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1 Introduction
To represent the interaction framework between
agents in economic or financial systems, one can use
network models. The definition of a financial net-
work was given in [1], in which the nodes are various
organizations, including banks, firms and investors,
which are linked through a network of financial in-
terdependencies, for example, cross-ownership of fi-
nancial assets, inter-organizational debts / liabilities,
social relations between board members and so on.
A classic example of a banking (financial) network is
built in [2], where it is illustrated how systemic risk
can arise as a result of financial interdependencies be-

tween banks. Most of real-world networks are con-
stantly changing over time. The links between eco-
nomic agents are usually activated or deactivated in
dependence of the irregular interactions between the
elements of the economic system. These activation
templates may be sporadic and represent a huge role
in the dynamics of network processes. One of exam-
ples of this situation is information spreading in social
networks. The topology of network (heterogeneity in
the connections, abundance of loops) plays an impor-
tant role in the economic system dynamics behavior.

Financial markets and corresponding networks
may have a huge amount of assets (nodes) and inter-

, RUSSIAN 
FEDERATION

, RUSSIAN 
FEDERATION

, RUSSIAN 
FEDERATION

 
RUSSIAN FEDERATION

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2020.17.14

Vladimir Balash, Sergei Sidorov, 
Alexey Faizliev, Alfia Chekmareva, 

Alexey Grigoriev, Dmitriy Melnichuk

E-ISSN: 2224-2899 120 Volume 17, 2020



connections (edges). It is useful to simplify initial net-
works by filtering the noises. Some of the approaches
employed in filtering of financial networks are based
on hierarchical tree (HT) [3, 4], planar maximally fil-
tered graphs (PMFG) [5], asset graph (AG) [6], and
partial correlation network [7, 8, 9]. Another success-
ful method of financial network simplification was de-
veloped by Mantegna [3] and applied in [10]. The ap-
proach is based on the minimum spanning tree method
for examining of hierarchical structures of financial
networks.

In recent years there has been an increased inter-
est in the application and development of an approach
based on market graphs. These papers include em-
pirical studies based on real market data and explore
various structural properties and attributes of market
graphs, such as maximum clicks, maximum indepen-
dent sets, degree distribution [11, 12, 13, 14], cluster-
ing, Pearson correlations [15], market graphs of the
US market [16], the complexity of the market graph
[17]. The concept of a market graph was first con-
sidered in [18], in which a market network is defined
as a full weighted graph, where nodes represent as-
sets and arc weights reflect similarities between asset
behavior (which can be measured, for example, us-
ing correlation). In article [18], the edge between two
vertices is inserted into the market graph, if the corre-
sponding value of the correlation coefficient is above a
given threshold. The articles [19, 20, 21, 12, 22] stud-
ied the distinctive features of individual financial mar-
kets. Market graphs with similarity measures other
than correlation were studied in [19, 23, 24, 25, 8, 26].

In this paper, we use some methods of complex
network theory to study Russian financial market net-
work. Complex network analysis and SNA methods
allow us to investigate the structure of Russian finan-
cial market network that are based on the correlation
relationship between the components of the system
(assets).

Network analysis methods have proved to be suc-
cessful in studying various individual major financial
markets such as US market [27, 28, 29], Germany
[30, 4], EU [31, 32, 33], Italian [34, 35]. Some re-
search papers have been investigate developing mar-
kets such as China [29, 36, 12, 37], Brazil [38, 39],
Korea [40], Russia [21], and Mexico [41, 42]. More-
over, some papers employed network approach to ex-
amine global markets [43, 44].

It turned out that the network analysis is capable
to examine the importance of companies using dif-
ferent centrality measures [45, 45] and to analyze the
systemic risks and financial market stability based on

the topological properties of networks [46, 47, 48].
Systemic risk contagion has been analyzed in [49, 50]
to find major influencers based on banking behaviors
in the global environment. The paper [51] studies Eu-
ropean markets and shows that EU markets are ex-
posed to systemic risks. It should be noted that sys-
temic risk analysis based on network approach may
provide useful implications for market regulations.

