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Abstract: - When probability distribution of a process characteristic is non-normal, Cp and Cpk indices 
calculated using conventional methods often lead to erroneous interpretation of process capability. Various 
methods have been proposed for surrogate process capability indices (PCIs) under non-normality but few 
literature sources offer their comprehensive evaluation and comparison, in particular whether they adequately 
capture process capability under mild and severe departures from normality, and what is the best method to 
compute true capability under each of these circumstances. We overview 9 methods as to their performance 
when handling PCI non-normality. The comparison is carried out by simulating log-normal and data and the 
results presented using box plots. We show performance to be dependent on the ability to capture tail behavior 
of the underlying distribution. 
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1 Introduction 
Process capability indices (PCIs) are widely used to 
determine whether a given process is capable to 
output products in a given tolerance band. Cp a Cpk, 
ranking among the most popular, are defined as: 
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where USL and LSL denote upper and lower 
specification limits, respectively, and pkC  the 
minimum of ( )plpu CC , .  Due to unknown mean 

process value µ  and variance 2σ , they are usually 

estimated from sample counterparts, x  and .2s  
English and Taylor analyzed non-normality in PCIs 
and posited Cpk is more sensitive to deviations than 
Cp. Kotz and Johnson tested properties of the 
indices, e.g., Clements’ method, Johnson-Kotz-
Pearn method and “distribution-independent” PCIs 
under non-normal distributions as well. Index by 
Wright [19] integrates skewness correction factor in 
denominator of pmkC  proposed by Johnson. Choi 
and Bai [5] suggested a weighted variance heuristic 
method to correct PCIs for skewness by considering 
standard deviation above and beyond mean 
individually. Some authors proposed new-
generation PCIs based on assumptions about the 
population distribution. Pearn and Kotz [16] tied 

their capability indices to Pearson distribution. 
Johnson et al. [11] substituted 6σ  in the numerator 
of equation (2) by 6θ  whereθ  was selected so that 
„capability“ was not substantially influenced by the 
shape of the distribution. Castagliola presented 
computational methods for non-normal PCIs by 
estimating ratio of unsatisfactory products using 
Burr distribution. Vännman introduced ( ),  pC u v  

index family with ( ),  u v  comprising many other 
indices as special cases. Deleryd investigated 
suitable u’s and v’s for skewed process distributions. 

( )1,  1pC , equivalent to pmkC , is recommended as 
the best fit for treating non-normality in PCIs. Even 
though it is accepted pC  and pkC  are not suitable 
for process capability with non-normal distributions  
and the previously-mentioned methods constitute 
viable substitutes, a complex treatment is missing. 
Experts are interested in which methods are 
mutually comparable, which are sensitive to the 
normality assumption, and which are suitable for 
use with non-normal distributions. 
We will investigate 9 methods with respect to 
process capability by comparing puC  obtained from 

simulations with a target puC . In case the data are 
non-normally distributed, it will be necessary to 
obtain estimates as 0.00135L̂ , 0.99865Û , and 0.5M̂e  
quantiles; we will evaluate some methods. 
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Sometimes, the shape of the distribution is known 
a priori or based on knowledge of physical process 
properties. It is then necessary to use goodness of fit 
test to determine whether the model correctly 
represents the data, estimates distribution 
parameters, and computes the quantiles for log-
normal, Weibull, exponential distributions, etc. 
Some literature sources list equations for parameter 
and quantile estimations which can be also inputted 
to software. Fig. 1 depicts how a PCI is obtained for 
a non-normally distributed quality attribute 
[16,17,18]. 

 
Fig. 1 PCI for a non-normally distributed quality 
attribute [8] 
 
 
2 Surrogate PCIs for Non-Normal 
Distributions 
Here we will present methods to compute PCIs for 
non-normal data distributions. 
 
