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Abstract: In this paper, a cyclic predator-prey system with Sigmoidal type functional response is considered. The
stability of the positive equilibrium and existence of Hopf bifurcation is studied by analyzing the distribution of
the roots of associated characteristic equation. It is shown that the positive equilibrium is locally asymptotically
stable when the time delay is small enough, while change of stability of the positive equilibrium will cause a
bifurcating periodic solution as the time delay passes through a sequence of critical values. An explicit formula
for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf
bifurcations is derived, using the normal form theory and center manifold argument. Finally, numerical simulations

supporting the theoretical results are carried out.
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1 Introduction

In recent years, the interest in study of the dynami-
cd properties occurring in the predator-prey system
with delay has been growing rapidly. For example,
Liu [2] had made discussion about the global asymp-
totic stability and uniqueness of periodic solutions of a
cyclic and predator-prey system of three species with
Holling’s type Il functional response. Liu et al. [3]
andyze the permanence, almost periodic phenomena
and the global asymptotically stability of the unique
positive periodic solution for a three species clock-
wise chain predator-prey model with Holling IV func-
tional response. Tang et al.[4] investigated the per-
manence, the global asymptotically stability of the
unique positive periodic solution in a three species
clockwise chain predator-prey model with Holling IV
functional response. Yu [7] studied the existence
and uniqueness of uniformly asymptotically stable al-
most periodic solution for a cyclic predator-prey sys-
tem with Functional Response. For more investiga-
tion about predator-prey, one can see [5-6,8-16]. Re-
cently, by using comparison theory and Lyapunov
functional methods, Ma and Jia [1] investigated the
global asymptotic stability and uniqueness of periodic
solutions of the following cyclic predator-prey system

E-ISSN: 2224-2899 65

with Sigmoidal type functional response
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di (t)z1 (8)z2(t)
c1(t)+b1 (t)z1 () +27 (t)
+ k3 (t)ds (t)a3(t) }
c3(t)+b3(t)w3 (t)+a3(t) |’
i‘g(t) = l‘g(t T’Q(t) — ag(t)l‘g(t)
__ da(t)wa(t)ws(t)
)+b2 (t)z2 (t)+a2
+ ki(t)d(t)a3 (t) }
c1(D)+b1 (Hz1 () +23(t) |°
t3(t) = 23(t)|r3(t) — as(t)zs(?)
_ __ds(tm(t)zs(t)
c3(t)+bs (t)zs (1) +a3(t)
+ ka(t)d2 (t)z3(t) }
ca(t)+b2 (t)za (t)+a3(t) |7
where z, is the predator ofz, x3 is the predator
of x5 ard z; is the predator ofc3, they have de-
perdent density and Sigmoidal functional response.
ai(t), bi(t), ci(t), di(t) ki (), ri(t)(i = 1,2,3) are
continuous nonnegative and bounded function within
[0,400). Moreover, a;(t),ci(t)(i = 1,2,3) >
0. It is well known that in the implementation of
predator-prey systems, time delays are inevitably en-
countered because of the finite development speed
of predators and preys. Motivated by the viewpoint,
in the following, we assume that time delay occurs
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in the Sigmoidal Functional Response, i.e., the Sig- Linearized system of (2) neét, (z7, x5, %) takes the

moidal Functional Response takes the fofitx) = form:
20 +b(t)ﬁt(t_;§2rx2 = Furthermore, the parameters

of system (1) keep unchange in time, then we have B1(t) = maz1(t) + maws(t) + mazs(t — 7),

the following predator-prey system which delays are @a(t) = mza(t) + naws(t) + naza (t — 1),
introduced: 3(t) = p1a1(t) + peas(t) + psa(t — 7), -
3
i (8) = 21(8) [r1 — aqa (¢ wherem;, n;, p;(i = 1,2, 3) are defined by Appendix
( ) ( )-11’1( t)xa(t) ( ) A. . . L. . .
T Citbiz (22 () The associated characteristic equation of (3) is
+ k3d3$3(t T) :|
ca+bazs (t—7)+a3(t—7) ]’ N4 02 A2 pr A+ pote0e T+ (01 A +0p)e N =0,
da(t) = wa(t) |r2 — azws(t) (4)
B o (t)a3 (1) ) where pg = —minipa,p1 = ming + mipe +
C2+b2,ffcgl)x+22(?) nipa, p2 = —(m1 +n1 + p2), €0 = —manaps, o =
1 tbrat (i— 1T)+x2(t_7)}a m3n3p1+m2n3p2+m1n2p3,91 = —(msp1+monz+
i — _ n2p3).
T3(t) = z(t) d[rj T ):L?Egg(t) In order to investigate the distribution of roots of
- m the transcendental equation (4), the following Lemma
kadax3(t—7) } that is stated in [15] is useful.
02+b2.’22(t T)+:B2(t—T) :