The paper [29] employs various methods of net-
work analysis to investigate financial networks of both
in China and the United States and to study how the
two markets behave differently. In this paper, we will
present a similar analysis of Russian stock market.
One of the main research questions of this paper is
to find how the US and China stock markets differ in
the structures and topological properties from Russian
stock market using

• market graph approach proposed in [18, 11],

• hierarchical tree (HT) method [3],

• minimum spanning tree (MST) approach [3].

In this paper we compare topological properties of the
networks constructed for the US and China stock mar-
kets in [29] with the properties of corresponding net-
works constructed for the Russian stock market using
a dataset spanning over nine years.

The paper is organized as follows. First, Sec-
tion 2 describes the data and method used to con-
struct networks. Section 3 presents the market net-
work properties using market graph approach pro-
posed in [18, 11]. Section 4 examines the hierarchical
structures of the Russian stock network using HT, and
MST approaches and compares them with findings of
the paper [29]. Finally, conclusions are presented in
Section 5.

2 Data and Methodology
2.1 Data Description
Russia has a developing economy which is the sixth
among countries in the world in terms of GDP (PPP).
The RTS index and the Moscow Stock Exchange in-
dex are the main indicators of the Russian stock mar-
ket. The difference between them is that the RTS is
calculated in dollars, and the MICEX in rubles. His-
torical data of daily prices for each company were
taken from open sources on Yahoo Finance, for the
period from 10/01/2012 to 09/04/2019 (1664 trading
days). Similarly, data on the MICEX index were taken
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from the Moscow Stock Exchange for the same pe-
riod. A total of 194 companies are considered, among
which 32 companies are part of the MICEX index.

The descriptive statistics for log returns of the
IMOEX index over the period between 10/01/2012
and 09/04/2019 are presented in Table 2.2. The re-
sult of Garch(1,1) modelling for log returns of the
IMOEX index over the period between 10/01/2012
and 09/04/2019 is presented in Fig. 1.

Some companies (CBOM, DSKY, FIVE, LNTA,
MOEX, POLY, RNFT, RUAL, SFIN) that are part of
the MICEX index were not included in our dataset.
This is due to the fact that they have a very short trad-
ing history (only 2-3 years), which is insufficient to
build a relevant model. We also did not include com-
panies that had more than 250 missed trading days in
a row in our dataset. Thus, only 194 issuers remained
in our dataset from the initial list of 278 issuers traded
on the Moscow stock exchange. The YNDX com-
pany has started to be traded on the Moscow stock
exchange from 02/06/2014, but it has been traded on
the NASDAQ from 02/05/2011, from which the miss-
ing data were taken. After cleaning and the selec-
tion process, we include 194 stocks traded on IMOEX
in our dataset, as shown in Table 1. We place these
194 stocks among all ten industry sectors. Table 2.2
presents basic information about datasets.

2.2 Market Network Construction
To calculate the correlation ρij for a pair of stocks, it
is necessary to use time series of prices (Adj Close)
Pi(t) for each company si at the time point t. To
smooth the oscillations we use the log returns Yi(t) of
the company si in the time period [t − ∆t, t] defined
by

Yi(t) = lnPi(t)− lnPi(t−∆t), (1)

where ∆t = 1 for daily prices. Then we find the Pear-
son correlation coefficient for each pair of companies
si and sj as follows

ρij =
〈YiYj〉 − 〈Yi〉 〈Yj〉√

(
〈
Y 2
i

〉
− 〈Yi〉2)(

〈
Y 2
j

〉
− 〈Yj〉2)

(2)

where 〈·〉 denotes the average value.
Based on the values of the Pearson correlation co-

efficient for each pair of companies we can construct
the N × N = 194 × 194 distance matrix using the
equation

dij =
√

2(1− ρij). (3)

Sector Stocks
Basic Materials 36
Consumer Cyclicals 11
Consumer Non-Cyclicals 9
Energy 22
Financials 16
Healthcare 3
Industrials 24
Technology 3
Telecommunications Services 11
Utilities 59

Table 1: 194 component stocks of IMOEX are in-
cluded in our dataset. In this table, we list sector
name, and numbers of stocks for each industry sec-
tor of these 194 stocks. All 10 industry sectors are
represented
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Figure 1: GARCH(1,1) time series of the volatility of
the IMOEX index daily log returns

3 Basic network properties
In this section, we examine the topological properties
of the IMOEX stock network using the dynamic ap-
proach applied in [29]. We take the sliding window
size L = 250 to meet the requirement of L/N > 1,
where the number of stocks is N = 194. In total,
there are 1413 windows for IMOEX. We calculated
the log returns for all IMOEX stocks by using Eq.
(1) and then we found the Pearson correlation coeffi-
cient matrix for each window over the period between
10/01/2012 and 09/04/2019 using Eq. (2).

