identify a suitable data set able to guarantee an 

affordable ANN classification, the said failures 

precursors are properly pre-processed by means of 
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generating in output the reference current Iref.
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dynamic response of these signals (used as failure 
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Wavelet analysis, that evaluates the filtered phase 

currents; for this purpose, each phase current is 

filtered by three low pass signal filter,

attenuate noise and disturbances [11]. 
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basis function and locally refinement the high and 

frequency details while 
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So wavelet analysis has good time

proprieties and can effectively identify non

stationary signals for fault diagnosis purposes

Analysis and Feature 
Several simulations have been performed in order to 

estimate the system response in nominal and in 

faulty conditions. Every fault has been valued with 

step command at 1 radians.
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precursors) by means of an algorithm, based on the 

Wavelet analysis, that evaluates the filtered phase 

currents; for this purpose, each phase current is 

filtered by three low pass signal filter, in order to 

attenuate noise and disturbances [11].  

 
Wavelet analysis can decompose any signal through 

a wavelet family basis, expanded from a wavelet 

basis function and locally refinement the high and 

retaining the 

characteristics of the original signal in time domain. 

So wavelet analysis has good time-frequency 

proprieties and can effectively identify non

stationary signals for fault diagnosis purposes [12]

Analysis and Feature Extraction
Several simulations have been performed in order to 

estimate the system response in nominal and in 

faulty conditions. Every fault has been valued with 

step command at 1 radians.

the EMA controller so t

it is possible to reach the maximum unloaded 

In particular, the authors simulated the effects of 

faults affecting the magnetic coupling between 

angular 

[8]. 

Executed in the BLDC ElectroMec model block 

EMF 

(one for each branch) modulating their 

as a function of coil 

short circuit percentage, static rotor eccentricity ζ 

(2) 

) are then 

electromotive forces 

induced on the corresponding stator windings and, 

therefore, to evaluate the mechanical torque 

contributions generated by the three motor phases. 

sors 

permits to adopt countermeasures despite quite fast 

propagation of sensors’ and electrical components’ 

failures. It must be noted that, with respect to other 

EM models available in literature, the numerical 

model shown in the previous sections is able to 

calculate the instantaneous value of each current 

) also in case of unbalanced 

electromagnetic system (e.g. partial short circuit on 

a stator branch or rotor static eccentricity); then, it is 

s with the 

dynamic response of these signals (used as failure 

precursors) by means of an algorithm, based on the 

Wavelet analysis, that evaluates the filtered phase 

currents; for this purpose, each phase current is 

in order to 

Wavelet analysis can decompose any signal through 

a wavelet family basis, expanded from a wavelet 

basis function and locally refinement the high and 

retaining the 

characteristics of the original signal in time domain. 

frequency 

proprieties and can effectively identify non-

[12].  

Extraction 
Several simulations have been performed in order to 

estimate the system response in nominal and in 

faulty conditions. Every fault has been valued with 

step command at 1 radians. 

the EMA controller so that 

it is possible to reach the maximum unloaded 

inhibiting the control logic, this type of command 

input allows detecting eventual failures by 

neglecting the controller influence (i.e. as long as it 

is in saturation conditions, the controller is not 

to correct or attenuate the failure effects and, then, it 

makes faults visible). 

preliminary

effective 

Current and speed signals from the two progressive 

fault cases are compared below with their wavelet 

analysis. 

on every signal and then, after qualitative 

comparisons, it was carried out the best choice

considered for selecting wavelet basis. A better 

orthogonal feature means larger rules coefficients, 

but the effect of mutations detection is worse. It is 

better to select wavelet basis with larger rules 

coefficients 

signal, then the coefficient with the rules of the 

wavelet function better.

by an operatively point of view, it

of dimensionality reduction. Feature 

involves simplifying the amount of resources 

required to describe a large set of data accurately. 

signals for a given classification problem need to be 

used, due to their redundancy, a further p

needed for redundancy reduction by retaining only 

an informative subset of them. 

named

Fig. 3: Example of features 

suitable for analysis is dependent by the properties 

of the said mother wavelet or by the similarity 

between signal and mother wavelet

In this regard, it is necessary to highlight that, by 

inhibiting the control logic, this type of command 

input allows detecting eventual failures by 

neglecting the controller influence (i.e. as long as it 

is in saturation conditions, the controller is not 

to correct or attenuate the failure effects and, then, it 

makes faults visible). 

preliminary information

effective prognostic

Current and speed signals from the two progressive 

fault cases are compared below with their wavelet 

analysis. Several wavelet families have been tested 

on every signal and then, after qualitative 

comparisons, it was carried out the best choice

The orthogonal feature is a very important rule 

considered for selecting wavelet basis. A better 

orthogonal feature means larger rules coefficients, 

but the effect of mutations detection is worse. It is 

better to select wavelet basis with larger rules 

coefficients to reflect show the overall trend of the 

signal, then the coefficient with the rules of the 

wavelet function better.

This process is named “feature extraction” and, 

by an operatively point of view, it

of dimensionality reduction. Feature 

involves simplifying the amount of resources 

required to describe a large set of data accurately. 

Since not all features that can be extracted from 

signals for a given classification problem need to be 

used, due to their redundancy, a further p

needed for redundancy reduction by retaining only 

an informative subset of them. 