Lemma 1 [15] For the transcendental equation

In particular, the appearance of a cycle bifurcating
from an equilibrium of an ordinary or a delayed

predator-prey with a single parameter, which is known P(A\ e, e ) =

as a Hopf bifurcation, has attracted much attention A" 4 pOan=t oy pO N 4 p©@

(see [8-16]). We all know that time delays that oc- 1)\t (1) ) \

curred in the predator-prey will affect the stability of a + [pl A A+ ] )} e T4

systemn by creating instability, oscillation and chaos (m) yn—1 (m) ()] At

phenomena. The purpose of this paper is to discuss [ A A A Dy } ¢ =0,

the stability and the properties of Hopf bifurcation of

model (2). To the best of our knowledge, it is the first as (71, 72,73, - x Tm) vary,Athe.sum of orders of the

to deal with the stability and Hopf bifurcation of sys-  2&0s of P(A,e™*™, .-, e~ ) in the open right half

tem (2). plane can change, and only a zero appears on or
This paper is organized as follows. In Section 2, Crosses the imaginary axis.

linearizing the system at the positive constant steady- Now we make the following assumption:

state solution and the analyzing the corresponding

characteristic equation, the stability of the positive (H1) py + 2o + 6y > 0, p2(p1 + 61) > po + €0 + bo.
constant steady-state solution and the existence of

Hopf bifurcation are studied. In Section 3, the di- )
rection of Hopf bifurcation and the stability and peri- Lemma2 If (H1) holds, then we have the following :
odic of bifurcating periodic solutions are investigated () When

by using the normal form theory and center manifold 1

theorem presented in Hassard et al.[17]. In Section T =T def _— [arccos 0" —+2krw|, (5)
4, we illustrate the procedure with a particular exam- 2wo

ple, in which numerical simulations support our re- (po— 22+ (8 — pray)2—e2
sults. Some main conclusions are drawn in Section Where §* = 20\/925015292 ¢,k

S. 0,1,2,---,. EQ.(4) has a simple pair of imaginary
roots +iwy, where wy is the positive root of Eq.
. L (15and v satisfies (16).
2 Stability of the Equilibrium and (ii) For 7 € [0,79), all roots of Eq. (4) have strictly
L ocal Hopf Bifurcations negative real parts. NV
(i) Whent = 7, Eq. (4) has a pair of imaginary
Throughout this paper, we assume that system (2) has roots +iwy and all other roots have strictly negative
a urique positive equilibriun¥®, (z7, 3, z35). real parts.
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Proof: Obviously, by the assumption (H1), = 0 is
not the root of Eq. (4). Whem = 0, then Eq. (4)
becomes

N+ oo+ (p1 +01)A + po+e0+ 60 =0. (6)

It is easy to see from condition (H1) that all roots of
Eq. (7) have negative real parts.

Multiplying e*” on both sides of the two equa-
tions of (4), it is obvious to obtain

()\3 + pz)\z + p1 A+ po)eAT + 606_2>‘T

401\ 4+ 69 = 0. (7)

+iwy (wo > 0) is a pair of purely imaginary roots of
(4) if and only if w satisfies

woT —2iwoT

(—iwg — ipawf + ip1wo + po)e™°T + ege

+i61wg + 09 = 0.
Separating the real and imaginary parts, we get

(po — pawd) cos wt + (Wi — prwo) sinwr
= g9 cos 2wT — By,

(po — pawd) sinwt — (W3 — prwo) cos wT
= g0 8in 2wt — Bwy.

(8)

Taking square on the both sides of the equation in (8)
and summing up, we get
(o — p2uy)? + (wig — prwo)”
53 + 20peg cos 2woT + 2e067 sin 2woT.  (9)

According tosin 2wt = /1 — cos? 2wr, it follows
that

(po — paw)® + (wi — prwo)? = &5 + 2000

X o8 2woT £ 2V 1 — cos? 2wregh. (10)

It is easy to see that (10) is equivalent to

q1 cos? 2wT + ¢ cos 2wT + g3 = 0, (1))

where

g1 = 465 + 67)et,

g2 = —46020[(po — pawi)”
+ (wh — prwo)® — &),

a3 = [(po — pawg)® + (wi — p1wo)
— 43673

2 212

— &0l

It follows from (11) that

—q2+\/d5 —4qgs

2q1

12)

CcoS 2wT = fi(w),
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where f1(w) is a function with respect to. Substitute
(12) into (9), we get

*

sin 2wt = (13

= J2\w),

deobiqa f2lw)
wherex* = 2q1[(po — paw)? + (Wi — prwo)® — &5 —
29060(—Q2 + \/q% — 4Q1Q3), fg(w) is a function with

respect tow. According tosin? 2wt + cos? 2wt = 1,
it follows from (12) and (13) that

iR (w) + f2*(w) = 1.

If a;,b;,¢,d;, ki(i = 1,2,3) of the system (2) are
given, it is easy to use computer to calculate the roots
of (14).

We assume that (14) has at least one positive real
root. From (9), we derive

(14)

(po — pawp)® + (i — prwo)?