We compare the results obtained for the Rus-
sian stock market with the results obtained in the
paper [29] for the Chinese and US stock markets.
The dataset S&P468 has been described in [29] and
cosnsists of 468 component stocks of S&P500. The
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Dataset Stocks Days 〈Y 〉 σY 〈Ymin〉 〈Ymax〉
IMOEX 194 1664 2.66e-4 0.0125 -0.1141 0.0551
CSII63 163 2149 1.48e-04 0.0340 -0.4832 0.1002

S&P468 468 2228 1.47e-04 0.0252 -0.3413 0.2160

Table 2: Basic information of IMOEX datasets including the number of stocks, the number of trading days, the
average log returns 〈r〉, and the standard deviation σr of the log returns is presented

dataset CSI163 has been described in [29] and in-
cludes of 163 component stocks of CSI300.

Thus, for IMOEX we obtain a network with 194
vertices. Using Eq. (3) we calculate the distance ma-
trices for each window. It should be noted that all
negative correlation values are transformed into pos-
itive distances. All vertices in the network are fixed
and correspond to stocks. However, the edges vary in
each sliding window as the distances change. Then
we average all the distance matrices over all sliding
windows of the study periods. The statistical proper-
ties of the IMOEX stock network are examined in this
section.

The maximum number of edges in average dis-
tance matrix is equal to N(N − 1)/2 = 18, 721 and it
is a huge number. We can simplify the network by fil-
tering edges with small weights. In this section the
market graph is constructed based on threshold ap-
proach: for a fixed threshold value of θ we delete those
edges whose weight are bigger than θ and preserve the
remaining edges. In other words, we filter the network
edges as follows:

eij =

{
1, dij < θ,

0, dij ≥ θ.

Table 3 presents the basic properties of the
IMOEX network for different values of θ taken from
0.5 to 1.5. It can be seen that the number of edges is
zero if the threshold value is θ = 0.8, while the graph
becomes complete at θ = 1.5. The figure 2 shows
edge densities for different thresholds from 0.5 to 1.5.
In the interval from 0.5 to 1.1, network densities are
close to 0, which means that all edges are filtered. In
the range from 1.43 to 1.5, the densities are close to
1, i.e. all edges are present at the network. For charts
based on Chinese and American stock markets [29]
we see that the two curves have a similar shape with
a slopes that lie between 0.6 and 1. It should be noted
that the transformation interval for the IMOEX net-
work is from 1.1 to 1.43, which is atypical for stock
networks. As a rule, stock networks show the transfor-
mation interval from 0.6 to 1. The study shows that
Russian stock network has a different form of trans-

forming interval than the USA and China . This is due
to much lower correlations between assets traded in
the Russian stock market, which could be explained
by e.g. low liquidity of most stocks in IMOEX. More-
over, it can be easily verified that even highest liquid-
ity shares provide low correlations. Network density
for a graph constructed using these stocks maintains
similar dependency from θ as for the whole IMOEX
network.
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Figure 2: Edge densities of CSI163, S&P468 and
IMOEX for different thresholds θ from 0.5 to 1.5. It
shows that the densities for IMOEX increase sharply
from 0 to 1 in the interval of θ from 1.05 to 1.45.

3.1 Degree distribution
We investigate the degree distributions for the IMOEX
networks filtered with different values of θ. The de-
gree distributions are noisy for both small values of θ
and large ones. For a sufficiently small interval θ =
(1.15; 1.2), the degree distributions follow closely to
the power law distribution. After processing the data,
we build the degree distribution with the typical power
law shape in Fig. 3. The log-binning procedure was
used to build the regression and calculate the power
law exponent. The value of the power law exponent
is γ = 1.14 with R2 = 0.85. Since the use of linear
approximation (linear-binning) significantly underes-
timates the exponent γ. A negative tilt angle indicates
that the network is scale-free, in which a small part of