 
2.1 Probability Graph 
A popular approach to compute PCIs is to use 
normal distribution graph which allows to 
investigate the normality assumption. As with 
normal distribution where process width spans the 
0.135 and 99.865 percentile range, a surrogate PCI 
can be obtained from suitable probability 
distribution: 

 
Fig. 2 Normal distribution: interval spanning 
99.73% of values, and non-normal distribution: 
interval spanning 99.73% of values [Own work] 
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where pL  and pU  are 0.135 and 99.865 percentiles, 
respectively, trivially obtained in statistical software 
such as Minitab, NCSS, XLStatistics, etc. Due to 
median being preferred as asymmetric distributions’ 
location parameter, puC  and plC  are defined as 

,
99865.0 medianx
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LSLmedianCpl −
−

=    (5) 

Because the method is graphical, it can produce 
errors if statistical software is eschewed in favor of 
a probability paper where x axis is linear and y 
probabilistic, conforming to a selected probability 
distribution. N observations are diagramed 
according to (x(i)) with the respective counterparts 
of the empirical distribution function ((i) / N). 
Interpolated line is the best fit for a function of 
quality attribute’s expected probability distribution. 
Quantiles corresponding to (0,00135; 0,50; 0,99865) 
can be inferred and instated to the performance 
indicators. However, we repeat the method can be 
erroneous if statistical software is not involved 
[19,20]. 
 
 
2.2 Distribution-Independent Tolerance 
Intervals 
Chan et al. [4] devised a method utilizing 
distribution-independent tolerance intervals to 
compute pC  a pkC  for non-normally distributed 
processes: 
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where ω is tolerance interval’s width. If 99% 
reliability is required, the interval ensures 75% 
coverage of population statistics, the method is thus 
the only one giving different result even if the 
underlying distribution is normal. In that case, 
99.73% of the quality attribute’s values lie within 
±3s tolerance bounds, Cp = 1 means 99.72% of 
values lie within the bound. In equation (6), 6 in 
denominator is generally dependent on sample size 
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out of which s is estimated, and on quality 
attribute’s distribution. The non-normality limitation 
can be mitigated by selecting suitable percentage of 
items within the tolerance bounds, e.g., for 99%, 
5.15 may be used, a constant valid for many 
probability distributions with skewness from 0 to 
3.111 and kurtosis from 1 to 5.997 [5,10]. 
 
 
2.3 Weighted Variance Method 
Choi and Bai [5] proposed a heuristic weighted 
variance method for PCI correction according to 
population skewness. Let xP  be probability 
a variable X is lower or equal to the population 
mean 
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where ( ) 1I x =  when 0x > , and ( ) 0I x =  when 

0x < . PCI is then defined as [5] 
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2.4 Clements’ Method 
Clements [6] supplanted 6σ  in equation (6) with 

p pU L− : 

,
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where pU  is the 99.865 percentile. For pkC , µ  is 

estimated by median M and 3σ  by pU M−  

and pM U− . We get 
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Clements’ method employs traditional estimates for 
skewness and kurtosis based on the third and the 
fourth central moments both of which are unreliable 
for small sample sizes. The PCIs were devised for 
a class of Pearson distributions, i.e., beta, gamma, 
and Student [6,16]. 
Procedure for calculating PCIs: 
a) tolerance bounds USL, LSL, 

b) x , s, Sk (skewness), Ku (kurtosis), 
c) standardized quantiles '

pL , '
pU  (for selected p 

and known Sk, Ku can be obtained from tables 
[6] or in software), 

d) standardized median M‘ from tables [6], 
e) pL , pU : ,´

pp LsxL ⋅−= ,´
pp UsxU ⋅+=  

f) M: ´MsxM ⋅+=  
g) pC , pkC  from equations (13) and (14). 

Pearn and Kotz [16] expanded the method with 
pmC , *pmC , pmkC  defined as: 
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2.5 Burr Percentile Method 
Burr [2,3] proposed Burr XII distribution to 
compute the random variable X’s percentiles. Its 
probability density function, y, is of the form 
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where c and k represent skewness and kurtosis, 
respectively. 
Liu and Chen introduced modified Clements’ 
method with percentiles from Burr XII distribution 
instead of from the Pearson’s curve. 
1. Estimate sample mean x and standard deviation 
s. Skewness s3 and kurtosis s4 from empirical 
sample size are calculated as: 

( )( ) ,
21

3

3 ∑ 
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−−

=
s

xx
nn

ns j  (19) 

and 
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2. Compute standardized skewness and kurtosis 
moments 3α  and 4α , respectively: 
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Standardized kurtosis is known as excess; if it 
equals 3, the distribution is normal (i.e., 
mesokurtic). Negative values indicate platykurtic 
(broader) distribution with higher standard 
deviation, positive values leptokurtic (slender) 
distribution with lower standard deviation [1,2,3]. 
3. Use 3α  and 4α  to select suitable c and k, then 
calculate Burr XII distribution standardized value 