3+ 2833 + <307 cos(2uor + 1), (15)

where satisfies

0
tan g = 220 (16)
5090
From (15), it is easy to obtain
1 *
Tk = —— [arccos 0" — o+ 2k‘7r}, @an
2w0
* (po—p2wi)?+(wi—p1wo)® —e3 _
where 6 = W =T k=
0,1,2,-,.

From (7), we know that Eq. (4) with = 7 (k =
0,1,2,---) has a pair of imaginary rootsiwg, which
aresimple.

According the discussion and applying the
Lemma 1 and Cooke and Grossman [18], we obtain
the conclusion (ii) and (iii). This completes the proof.

Let \(7) = a(r) +iw(7) be a root of (4) near
T = 7 anda(rg) = 0, andw(ry) = wo, (K =
0,1,2,---). Due to functional differential equation
theory, for everyr,, k = 0,1, 2, - - - there existg > 0
such that\(7) is continuously differentiable im for
|7 — 7| < e. Substituting\(7) into the left hand of
(4) and taking derivative with respecttowe have

[@]—1 - (BAZ 4 2p2 A + p1)e ™ + 6,
dr N )\[)\3 + P2 A2+ 1A+ po)eAT — 606_2>‘T]

_T

)\7

which leads to
Re {@} U ABL - ABy
I — A2+43 7
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where
Ay = [(po — pawp + €0) sinwoy,
+ (prwo — wp) cos woTk|wo,
Ay = [(po — pgwg + £0) COS WoTk
— (p1wo — wi) sinwoTilwo,
By = (p1 — BwS) COS WOTk — 2powp Sin woTy + 01,
By = (p1 — 3w§) sin wo T + 2p2wg cos woTk + 01.

We sssume that

(H2) A1 By 75 AsBs.

Lemma 3 LetT = 7, then the following transversal-
ity condition

dRe[\(T)]

dr 70

T=Tk

is stisfied.

From Lemma 2-3, we have the following results on
the local stability and Hopf bifurcation for system (2).

Theorem 4 For system (2), let;, be defined by (17)
andassume that (H1) and (H2) hold.

(i) If 7 € [0,79), then the equilibrium point of sys-
tem (2) is asymptotically stable and = 7 (k
0,1,2,---) are Hopf bifurcation values for system (2).

3 Direction and stability of the Hopf
bifurcation

In the previous section, we have obtained some con-
ditions which guarantee that the two-neuron networks
with resonant bilinear terms undergoes the Hopf bi-
furcation at some values of = 7,.(k = 0,1,2,--).
In this section, we shall derive the explicit formu-
lae determining the direction, stability, and period of
these periodic solutions bifurcating from the positive
equilibrium E, (27, 23, x3) at these critical value of
T, by using techniques from normal form and center
manifold theory [17], Throughout this section, we al-
ways assume that system (3) undergoes Hopf bifur-
cation at the positive equilibriunk, (=7, x5, z3) for
T = 7%, and then+iwy are corresponding purely
imaginary roots of the characteristic equation at the
positive equilibriumgE, (z7, x5, ©35).
For convenience, let = 7, + pu,pn € R. Then

= 0 is the Hopf bifurcation value of (2). Thus,
we shall study Hopf bifurcation of small amplitude
periodic solutions of (2) from the equilibrium point

for i close to 0. We can consider the fixed phase space

C = C([-1,0], R?).
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o (¢1, ¢2,¢3) € C, define

L,g =1A9(0) + 7 Bp(—1), (18)
where
my mg 0 0 0 mg
A= 0 ny N2 s B= ng 0 0
D1 0 p2 0 ps3 0

We expand the nonlinear part of system (2) and derive
the following expression

fi(ps @)
fo)=1| fo(u, o) |, 19)
f3(p, @)
where
flpsd) = (k4 p)[Lai(t) + o (t)za(t)
+ I3 (t — 7) + lawy (H)aa(t — 7)
+ I5x3 (1) + l6:1:3(t —7) + lrzd (t)za (1)
+ 181’1(75)1'3(75 — T) + h.o. t]
falp, @) = (7 + p)[s127(t) + saw1 () z2 (1)
+ 83x§(t —7) + sqx1(t)xs(t — )
+ 85azi’(t) + sﬁa:g(t —7)+ S7£L'%(t)l’2(t)
+ sgz1 ()23 (t — 7) 4+ h.o.t],
fa(p, @) = (i + p)[vras (t) + vow: (t)z2(t)
+ vgwg(t T) + vgwq (t)zs(t — 1)
+ w5 (t) + vﬁwg(t —7)
+ vpzd (t)xo(t) + vgazl(t)a:g(t —7)
+ ho.t],

wherel;, s;,v;(i = 1,2,3,4,5,6,
Appendix B.