This stage of 

named “feature selection”

Fig. 3: Example of features 

NC vs. faulty condition (20% of co

The selection of the type of mother wavelet 

suitable for analysis is dependent by the properties 

of the said mother wavelet or by the similarity 

between signal and mother wavelet

In this regard, it is necessary to highlight that, by 

inhibiting the control logic, this type of command 

input allows detecting eventual failures by 

neglecting the controller influence (i.e. as long as it 

is in saturation conditions, the controller is not 

to correct or attenuate the failure effects and, then, it 

makes faults visible). 

information for seeking a simple and 

prognostic method of 

Current and speed signals from the two progressive 

fault cases are compared below with their wavelet 

Several wavelet families have been tested 

on every signal and then, after qualitative 

comparisons, it was carried out the best choice

gonal feature is a very important rule 

considered for selecting wavelet basis. A better 

orthogonal feature means larger rules coefficients, 

but the effect of mutations detection is worse. It is 

better to select wavelet basis with larger rules 

to reflect show the overall trend of the 

signal, then the coefficient with the rules of the 

wavelet function better. 

This process is named “feature extraction” and, 

by an operatively point of view, it

of dimensionality reduction. Feature 

involves simplifying the amount of resources 

required to describe a large set of data accurately. 

Since not all features that can be extracted from 

signals for a given classification problem need to be 

used, due to their redundancy, a further p

needed for redundancy reduction by retaining only 

an informative subset of them. 

This stage of signal 

“feature selection”. 

Fig. 3: Example of features 

NC vs. faulty condition (20% of co

The selection of the type of mother wavelet 

suitable for analysis is dependent by the properties 

of the said mother wavelet or by the similarity 

between signal and mother wavelet

In this regard, it is necessary to highlight that, by 

inhibiting the control logic, this type of command 

input allows detecting eventual failures by 

neglecting the controller influence (i.e. as long as it 

is in saturation conditions, the controller is not 

to correct or attenuate the failure effects and, then, it 

makes faults visible). These results provide 

for seeking a simple and 

method of BLDC 

Current and speed signals from the two progressive 

fault cases are compared below with their wavelet 

Several wavelet families have been tested 

on every signal and then, after qualitative 
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the approximation coefficient subset, the 
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The FDI neural network (ANN_1) has the task to 

perform the classification of the fault: it is able to 
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from a fault of the rotor eccentricity. The network 

was trained by the training vector K (inputs) and the 

target vector T. The training vector K consists of 

two section of 17 rows for 48 columns. Each row 

represents one of the features shown in the 

chapter and is characterized by the two classes of 

faults. Every column represents an increasing fault 

level of the three signals processed. The vector of 

the target T consists of 2 equal sections of 48 

columns, one for 2 rows. In each column of t

vector T it is associated with a column vector K

The first row represents the short

stator winding, while the second row represents the 

failure of the rotor eccentricity. 

initially composed by null values, but

value 1 in the proper column, it is able to indicate 

(to the neural network) the type of failure related to 

the corresponding column of training vector K.

For instance, Fig. 6 shows the main Waveform 
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initially composed by null values, but
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(to the neural network) the type of failure related to 
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The FDI neural network (ANN_1) has the task to 

perform the classification of the fault: it is able to 

distinguish a short circuit fault of the stator

from a fault of the rotor eccentricity. The network 

was trained by the training vector K (inputs) and the 
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two section of 17 rows for 48 columns. Each row 
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faults. Every column represents an increasing fault 

level of the three signals processed. The vector of 
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stator winding, while the second row represents the 
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For instance, Fig. 6 shows the main Waveform 
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the features and the related signal (e.g. raw signal, 
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level of the three signals processed. The vector of 
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(to the neural network) the type of failure related to 

the corresponding column of training vector K. 

For instance, Fig. 6 shows the main Waveform 
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the features and the related signal (e.g. raw signal, 

approximation, D7 or cD7 detail coefficients) 

that represent the progressive fault in the best way. 
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perform the classification of the fault: it is able to 

coils 
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previous 
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architecture is shown in Fig

Fig. 7: Schematic of the proposed NN architecture
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• Training Function: “
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The ANN_1 neural network is a network for 

pattern recognition of Multilayer Perceptron 

and has been generated by Matlab tool and its 

architecture is shown in Fig. 7. 

Fig. 7: Schematic of the proposed NN architecture

The network has the following characteristics:

Layers: one hidden layer, one input layer, one 

10 perceptrons; 

Activation Function: log-sigmoid;

trainlm” that updates ANN 

and bias according to Levenberg

Marquardt optimization [15-16]; 

Performance Function: “mse” (mean square 

error), it measures the network's perfor

according to the mean of squared errors

dividerand”, divide K

sets using random indices following this 

percentages: 70% training samples, 15% 

validation samples, 15% testing samples
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sigmoid; 
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It’s the wavelet itself that detects changes in 

progressive faulty signals.  

Future works could be carried out to increase the 

number fault classes or to improve the reliability of 

wavelet analysis and the ANN architecture. In order 

to achieve these objectives, a wavelet families 

choice can be done using a quantitative methods and 

not only by a similarity between the original signal 

and the wavelet family. Furthermore, an important 

challenge, according to Ockham Principle, is to 

simplify the network to prevent ovefitting: 

• reduce the number of analyzed signals, taking 

into account only the current signals; 

• reduce the number of neurons and hidden layers; 

• reduce the number of useful features, by a 

selection during features extraction or by a 

selection after network training, based on a 

weight that the network gives at each feature. 

Last but not least, in order to ensure the 

effectiveness and the robustness of the proposed 

FDI method, it’s necessary to test the trained 

network with inputs related to several noise levels. 
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