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2020.17.14

Vladimir Balash, Sergei Sidorov, 
Alexey Faizliev, Alfia Chekmareva, 

Alexey Grigoriev, Dmitriy Melnichuk

E-ISSN: 2224-2899 123 Volume 17, 2020



θ |e|max |e| |e|density 〈d〉 〈dij〉 dmax
ij σ

0.5 18721 0 0.0000 0.0000 0.0000 0.0000 0.0000
0.6 18721 1 0.0001 0.0103 0.5458 0.5458 0.0000
0.7 18721 2 0.0001 0.0206 0.5848 0.6238 0.0552
0.8 18721 2 0.0001 0.0206 0.5848 0.6238 0.0552
0.9 18721 4 0.0002 0.0412 0.7201 0.8969 0.1631
1 18721 17 0.0009 0.1753 0.8957 0.9994 0.1263

1.1 18721 80 0.0043 0.8247 1.0235 1.0992 0.0915
1.2 18721 376 0.0201 3.8763 1.1351 1.1999 0.0756
1.3 18721 1996 0.1066 20.5773 1.2393 1.2998 0.0648
1.4 18721 14260 0.7617 147.0103 1.3477 1.4000 0.0551
1.5 18721 18721 1.0000 193.0000 1.3638 1.4748 0.0563

Table 3: The max possible number of edges |e|max for N = 194 vertices, the existing number of edges |e|, the edge
density |e|density, the average degree 〈d〉, the average distance 〈dij〉, the maximum distance dmaxij are presented for
different θ from 0.5 to 1.5 in a step of 0.1, the standard deviation σ

the vertices has greater degrees, and most of the ver-
tices have smaller degrees.

Fig. 3 shows that the degree distributions of
IMOEX (with θ = 1.2), CSI163 (with θ = 0.68) and
S&P468 (with θ = 0.75) networks follow the power
law in the form of pk ∼ k−γ with γ = 1.14, γ =
0.9935 and γ = 1.2323 respectively. It means that
the networks are scale free in which a small portion
of vertices have larger degrees, while a large portion
of vertices have small degrees. At the first sight, the
IMOEX network has the same scale-free behaviour as
the CSI163 and S&P468 networks. However, if we
take the same level of θ as it was taken for the CSI163
and S&P468 networks (i.e. θ = 0.65 ± 0.1) then the
IMOEX network will be very sparse and almost all
vertices will be isolated.
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Figure 3: Log-Log degree distributions of IMOEX,
CSI163 and S&P468 networks. By using different θ, we
can filter out edges with larger distances. This figure shows
the log-Log degree distribution of IMOEX (with θ = 1.2),
CSI163 (with θ = 0.68) and S&P468 (with θ = 0.75) net-
works.

3.2 Average clustering coefficient
The average clustering coefficient (ACC) is the av-
erage of all clustering coefficients over all vertices.
The clustering coefficient means transitivity for a sin-
gle vertex, while the average clustering coefficient is
an indicator of the transitivity and density for the en-
tire network. Fig. 4 presents the average clustering
coefficient for the IMOEX network and its compari-
son with a random network. Compared to the random
network of the same size, the ACC for the IMOEX
network is significantly larger than that of the ran-
dom network. It shows that the IMOEX network is
well connected with better transitivity. For compari-
son, Fig. 4 presents the average clustering coefficients
for China and the USA networks. Fig. 4 shows that
the IMOEX network does not behave in the similar
way: ACC values are always lesser than for CSI163
and S&P468 networks, i.e. the transitivity and den-
sity for the IMOEX network are much lower than for
China and the USA networks.

3.3 Average path length
Fig. 5 shows the average path length for the IMOEX
network compared to a random network of the same
size. It can be seen that the IMOEX network is sig-
nificantly different from the random network. For
comparison, Fig. 5 also shows the average cluster-
ing coefficients for China and the USA networks. Fig.
5 indicates that the IMOEX network behaves differ-
ently: the average path length has a peak at θ = 1.1
while the CSI163 and S&P468 networks have peaks at
θ = 0.6 and 0.65 respectively. Moreover, the average
path length for the IMOEX network is much bigger
than for the CSI163 and S&P468 networks for θ > 1.
Thus, the China and the USA networks are more con-
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Figure 4: Average clustering coefficient 〈C〉 of
IMOEX, CSI163 and S&P468 for different thresholds
θ.

nected in the sense that economic shocks and impor-
tant financial and economic news can transfer along
networks much quicker.
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Figure 5: Average path lengths 〈L〉 for IMOEX,
CSI163 and S&P468 under diferent θ compared with
values for random networks of size 194.