By the representation theorem, there is a ma-
trix function with bounded variation components
n(0, 1), 6 € [—1,0] such that

7) are defined by

0
L= [ dn.1600) for e C. (20)
In fact, we can choose
mi1 Mma 0
nO,p)=(m+p)| 0 ni n2 |4(0)
p1 0 po
0 0 ms
—(me+p)| ng 0 0 |0(6+1), (21)
0 P3 0

whered is the Dirac delta function.
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For¢ € C([-1,0], R?), define

O ~1<6<0,
Ao = { f_f dn(s, ) o(s), 0=0
(22)
and
0, ~1<60<0,
e { fme).  6=0. @9

Then (2) is equivalent to the abstract differential equa-
tion

where z = (z1,79,23)7,24(0) = x(t + 0),0 €
[~1,0].

Forwy € C([0,1], (R?)*), define

* dwgs)’ s € (0, 1],

A= { [ AT (4,00 (—), s =0.
(25)

For ¢ € C([-1,0,R}) and v ¢

C([0,1], (R®)*), define the bilinear form

<1, ¢ >= (0 »(E=0)dn(0)¢(€)de,

o~/ [, o

wheren(#) = n(6,0). We have the following result
on the relation between the operatots= A(0) and
A*.
Lemma5 A = A(0) and A* are adjoint operators.
Proof: Let ¢ € CY[-1,0,R?) and v €
C1([0,1], (R®)*). It follows from (26) and the defi-
nitions of A = A(0) and A* that

< (s), A(0)(6) >= (0)A(0)¢(0)

/ / B(E — 0)dn(6) A(0)B(€)de

+49(0) _1dn(9)¢(9)
7 B = 0yan®) A©)6(6)de
—1Je=0
0
—5(0) [ dn(6)6(6)

T - 0)dn(0)d(€)]¢0

/0 b dy(E-9)

i ————=dn(0)9(§)d¢
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= Ax 9 (0)$(0)
N /_01 59:0 AT (§ = 0)dn(0)$(€)dE
=< A%P(s),4(0) > .

This shows thatd = A(0) and A* are adjoint opera-
tors and the proof is complete.

By the discussions in Section 2, we know that
+iwgT, are eigenvalues ofi(0), and they are also
eigenvalues ofA* corresponding téwy and —iwq Tk,
regectively. We have the following result.

Lemma6 The vector

q(0)

is the eigenvector afi(0) corresponding to the eigen-
valueiwgm, and

q*(s)

is the eigenvector afi* corresponding to the eigen-
value —iw( 7, moreover< ¢*(s), ¢(0) >= 1, where

= (Lo, B) e e [-1,0],

= D(L,a", %)™, s € [0, 1],

_ na(iwg —my) + 7713’1136_22"")077c

mang + (iwg — ny)mge"woTk

9

(iwp — my) (iwg —n1) — Mmaonge  WoTk

6=

o = Prme — (iwo + my)pse”

n3pze 20Tk — py (iwg + ny)’
«  (iwg +m1)(iwo + n1)
b= n3pze” 20Tk — py (iwg + ny)
D =1+ aad”* + BB* + (nsa* + afps + fms)

WO Tk

mang + (iwg — ny)mze ok ’

ionk

_ mznge—iwoﬂc

Y

X Tre

Proof: Let ¢(¢) be the eigenvector ofA(0) corre-
sponding to the eigenvalue, andg*(s) be the eigen-
vector of A* corresponding to the eigenvalugwq,

namely, A(0)q(f) = iworrq(d) and A*qg*T(s)
—iwoTrq*T (s). From the definitions ofA(0) and A%,
we have A(0)q(#) dq(0)/d6 and A*q*T (s)
—dq*T(s)/ds. Thus,q(0) = q(0)e™°™% andg*(s)
q*(0)e™0™ s In addition,

[ an®)a0) = raq0) + By

= A(0)q(0) = iwoTkq(0). (27)
That is
iwy — My —my —mage 0Tk
—n3e 0Tk Gwy —ny —Nng q(0)
—p1 —pge 0Tk wy — po
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0
=10
0

(29)

Therefore, we can easily obtain

na(iwp — my) + mange 20Tk

monsg + (iwg — n1)mge~ ok’

(in — ml)(iwo — nl)
mang + (iwy — nyp)mge ok

_ m2n36—iWOTk

8=

Onthe other hand,

[ @ Ctano) = mATgT©) + 7B (1)

= A*¢*"(0) = —iwoTeq*” (0). (29
Namely,
—iwy — My —nge WOk -1
—my —iwg —n1  —pze” 0Tk | ¢*(0)
—mge” "ok —ng —iwo — P2
0
= o (30)
0
Therefore, we can easily obtain
o = Prme — (iwg 4 my)pse” "o
n3pze= 20Tk — py (iwp 4 n1)’
g = (iwg + m1) (iwg + n1) — manze 0Tk
B n3pze 20Tk — py (iwy +n1)
In the sequel, we shall verify that ¢*(s), ¢(6) >= 1.