,
σ
µ−

=
YZ  (23) 

where Y is the selected Burr value,µ  and σ  mean 
and standard deviation, respectively. All central 
moment characteristics are in tables [2,3] which also 
supply standardized 0.00135, 0.5, and 0.99865 
percentiles corresponding to 0.00135Z , 0.5Z , and 

0.99865Z . We get them by comparing 

.
σ
µ−

=
− Y
s

xX
 

4. We now have estimates for lower, medium, and 
upper percentiles: 

0.00135 ,pL x s Z= +  
0.5 ,M x s Z= +  
0.99865 .pU x s Z= +  

5. Compute the PCI from equations for the 
Clements’ method. 
Other procedures can be used to estimate Burr 
distribution’s parameters apart from the third and 
the fourth central moments, e.g., maximum 
likelihood method, probability weighted moments, 
etc. Moment characteristics are the most usual due 
to their simplicity and speed of computation [2,3]. 
 
 
 
 
 

2.6 Transformation Techniques 
 
1. Variance stabilization requires 
a transformation ( )y g x=  with constant variance 

( )2 yσ . In case variance of x  is a function of the 

type ( ) ( )2
1x f xσ = , ( )2 yσ  is computed as 

( ) ( ) ( ) ,, 1

2
2 Cxf

dx
xdgy =



≈σ  (24) 

where C is a constant; ( )g x  is then obtained by 
solving a differential equation 

( )
( )

.
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∫≈
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dxCxg  (25) 

Multiple methods and tools were devised for 
constant relative error ( )xδ , e.g., ( )2 xσ  is given 

by ( ) ( )2
1f x xδ= , 2x = constant. After instating,  

we get ( ) lng x x= . Here, logarithmic 
transformation is optimal together with geometric 
mean. When ( ) ( )2

1x f xσ =  exhibits a power 

relation, ( )g x  will be of power type as well. For 
normal distribution, mean is independent on 
variance, i.e., variance-stabilizing transformation 
will ensure convergence to normality. 
 
2. Sample distribution symmetrization is possible 
using simple power transformation 

( )

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==
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0ln
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λ
λ
λ

λ

λ

forx
forx
forx
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Scale is not preserved, is discontinuous due to λ , 
and suitable only for positive values. Optimal λ̂  
estimate is found by minimizing the suitable 
asymmetry characteristics. Skewness defined in the 
following equation is robust and can be used in 
place of ( )1ĝ y : 

( ) ( ) ( ) .ˆ
25.075.0

25.050.050.075.0
1 yy

yyyyyg R −
−−−

=  (27) 

For a symmetric distribution, ( )1ˆ 0g y = , as well as 

( )1ĝ y  and ( )1ˆ Rg y . Optimal λ̂  is found from 
a rankit plot; its quantiles will lie approximately on 
a line. 
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3. Hine-Hines selection graph (x axis: 0.5 1/
iPx x −
, 

y axis: 0.5/
iPx x 

) 
A selection graph as a diagnostic tool for finding 
optimal λ  value. 

 
Fig. 3 Selection graph for a sample from log-normal 
distribution [14] 
 
The graph originates from asymmetry requirements 
of quantiles around median 
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where for each ordinal probability, values of 
2 i

iP −= , 2,3i =  are usually assigned. To compare 
experimental and theoretical observation for 
selected λ , 2y xλ λ−+ =  for 0 1x≤ ≤  and 
0 1y≤ ≤  is plotted into the graph: 
a) for 0λ = , the solution is a line y x= , 
b) for 0λ < , the solution is a ratio 

( )1/
2y x

λλ−= − , 

c) for 0λ > , the solution is a ratio 

( ) 1/
2x y

λλ −
= − . 

Judging from the positions of experimental points 
on theoretical curves in the selection graph, λ  can 
be inferred and quality of transformation assessed in 
varying distances from median. To converge the 
sample distribution to normal, Box-Cox 
transformation is a viable method due to skewness 
and kurtosis [14]. 
 