3.4 Betweenness centrality
Betweenness of a vertex is defined as the number of
shortest paths passing through it. Thus, this indicator
demonstrates the contribution of each vertex to global
connectivity. Averaging over individual betweenness
coefficients over all vertices, we can compare the be-
tweenness values for any two vertices. Fig. 6 shows
that the peak of the average betweenness for the net-
work is achieved at the threshold value θ = 1.35. It
can be seen (Fig. 5) that the CSI163 and S&P468
networks have peaks at θ = 0.62 and 0.81 respec-
tively. Moreover, the maximum values of the average
betweenness for the IMOEX network are much lower

than for the CSI163 and S&P468 networks. Thus, the
China and the USA networks have a greater number
of nodes with higher betweenness centrality that have
more control over the network (in comparison with the
IMOEX network).
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Figure 6: Average betweenness of IMOEX, CSI163
and S&P468

We visualize the stock network of IMOEX with
different values of θ = 1.1, 1.2 in Fig. 7. The fig-
ures show that the network can be greatly simplified
by using small values of θ. Table 3 indicates that the
edge density for the IMOEX network increases dra-
matically from θ = 1.1 to θ = 1.4.

3.5 Components
A component of a network is defined as a subnetwork
with connected vertices. If a network has N vertices,
then the size of component can vary from 1 (for an
isolated node) to the maximum value N (ifr all ver-
tices are connected). The number of components, the
max component size, and the average component size
are plotted in Fig. 8, 9 and 10 for the IMOEX, CSI163
and S&P468 networks filtered with different threshold
values. The figure shows transitions of the networks
from a large number of small isolated components into
a connected giant network. At the same time, for the
average component size there is a sharp transition to
the giant component at θ ≈ 1.35.

To examine how industry sectors are linked in the
IMOEX network, we list the properties of the network
with θ = 1.4 in Table 3.5. The table shows that the
Russian industry sectors has approximately the same
average degree as well as the average clustering co-
efficient. However, the values of average between-
ness coefficient differ for different sectors assuredly.
It should be noted that the same results were obtained
for the CSI163 and S&P468 networks in [29].
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(a) IMOEX network θ = 1.1 (b) IMOEX network θ = 1.2

Figure 7: IMOEX networks with different θ of 1.1 (a), 1.2 (b)

Sector Number 〈d〉 〈C〉 〈B〉
Basic Materials 36 150.9722 0.8516 11.5556

Consumer Cyclicals 11 141.0909 0.8472 7.9091
Consumer Non-Cyclicals 9 154.5556 0.8539 3.0000

Energy 22 153.6818 0.8366 40.1364
Financials 16 147.7500 0.8342 53.5000
Healthcare 3 159.000 0.8618 8.3333
Industrials 24 132.3333 0.8424 10.2500
Technology 3 155.0000 0.8559 0.6667

Telecommunications Services 11 152.2727 0.8449 29.8182
Utilities 59 145.8305 0.8350 26.9661

Table 4: In this table, we list the sector name and the numbers of stocks, the average degree 〈d〉, the average
clustering coefficient 〈C〉, and the average betweenness coefficient 〈B〉 for each industry sector of these 194
stocks. The values are calculated from the IMOEX network with θ = 1.4.

Table 3.5 presents the top 10 stocks of IMOEX
network with the biggest values of degree di and be-
tweenness bi arranged in descending order in the top
part and the bottom part, respectively. The stock code,
company name, industry name, and values of degree
di, clustering coefficient ci and betweenness bi are
presented. SBERBANK, which is a leading financial
company in Russia, has the largest degree of 136 and
JSC ”OGK-2” is Russia’s largest heat generating com-
pany, has the largest betweenness coefficient of 1551.

4 Hierarchical Structure of Stock
Networks

Graphs constructed by certain rules may reveal its
properties. In this section we create and study hi-
erarchical trees and minimal spanning tree to extract
valuable fragments from the graph based on the aver-
age distance matrix, which we construct by averaging
sliding windows over the study period.