In fact, from (26), we have
< ¢*(s),q(0) >= D(1,a*,5)(1,, B)"
o 0 _ ,
=[] Dl e Do)
1J¢=0

( o ﬁ)T ionkfdg
=D[1+ aa* + B3*

/ (1, 5)0etendn(6)(1, 0, )

D{l—i—aa + B8 + (1,a*, 5*)
B (.0.7)
:D[1+aa + 66" +

] =1

(n3@* + afB*ps +msp)

Next, we use the same notations as those in Has-

sard, Kazarinoff and Wan [17], and we first compute
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the coordinates to describe the center manifdjdat
u = 0. Letx,; be the solution of Eq. (2) whem = 0.
Define
z2(t) =< q*,z >, W(t,0) = 24(0) —2Re{z(t)q(0) }.
(31)
on the center manifold’y, and we have
W(t,0) =

W(z(t),z(t),0), (32)

where
W(z(t),z(t),0) = W(z,z) =

+Wh12Z2 + Wy — (33)
andz andz are local coordinates for center manifold
Cy in the direction ofy* andg*. Noting thatWV is dso
real if x; is real, we consider only real solutions. For
solutionsz, € Cy of (2),

£(t) = <q'(s),d >=<q"(s), A(0)z; + R(0)2y >
= <q'(s),A0)x >+ < ¢"(s), R(0)x; >
= < A'¢"(s),x > +¢*(0)R(0)x,
- [ [ e o0 roy €
= <iwetkq*(s),z¢ > +¢*(0)f(0,x4(0)
iz (t) + ¢*(0) fo(2(1), 2(1)). (34)
That is
2(t) = iwotkz + 9(2, 2), (35)
where
22 72 2%z
9(z,2) = 9205 + g112Z + 9025 +9217 4
(36)
Hence, we have
9(2,2) = T (0)fo(2,7)
:f(o ) DTk(La*vﬁ*)
(f1(0,20), f2(0,24), f3(0,20))",  (37)
where
fl(O,wt) = Tk[llx%t(O)+12w1t(0)w2(0)
—HglL’%t(—l) -+ l4$1t(0)1’3t(—1)

+ le?t(O) + lﬁwgt(_l)
Hl7a3,(0)224(0) + lsw11(0) 3, (—1)
+h.o.t],

fz(o,wt) = Tk[slxlt(O)+32x1(0)x2t(0)

+33w3t( 1) + sqz14(0) 34 (—1)
+ s5:03,(0) + s625,(—1)
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+ 8733%15(0)1‘215(0) + ssxlt(O):ngt(—l)
+ h.o.t],

fg(o, I't) = Tk [’Ull‘%t(O) + Ugwlt(O)wgt(O)

+ vgwgt( 1) + v4z14(0)z3:(—1)
+ w53, (0) + vewsy (—1)
+ vrat; (0) w2 (0) + vsw 1 (0)23, (—1)
+ h.o.t].
Noticing x,(0) = (21:(0),32(0), z3:(0 )) =
W (t,0) + zq(f) + zq(f) and q(F) = (1,7)" e,
we have
z1,(0) = z+2—|—W(1)( )2 —I-Wl(ll)(O)zZ
1 2
W()(O) 5 4+
@2 L @
z9t(0) = vz +724+ Wy (O) 5 + W17 (0)zz
@2
+Way' (0 )2 +e
w3r(—1) = Pe 0%z 4 feloThz
2
W(l)(_ )Z W(l)( 1)z2
2
T

From (36) and (37), we have

9(2,2) = ¢°(0) fo(z,2)

Dy, [f1(0,2¢) + o f2(0, ) + B* f3(0, 2]
= DTk(Kll +a* Kq9 + B*K13)2’2

+2D75, (K1 + a* Koo + 3" Ka3)2%

+D1, (K31 + a* K3y + 3* K33) 2

+ D71 (K1 + & Kyo + 7 K43)2%Z + hout,

where K;;(i,j = 1,2,3) are defined by Appendix C.
Then we obtain

2D7p (K11 + a* Ko + 8 Kis),

920 ( )
g1 = 2D7(Ko + @ Koo + " Kag),
go2 = 2Dmp(Ks1 + a* Ko + (" Kss),
g21 2D7, (K31 + @* K3 + 3*K33)2°
+D1o(Ka1 + a* Kup + 5% Kag).
Forunknownis) (0), W2 (0), Wi (1), w (0),

Wl(f’)( ),Wl(l)(o) in g21, we still need to compute

them. From (24) and (35), we have

w = | AW —2Re{q*(0)fq(0)}, —77 <0 <0,
AW - 2Re{7*(0)fq(0)} + f, =0
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def

= AW+H(z,z,0), (38)
where
22 z2
H(2,7,0) = Hao(0) 5+ Hi1(0)27+ Hop(0) 7+
(39)
Comparing the coefficients, we obtain
(A — 2iwg)Wag = —Hao(0), (40)
AW11(0) = —Hi1(0). (41
We know that ford € [—1,0),
H(Z7 z, 9) = _q*(o)fOQ(Q) - q*(o)fOQ(Q)
= _g(z7 Z)Q(e) _g(z7 Z)q_(e) (42)