2.6.1 Box-Cox Transformation 
Disadvantages of a simple power transformation 
(discontinuity around zero and non-aligned 
transformed scales) are mitigated by Box-Cox 
transformation ( )X λ , a linear variation of a simple 

power transformation
( )

pX
λ

. Box-Cox class of 
polynomial transformations is of the form 

( )
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To determine its quality and optimal λ , quantile 
dispersion graphs (QDG) and quantile graphs (Q-Q) 
can be plotted, with normality tests after power 
transformation more suitable. A well-known 
Shapiro-Wilk test is equivalent to testing tangent’s 
significance in a Q-Q plot, i.e., linearity can be 
analyzed as well. The Box-Cox family of 
transformations depends on λ  estimated by 
Maximum Likelihood Estimate (MLE) or Least-
Squares Estimate (LSE). For 1λ = , additive 
measurement model is suitable while for 0λ = , 
a multiplicative one should be preferred. First, λ  is 
chosen from a selected range, and the following 
statistic computed 
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ln , 1 ln
n

i
i

J X Xλ λ
=

= − ∑ . The 2σ̂  

estimate for fixed λ  is ( )2ˆ S nσ λ=  where ( )S λ  
is a residual sum of squares in analysis of variance 

( )X λ . After computing ( )maxL λ  for several λ  in 

the range, ( )maxL λ  is plotted against λ . MLE for 

λ  is computed from the λ  maximizing ( )maxL λ . 

With optimal *λ , every X in the specification 
bounds is transformed to a normal value with the 
help of equation (29) [4,18]. 
 

 
Fig. 4 Shape of Box-Cox transformation for r = -1, 
0, 0.5, 1, 2, 3 [13] 
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Box-Cox transformation estimates λ  by 
minimizing standard deviation of the normalized 
transformed variable; software is capable to evaluate 
many of them. y is a transformed value of the x 
quality attribute [18]. 
λ denotes the function’s shape and allows to find 
F(x) satisfying the maximum normality or symmetry 
condition. Different shapes of the Box-Cox 
transformation function (specified as r) for various λ 
are depicted in Fig. 4. The aim is to find r ensuring 
maximum symmetry “measured” by skewness, or 
(better) maximum normality “measured” by 
likelihood, after transformation. Maximum 
symmetry (zero skewness condition) or maximum 
likelihood condition is computed iteratively [15]. 
 
2.6.2 Backward Transformation After Box-Cox 
and Power Transformation 
If a suitable transformation leading to approximate 
normality is found, y , ( )2s y , and confidence 

intervals ( ) ( )1 / 2 1 /y t n s y nα−± −  can be found 
and statistical tests performed. However, we fist 
need to transform the statistics back to their original 
forms.  
 
1. Incorrect approach simply backward 
transforms ( )1

Rx g y−= . For a simple power case, 
backward transformation leads to mean of the form 
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For 0λ = , ln x  is used instead of xλ  and 
xe instead of 1/x λ . 1Rx x−=  represents harmonic, 

0Rx x=  geometric, 1Rx x=  arithmetic, and 2Rx x=  
quadratic mean, respectively. The approach leads to 
biased results. 
2. Correct (more exact) approach is based on 
Taylor expansion ( )y g x=  around y . For 
untransformed Rx , an approximate relation is 

( ) ( ) ( )
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for mean and 
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for variance. Each derivation is computed at Rx x= . 

For ( )100 1 %α−  confidence interval for mean of 

original data, it holds that URLR IxIx +≤≤− µ  
where 
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( )1 / 2 1t nα− −  denotes ( )100 1 / 2 %α−  Student 

quantile with ( )1n −  degrees of freedom. With 

( )y g x=  and y , ( )2s y , it is trivial to compute 

Rx  and ( )2
Rs x : 

a) For a special case of 0λ = , i.e., logarithmic 
transformation of the type ( ) lng x x= : 

( )2exp 0.5Rx y s y≈ +   , ( ) ( )2 2 2
R Rs x x s y≈ . 

 
b) For 0λ ≠ , Rx is the following quadratic 
equation’s root: 
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,R ix  closer to ( )1
0.5 0.5x g y−=  is taken as an 

estimate of Rx . With known untransformed mean, 
variance can be computed as 

( ) ( )2 2 2 2
Rs x x s yλ− += ⋅  [14]. 