4.1 Hierarchical Tree
Clustering algorithms can be used on average distance
matrix to group stocks which prices correlate and to
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Ticker Name Industry di ↓ ci bi Cap
SBER SBERBANK Financials 136 0.5082 1407 4.92 · 106
OGKB OGK-2 Utilities 136 0.5031 1551 4.25 · 104
RASP RASPADSKAYA Energy 132 0.5191 1218 9.60 · 104
RSTI ROSSETI Utilities 131 0.5400 719 2.16 · 105
SBERP SBERBANK OF RUSSIA Financials 128 0.5519 556 4.90 · 106
FEES FSK EES Utilities 128 0.5560 249 2.08 · 105
VTBR VTB Financials 127 0.5668 131 2.29 · 102
MSNG MOSENERGO Utilities 125 0.5735 144 8.96 · 104
BSPB BANK ST PETERSBURG Financials 125 0.5472 499 2.80 · 104
RSTIP ROSSETI Utilities 122 0.5780 215 2.14 · 105
Ticker Name Industry di ci bi ↓ Cap
OGKB OGK-2 Utilities 136 0.5031 1551 4.25 · 104
SBER SBERBANK Financials 136 0.5082 1407 4.92 · 106
RASP RASPADSKAYA Energy 132 0.5191 1218 9.60 · 104
RSTI ROSSETI Utilities 131 0.54 719 2.16 · 105
MRKC IDGC CENTRE Utilities 114 0.6167 700 1.28 · 104
SBERP SBERBANK OF RUSSIA Financials 128 0.5519 556 4.90 · 106
GAZP GAZPROM Energy 119 0.611 531 3.62 · 106
BSPB BANK ST PETERSBURG Financials 125 0.5472 499 2.80 · 104
KBSB TNS ENERGO KUBAN Utilities 4 0.3333 352 2.36 · 103
LSNG LENENERGO Utilities 103 0.665 323 5.80 · 104

Table 5: Top stocks with highest values of degree di, clustering coefficient ci and betweenness bi ranked in de-
scending order of di and bi for IMOEX network with the θ = 1.35. Stock tickers in bold indicate the stocks appear
at both top 10 stocks. Cap denotes capitalization in millions of RUB.
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Figure 8: The number of components for IMOEX,
CSI163 and S&P468 networks.

separate rest. Multiple definitions for distance be-
tween clusters can be used. Since clustering algo-
rithm depends on how distance value is calculated,
we used all four definitions. The distance da,b be-
tween two clusters ca and cb is defined as minimum,
maximum and average for all pairs (oa, ob) from ca
and cb respectively or as distance between their cen-
troids: da,b = max(doia , dojb

), da,b = min(doia , dojb
),

da,b = 1
NmNn

∑
i

∑
j doia,o

j
b
, da,b = d(oa, ob). We

create four hierarchical trees each using its own nor-
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Figure 9: The max component size for the IMOEX,
CSI163 and S&P468 networks.

malised distance definition (Fig. 11). Dendogram
function from Scipy package is used to draw them
on a plot from Matplotlib package. In the trees, each
leaf node indicates the stock of a particular company
with its ticket as a label. The height of where two
stocks connect shows how they correlate. The lower
the branches of similar clusters or stocks merge the
more positive correlation there is between them. We
set color threshold of 0.7×max(d∗) to highlight clus-
ters below this value. The companies in same colored
branches are very likely to be from the same economy
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Figure 10: The average component size for the
IMOEX, CSI163 and S&P468 networks.

sectors which means that hierarchical trees can show
economy sectors from price correlation matrix alone.

(a)

(b) (c) (d)

Figure 11: Hierarchical clustering trees based on average
distance for stocks in IMOEX using: (a) complete-linkage,
(b) single-linkage, (c) average linkage, (d) centroid linkage

The maximum-based linkage criterion showed

better clustering results if we compare four trees gen-
erated by the hierarchical clustering algorithms.