Comparing the coefficients of (39) with (42) gives that

H(0) = —g20q(0) — §02q(8), (43

Hi1(0) = —g119(0) — 9114(0). (44)
From (3.23),(3.26) and the definition df, we get
Wao(0) = 2iwomWao (0) + g20q(0) + go2d(6). (45)
q(0)e™0™? we have

Noting thatq(6) =

1920

q(o)eiworké +
WoTk

Woo(0) =

1902 7(0)6—2'(007;@6 + E162iwo‘rk97

46
3&)0Tk ( )

where B, = (E\Y, E® EPNT is a constant vector.
Similarly, from (41), (44) and the definition ofl, we
have

Wi1(0) = g11q(0) + g11G(9), (47
Wii(6) = ——Z2-g(0)e™0™’
WoTk
291 Gio)emiwond 4 Ry (48)
WoTk

where B, = (ESV, E?, E))T is a constant vector.
In what follows, we shall seek appropriatg,F>

in (46), (48), respectively. It follows from the defini-

tion of A and (43), (44) that

0
‘/_1 dn(@)WQQ(H) = QiWQTkWQO(O) — HQ()(O) (49)

and

—H11(0), (50)

/ 01 dn(6) W (6) =
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wheren(6) = n(0,0).
From (40), we have

H0(0) = —g20q(0) — g02G(0)
+271,(K11, K19, K13)7, (51)

From (41), we have

H11(0) = —g119(0) — g11(0)g(0)
+274 (Ko1, Ko, Ko3)” (52

Noting that

(ionkI - /_01 einTk‘gdn(H)) q(0)=0, (53)

(—ionkl - /_01 e‘inTkedn(9)> g(0)=0 (54)

and substituting (46) and (51) into (49), we have

(U
<2iw07'k[ —/ ezonk@dn(H)) E,
-1

= 273,(K11, K12, K13)T . (59)
That is
(QiWQTk[ — TkA — TkBe_%wOTk) El
= 273,(K11, K12, K13)7, (56)
then
2iwo — My —Mmy —mage 20Tk
—nge 2Tk Qi — ny —n9
—D1 —p3e 20Tk 2wy — po
1
E£ ) Ky
EY | =2| Kp |. (57)
Ef’) Kis
Hence
A e A @) A
D 21 p(2) _ 212 p@) _ 213
1 AI ) 1 AI ) 1 Al )
where
Al = det
2iwo — My —Mmy —mage 20Tk
—7’L3€_2iw0‘r’“ 21wy — Ny —No ,
—p1 —pae 20T iwy — po
AH = 2det
Kll —my _m36—2iw07k
Ki2  2iwg —ny —ng2 ;
Ki3 —p3e 20Tk 2jwg — py
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Alg = 2det
2iwg —m1  Kqq —’I’)’L3€_2WOT’C
—nge 0T Ky ) )
—P1 Kiz 2wy — p2
A1z = 2det
ino — ma —1my K11
—nge_ziWOTk 2iwg — 1 Ky
—P1 —p3e 20Tk K3

Similarly, substituting (47) and (52) into (50), we have

</0 dn(H)) Ey = (Ko1, Kgo, Ko3)T. (58)

-1
Then,

(A+ B)Ey = (—Ka1, —Kag, —Ka3)T. (59)
That is

1
mp Mo M3 Eé) —K21
ng ni ng Eéz) = —Koa
PL P3 D2 Eé?’) —Ko3
(60)
Hence
Ao 2 Aoy _3) A
pV =22 g o2 gl o2
2 AQ’ 2 AQ’ 2 A27
where
mip m2 Mms3
Ay = det| ng n1 no |,
b1 P33 P2
—Ko1 mo mg3
Ay = det| —Kg n1 no |,
—Koz p3  po
my —Kao1 mg
Agp = det| n3 —Kzp n2 |,
p1 —Koz  po
m1; ma —Ko
A23 = det ns nq _K22
p1 p3 —Ko3

From (46),(48), we can calculatg,; and derive the
following values:

ci1(0) = QwiTk (920911 —2|gn1|* - @) %,
by = - Re{c1(0)}
’ Re{\ (7,)}"
B2 = 2Re(c1(0)),
n, - _'ma}+ palm{N (74)}

WoTk
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These formulaes give a description of the Hopf bifur-
cation periodic solutions of (2) at = 7, on the center
marifold. From the discussion above, we have the fol-

lowing result:

Theorem 7 The periodic solution is supercritical
(subcritical) if uz > 0 (u2 < 0); The bifurcating peri-
odic solutions are orbitally asymptotically stable with

asymptotical phase (unstable)d < 0 (G2 > 0);

The periods of the bifurcating periodic solutions in-
crease (decrease) 1, > 0 (7> < 0).