 
2.6.3 Johnson Transformation 
When observations are non-normally distributed, 
Johnson transformation can be used; the data will 
then be N (0,1)-normally distributed. It’s of the form 

( )
,,0,,0

,,;
∞<<−∞>∞<<−∞>

+=
ελγη

λεητγ xz
 (38) 

 
where z is a standardized normal random variable 
and x a variable fitted using Johnson transformation. 
Four parameters to be estimated are γ , η , ε , andλ  
with τ  an arbitrary function taking one of the 
following three forms. Johnson transformation 
therefore selects one type depending on whether the 
random variable is “log-normal”, “bounded”, or 
“unbounded” [9,11,12]. 
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Log-normal System (SL) 

( ) ε
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Titled Johnson log-normal SL distribution, it is tied 
to a log-normal system. Parameter estimates are 
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where 100α% percentile is computed as ( )1nα + th 
value from n observations. If necessary, linear 
interpolation can be used to get the desired 
percentile [11,12]. 
 
Unbounded System (SU) 

( ) .,sinh,; 1
2 ∞<<∞−






 −

= − xxx
λ
ελετ  (43) 

The curves are unbounded and the system consists 
of both Student’s and normal distributions among 
others. Hahn and Shapiro supplied a table for γ̂  and 
η̂  based on given skewness and kurtosis for 
filtering. 

 
Bounded System (SB) 

( ) .,log,;3 λεε
ελ
ελετ +≤≤








−+
−

= x
x

xx  (44) 

The system includes bounded distributions, i.e., 
gamma and beta. Because each may be lower-
bounded ε  or upper-bounded ( ),λε + , the 
following can occur: 
• Fluctuation range is known: both end points are 
specified, the parameters are obtained by 
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• One known end point: additional equation (given 
by respective medians) is required to supplement η̂  
and γ̂ ; given as 

( ) ( )( ) ( )
( ) ( )( )

( ) ( )( )}{ .
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1

1
2
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• No end point is known: four percentiles must be 
compared to those from normal distribution. The 
equation for i = 1, 2, 3, 4: 

.ˆˆ
ˆ

logˆˆ 










−+
−

+=
i

i
i x

xz
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εηγ  (48) 

Being non-linear, it is solved numerically. 
Hill et al. devised an algorithm to assign first four 
central moments of X to the above-mentioned 
distribution types. PCIs are quantified from 
equations (1) and (2) [11,12]. 
 
 
2.7 Wright’s Process Capability Index Cs 
Wright proposed a process capability index Cs 
incorporating skewness correction factor in the 
numerator of Cpmk. It is of the form 

( )
( )

( ) ,
33

,min

3

,min

2

3
22

σµσ
µµ

σµµσ

µµ

+

−−
=

=
+−+

−−
=

LSLUSL

T

LSLUSLCs

 (49) 

where T µ= and 3µ  is the third central moment 
[19]. 
 
Some methods are widely employed in industrial 
applications, such as probability graphs and 
Clements’ method. Conversely, Box-Cox 
transformation is relatively unknown among 
experts. If the distribution is normal, all methods 
except for the distribution-independent one should 
provide identical results to traditional Cp and Cpk as 
per equations (1) and (2). However, as different 
statistics and procedures are used for parameter 
estimates, there will be some variability in Cp and 
Cpk with that of Cp in particular decreasing with 
increasing sample size, e.g., 2

1 αχ −  distribution 
assuming normality. Variability of Cpk can be 
substantial for all sample sizes as it depends on 
process variability caused by mean shifts and other 
changes. 
 
 
3 Case Study 
 
3.1 Data Comparison Metric 
Different test metrics may lead to different results, 
accentuating that it is imperative to set a suitable 
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performance comparison measure. Researchers use 
various ones to address the PCI non-normality 
problem. English and Taylor fixed Cp and Cpk to 1.0 
for all their simulations investigating PCI robustness 
under non-normality. The basis of their comparison 
was a ˆ