4.2 Minimum Spanning Tree
IMOEX network, based on average distance matrix,
can be simplified by extracting edges with minimal
distance while maintaining graph connectivity. Con-
nected graph with N vertices can be converted into
the graph with N − 1 edges without loops with mini-
mum total length of edges or minimum spanning tree
(MST). This graph is called minimum spanning tree.
It brings huge advantages to the study of networks of
stocks by reducing noises and simplifying computa-
tions. We use Python Scipy minimum spanning tree
algorithm on an average distance matrix. Networkx
python package is used to get its graphic representa-
tion on a Matplotlib plot as shown in Fig. 12.

After the edge filtering process, some nodes are
still well-connected, and they may be considered the
key stocks in the market. The most connected stocks
are from utilities, financials and energy sectors. These
results let us extract the most influential companies
from the given data. It should be noted that Markowitz
optimal portfolio consists of stocks corresponding to
leaf nodes of MST. Therefore, we can use MST ap-
proach for portfolio optimisation.

Top 10 stocks are shown in the table 4.2. As
expected, financials, energy and utilities sectors are
dominant in the Russian stock market which is differ-
ent from the US and Chinese stock markets. Further
studies of minimum spanning tree over time may re-
veal important changes in the core stocks and sectors
of the market. Moreover, the result of the algorithm
application differs between study periods and this is
helpful when studying network topological dynamics.

4.3 Hierarchical tree for a pooled market
graph (IMOEX and S&P468)

The obtained results indicate a significant difference
in the density of correlation between stock returns and
the characteristics of market graphs constructed for
the financial markets of the US, China and the Rus-
sian Federation.

Such differences can be explained by the rela-
tively less developed financial market of the Russian
Federation as a whole, and industry affiliation of com-
panies, greater uncertainty and a high share of risks
specific to each of the companies, etc. It is known
that a significant share in the total capitalization of
the financial market of the Russian Federation falls
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Figure 12: Minimal spanning tree for IMOEX network

Degree Ticket Name Industry
19 SBER SBERBANK Financials
12 RASP RASPADSKAYA Energy
11 OGKP OGK-2 Utilities
10 RSTI ROSSETI Utilities
9 SBERP SBERBANK Financials
8 GAZP GAZPROM Energy
7 MTLR MECHEL Basic Materials
5 MRKC IDGC CENTRE Utilities
5 FEES FSK EES Utilities
5 LKOH LUKOIL Energy

Table 6: In this table 10 most significant stocks are shown. The most important stocks are from three industries:
utilities, financials and energy

on the shares of companies focused on the export of
raw materials. It is interesting to check whether in-
dustry or country is more important for the correla-
tion dependence. To do this, we apply the hierarchical
tree method for a pooled market graph (IMOEX and
S&P468). If industry factors would be more impor-
tant, then Russian stocks should be placed to clusters
according to their industry affiliation. If cross-country
differences are more important, then clusters should
be placed to clusters according to their country affili-

ation.

The results of applying the hierarchical classi-
fication method are presented in the Fig. 13. All
Russian companies fall into one cluster (in the fig-
ure it is marked in blue at the left side of the den-
drogram). S&P500 companies are located in other
clusters, which are well explained by their industry
affiliation.
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Figure 13: Hierarchical tree for a pooled market graph
(IMOEX and S&P468)

5 Conclusion

In this paper, using the daily close prices we calcu-
lated the correlation matrices for 194 assets trading
on the Russian stock exchange during the study pe-
riod from 2012 to 2019 for all sliding windows. Based
on these correlation matrices we constructed the mar-
ket networks with stocks as the nodes and correlation
relationships as the edges. Our goal was to study
the networks properties using the complex network
theory from data science perspective. We employed
such network filtering methods as threshold, hierar-
chical tree, minimum spanning tree for simplification
of the networks. Then we examine the network prop-
erties for the filtered networks. We compare topolog-
ical properties of the networks constructed for the US
and China stock markets with the properties of corre-
sponding networks constructed for the Russian stock
market using a dataset spanning over eight years. It
turns out that the IMOEX network share similar topo-
logical properties in some case, but it also differ from
the CSI163 and S&P468 networks in many aspects.
The study shows that the topological properties of the
Russian stock network has a different from the USA
and China dependence on θ, which is the consequence
of a much lower correlations between assets traded in
the Russian stock market. One the one hand, it may
be explained by low liquidity of most stocks traded
in IMOEX. On the other hand, even shares with high
liquidity have low correlations.
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