4 Numerical Examples

We have derived analytical understanding of possible
dynamics of a cyclic predator-prey system with Sig-
moidal type functional response to some extent. In
this section, we now perform some numerical simula-
tions work(using MATLAB dde23) to verify the an-
alytical predictions obtained in the previous section.
As an example, we consider the following special case
of system (2) with the parameters = 0.5,79
0.4,7‘3 = 0.6,(11 = 0.6,(12 = 0.7, asz = 0.2,b1

0.5,b2 = 0.6,b3 = 0.3,61 = 0.3,62 = 0.4, C3 =

0.2,d3 = 0.6,d2 = 0.5,d3 = 0.7,k

24

4.8, ks = then system (2) becomes

35>

#1(t) = 21(t) [0.5 — 0.621 (1)
0.621(t)z2(t)

_l’_

T 0.340.5z1 (1) Fa3(t)
0.48z2(t—7)

0.3+0.5z3(t—7)+a2(t—7)
:i'g(t) = :L'g(t) [0.4 — 0.7x9 (t)
0.5z2(t)z3(t)

© 0.440.6z2()+22(t)
0.28z%(t—7)

+

0.440.6a1 (t—m)+a2(t—7) |
i3(t) = w3(t) [0.6 — 0.233(¢)
0-7501(t):c3(t)

+

© 0.2+0.3z3()+23 (1)
0.24z2(t—7)

which has a
E.(1.0082,0.4395,0.9091).

0.24+0.5z2(t—7)+a3(t—7)

(61)

equilibrium
By some compli-
cated computation by means of Matlab 7.0, we get

wo & 2.0653,79 ~ 4.5, X (10) &~ 1.2247 — 2.2556i.

Thus we getc;(0) ~ —1.6138 — 9.13554, o
1.3177, 6, =~ —3.2276,T» ~ 0.5625. We obtain the
conditions stated in Theorem 4 are fulfilled. Fur-
thermore, it follows thaj.s > 0 andfs < 0. Thus,

~
~

the positive equilibriumFE, (1.0082,0.4395,0.9091)

is stable whenr < 7y which is illustrated by the
computer simulations (see Figs.1-7). Wherpasses
through the critical valuey, the positive equilibrium
E,(1.0082,0.4395,0.9091) loses its stability and a
Hopf bifurcation occurs, i.e., a family of periodic

E-ISSN: 2224-2899
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solutions bifurcate from the positive equilibrium
FE,(1.0082,0.4395,0.9091). Since uz > 0 and
B2 < 0, the direction of the Hopf bifurcation is
T > 19, and these bifurcating periodic solutions from
E,(1.0082,0.4395,0.9091) at 7y are stable, which
aredepicted in Figs.8-14.

Fig.1

®

200 400 600 800 1000 1200
Fig.2

0.46
0.44
0.42

200 400 600 800 1000 1200
Fig.3

X0

x40

200 400 600 800 1000 1200
Fig.4

X0

X0
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Fig.6
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0.34 0.36 0.38 0.4 042 044 046 0.48 0.5 0.52
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Fig.7

035 08

0.
%0 (0

Figs.1-7. Trajectories graphs of system (61) with
T = 4.3 < 19 = 4.5. The positive equilibrium
E,.(1.0082,0.4395,0.9091) is asymptotically stable.
The initial value is (1,0.5,0.6).

Fig.8
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t

Fig.9

400 600 1000 1200
t

Fig.10
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t
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X0

Fig.14

Figs.8-14. Trajectories graphs of system (61) with
T =5 > 19 =~ 4.5. Hopf bifurcation occurs from
the positive equilibriumF, (1.0082,0.4395, 0.9091).
The initial value is (1,0.5,0.6).

5 Conclusions

In this paper, we have analyzed a cyclic predator-
prey system with Sigmoidal type functional response.
We studied the effect of time delays on its dynamics.
Firstly, we obtained the sufficient conditions to en-
sure local stability of the equilibriunk, (=7, x5, z3%).
Taking the delay as parameter, we investigate the ex-
istence of local Hopf bifurcation. Applying normal
form theory and center manifold reduction, the stabil-
ity and direction of the Hopf bifurcation induced by
time delay are determined.
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Appendix A The expressions ofn;, n;, p;(i,j = 8b127% (b1 + 477