pC  and ˆ
pkC  ratio (established from the 

simulation) higher than 1.0 in case of non-normal 
distribution. Deleryd focused on a ratio of 
unsatisfactory items to determine Cp. 
Estimated ( ),,vuC p ’s bias and variance were 
compared with a target Cp. As direct relation 
between PCI and defects exists, choice of index also 
sets acceptable percentage of detects. Rivera et al. 
[17] tweaked population’s upper specification 
bounds to get true number of defects and respective 
Cpk.  Cpk from simulations of transformed data were 
compared with target values of Cpk. 
In practice, PCIs are frequently used to monitor 
performance and compare processes. Even though 
such application are not recommended when 
normality is untested, “substitute” PCIs for non-
normal data should be compatible with PCIs 
computed under normality when defect ratios are 
approximately equal. This explains solution 
proposed by Rivera et al: the defects ratio is set 
a priori using suitable specification limits and the 
PCIs are then compared with the target value, 
leading to analyzing one-sided tolerance where Cpu, 
a one-sided tolerance limit for PCI, is used as 
a comparison measure. Cpu is computed as 
 

( ),3 puCitemsactoryunsatistifofRatio −Φ=  (50) 
 
Ratio of unsatisfactory items for asymmetric two-
sided tolerance: 
 

( ) ( ).33 pupl CC
itemsactoryunsatistifofRatio

−Φ+−Φ=
=  (51) 

 
In the study, 1,  1.5puC = and 1.667 and was 
derived from respective USL for log-normal and 
Weibull distributions with identical ratio of 
unsatisfactory items as targets. USL’s serve to 
estimate Cpu which are then compared with the 
target values. The method whose Cpu sample mean 
estimate exhibits the least deviation with the 
smallest variance as measured by dispersion or 
standard deviation, is the best. Graphical 
representation depicting the two characteristics is 
a simple box and whisker plot. 
 
 

3.1.1 Test Distribution 
To investigate effects of non-normal data on PCIs, 
log-normal and Weibull distributions were selected 
as it is known their parameters can represent 
fractional, medium and high deviations from 
normality. They are also known for different 
properties near tails which substantially influence 
process capability. Skewness and kurtosis for both 
are summarized in Table 1, distribution functions 
are given respectively as 

( ) ,0,ln,; ≥





 −

Φ= xxxF
σ

µσµ  (52) 

( ) .0,exp1,; ≥
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−−= xxxF

n

σ
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Log-normal distribution Weibull distribution 

µ σ2 Shape 
parameter 

Scale 
parameter 

0.0 0.1 1.0 1.0 

0.0 0.3 2.0 1.0 

0.0 0.5 4.0 1.0 

1.0 0.5 0.5 1.0 

Tab. 1 Parameters used in performance comparison 
simulations [Own work] 
 
Fig. 5 depicts shapes of log-normal and Weibull 
distributions with parameters from Tab. 1. 
 

 
Fig. 5 Probability density functions for log-normal 
and Weibull distributions with parameters from 
Table 1 [18], modified 
 
3.2 Monte Carlo Simulations 
 
A series of simulations was performed with sample 
sizes n = 50, 75, 100, 125 and 150, target Cpu were 
set to 0.1, 1.33, 1.5, 1.667 and 1.8 using log-normal 
and Weibull distributions. We only list results for  
n = 100 and Cpu’s 1.0, 1.5 and 1.667. In each run, 
statistics such as x , s, upper and lower 0.135 
percentiles aas well as median were obtained from 
random variables generated from both distributions. 
For the transformation methods, they are basically 
obtained from the transformed values. Cpu’s were 
subsequently determined using the 9 methods 
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presented above with the statistics for each USL 
target [4,7,18]. 
 

Log-normal distribution 
µ σ2 Skewness 

1β  
Kurtosis 

2β  

0.0 0.5 2,9388 21,5073 
0.0 0.3 1,9814 10,7057 
0.0 0.1 1,0070 4,8558 
1.0 0.5 2,9388 21,5073 

    
Weibull distribution 

Shape 
parameter 

Scale 
parameter 

Skewness 

1β  
Kurtosis 

2β  

1,0 1,0 2,0000 9,0000 
2,0 1,0 0,6311 3,2451 
4,0 1,0 -0,0872 2,7478 
0,5 1,0 2,0000 9,0000 

Tab. 2 Skewness and kurtosis for the investigated 
values [Own work] 
 

 
Fig. 6 Probability density functions for log-normal 
and Weibull distributions with parameters from 
Tab. 1 [18], modified 
 
Each iteration was run 100 times to obtain mean 

puC  from ˆ
puC . To investigate which method is the 

best for handling non-normality, box plots where 
ˆ

puC ’s will be plotted with target Cpu’s for both 
distributions will be generated. The plots depict 
several statistics pertaining to Cpu, e.g., mean, 
variance, outliers and extreme values. Box plots 
which could capture the target Cpu, mean will 
intersect the horizontal line on the target level [18]. 

 
Fig. 9 ˆ

puC  box plots (100 observations each) for 
log-normal distribution (μ= 0, σ2 = 0.5, 0.3), target 
Cpu = 1.0, 1.5, 1.667 [Own work] 
 
 
4 Discussion and Conclusion 
Generally, the methods can be put into two 
categories. Probability graph, distribution-
independent tolerance intervals, weighted variance 
method, and Wright’s process capability index can 
be classified as non-transformation methods. The 
second category comprises transformation 
techniques: Clements’, Burr’s, Box-Cox’s, and 
Johnson’s. In the performance comparison part, two 
measures are considered: accuracy and correctness 
with respect to sample size. For the former, we will 
look at difference between simulated mean puC  and 

target puC , for the latter, we will consider variance 
or range of simulated means. The lower the variance 
or range, the better the performance. The results 
show transformation methods are better for both 
distributions, with two exceptions. First: Clements’ 
method does not work as well as the rest. For 
Weibull distribution, its performance is lower than 
that of probability graph method. Second: box plots 
show probability graph method is the only one 
which outperforms transformation techniques for 
Weibull distribution with σ = 1.0 and η = 2.0. For 
log-normal distribution, transformation techniques 
supply consistently better puC ’s closer to the true 

puC ’s, all other inflate the results. From a practical 
point of view, non-transformation methods are 
easier to compute but were proven insufficient for 
quantifying process capability except where 
population distribution is approximately normal. 
Differences in ˆ

puC ’s are mostly higher compared to 
transformation techniques and their use is not 
recommended for distributions significantly 
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deviating from normal. When one method fails, 
transformed data are required which converge them 
closer to normal distribution. For further 
computations, they need to be backward 
transformed. Transformation class’ performance is 
fairly consistent with respect to correctness and 
accuracy; however, they are sensitive to sample size 
as evident for puC  where n = 50 and 150: the 
differences are 33%, 11% and 26% for Clements’, 
Box-Cox, and Johnson transformation methods, 
respectively, which is more than 10% difference 
compared to non-transformation ones. To 
summarize, transformation techniques exhibit lower 
ˆ

puC  variability as well as higher differences 

between ˆ
puC  computed from small and large 

sample sizes which cannot be ascribed only to 
inherent statistical variability. This hints at them 
being favorable for smaller sample sizes. Possible 
reasons include: 

 
1. They usually involve conversion from 
distribution’s scale of range to shape. This may 
induce unwanted process shifts influencing ˆ

puC , 
especially for smaller sample sizes. 
2. For monitoring capability, their success 
depends on the ability to detect behavior near tails 
via UCL percentiles. 
 
Transformation techniques should be used to 
monitor process capability with 100≥n . 
Nevertheless, Box-Cox’s dominance is apparent 
from the graphs, particularly for log-normal 
distribution which is to be expected since it provides 
exact transformations to natural logarithms. In case 
of log-normal distribution, this results in 
convergence to normality. Comparing Box-Cox’s 
and Johnson’s methods, the former is more accurate 
as it requires maximizing logarithmic likelihood 
function to get precise λ while the latter operates on 
estimates of the first four central moments. 
Probability graph method is recommended for 
processes slightly deviating from normality, it also 
can detect anomalies such as bimodality and 
outliers. Another finding is that Burr percentile 
method is comparable to Box-Cox’s transformation. 
Their performance for small sample sizes, 
specifically 30 sample sizes with n = 50, was 
analyzed to determine which one is better for 
samples frequently encountered in practice. The 
results are depicted in Fig. 8. 
 

 
Fig. 8   Box plots (100 observations each) for 
Weibull distribution (σ = 0.0, 1.0, η = 1.0, 2.0), 
target  Cpu = 1.0, 1.5, 1.667 [Own work] 
 
The graph shows Burr percentile method generally 
allows for better process capability estimates in 
small, non-normal sample sizes. Monte Carlo 
simulations corroborated traditional PCIs produce 
biased process capability results in case of non-
normal distributions as they firmly rely on the 
normality assumption. 
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