s = —
1,2,3) are as follows: > (c1 + 2bya% + 4#2) 1
8bsksdsztxi?(bs 4+ 452
m = 1'* [ bldlgff‘r; 16 - (3 3—|—3;b1$3* :_34—1_*2;13 )
L= (c1 + 2byzt + 43:’{2)2 Z 1] 1
dix* - = —di.l«= _ ksds
_1—*2*2—611], 7 - 1, 8_C3+b3$§+$§27
c1 + bz} + 27
d 2 s . 2b21‘§(bg + 4%;) _ d2w§
my = —— At 55 YT (eg + 20 Lol + 4232)3 o + bowh + 32
c1+ bz} + 23 i
2ksd - d2x2x3 — ag, S92 = —2d2:L'*
ms = [% o + 2byx} + 42 ’ 2
c3 + bzl + x5 " .
k‘3b3d3:L’§ s3 = 1'* kldl 2b1k1d1x1 (bl + 41‘1)
_ - 2 * *2 * *2\3
(c3 + 2bgxl + 4x§2)2} ’ c1+bix + o3 (c1 + 2b12] + 4x77)
dg(t;z . lekldl
* bgdngwE sq4 = kldl . 2b1k1d1x’{2
"= [(02 ¥ 2by7t + 433%)2 c1+ bzt +ai? (e + 2biaf + 4a7?)?
d2x’{ 1 5 = 8b21‘§2(bg + 4%;2
—— .o —a2|, - * * )
o + bl + 32 2_ (co + 2boxh + 4w32)4
n g [ 2k1dy s = _8b1]€1d1$§$>{2(b1 + 4:L'§2
3 2 c1 + bllL'){ + Jffz (63 + 2b3l’§ + 4l’§2)4 ’
x T kid
_ klblillwl — s7 = —ds, 88 = 1—*1*27
(1 + 2byat + 4a7%)? | c + bzt + 23
B [ bldll”{l'é i — 2b3l’§(b3 + 4l’§) B d3:L'>{
PU= e+ 2byat + 422 ! (c3 + 2032 + 4252)3 o3 + bsal + 752
d17% ] dzzia]
e - — a3,vy = —2ds},
atbiap+a2 c3+ 2bslah + dx2 7 s
dyz? ) kads 2y kydoa? (by + Aa})
= ———, v3 = T
b2 c1 + byt + 232 3 3eg + bowh + 2352 (co + 2b9xo3* + 425?)3
p3 = ai [—2k2d2 . _ 2b2kod3
ca + bawy + 25 (c3 + 2b3xl + 4x32)2 ]’
_ k2b2d2$2 5 } k2d2 2b2k2d2x§2
* *2\2 | ° (Y = — ,
(c2 + 2ba23 + 4a3%) 4 co + boxh + 132 (co + 2box} + 4a3?)?

) _ B 8b3x32(bg + dxk?
Appendix B The expressions of;, s;,v;(i,j = vs = _(C3+2b3x§+4x§2)4’

1,2,3) are as follows:
) _ 852]€2d21‘§1‘§2(b2 + 41‘;2

Vg =

L2l dep) i (c3 + 2bzal + 4a3?)*
YT (e 2bat 4223 o byl + a2 o B keado
v = —d3, g = ——————>.
dix] 75 . co + boxh + b
- ” o — a1, lz = —2dyz7,
c1 + 2bix} + 43 g
Appendix C The expressions ok;;(i,j = 1,2,3)
*2 * I\ » <
Iy = af Fyds . 2baksdszs” (bs + 4;63) are as follows:
c3 + byl + xf (c3 + 2bgxl + 4a3?)3 4 '
2bsksds Kii = I +lya + 136%™ 2907 4 [, Be™ 0Tk,
(1 + 2byt + 4x32)2 ] K3 = si+sa+ 33626_2’1“’07’c + 3456_""”0”“,
l kgdg 2b3k3d3x§2 K13 = v +voa+ 1)3626—2“0077@ + U4ﬂe_lw0Tk7
LTt bszh + x32 (s + 2b3x} + 4a3?)3’ Ko1 = 2(l1 + bRe{a} + 13|0] + l4Re{pe 0Tk }),
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2(s1 + soRe{a} + s3] 8] + saRe{fe 0T }),
2(2)1 + nge{a} + 03]6\ + v4Re{ﬂe‘i“°Tk}),
ll + lg@ + lgBZEZionk + Z4B€iw07—k,

$1 + soa + 8362€2iw0Tk + S4B€iwork7

V1 + Vo + ,U352622w07k + ’U4ﬁ€lw07—k,

1
LWy (0) + 2W11(0) + La(5aW50 (0)

1

5 W30 (0) + Wiy (0) + WY (0)
Ha (WD (—1)e™0Re{ 8} + 28W %) (—1))

1- . 1
(5 AW ()7 + S Wi (~1)
AW (0)e = 0 4 WY (~1))
+3l5 + 3l 5% G0k 4+ 1;(20 + @)
(B2 20 4 9| BJ2),

1 1

s1(Wig) (0) + 2w (0))

1 1
Tsa(50W50 (0) + 5 Wo (0)

1 2

+aW ) (0) + WiP(0))
Fg(Wad) (~1)e™0 Re( B} + 28W ) (~1))

1- . 1
H5a(5 W30 ()™ + S Wig (~1)
+AW(0)e ™0™ 4 Wi (—1))
4355 + 35632 G0k + 57(2a + @)
+s5(GPe 720 4 2|8]%),
v (W) (0) + 2,1 (0))

Foa(5aWE(0) + 5 WD (0)

+aW{} (0) + Wi} (0)

+us(Wag (~1)e™0™Re{ 8} + 26W,}) (1))
FoaG AW O™ + S (1)
WL (0)e ™0™ + WP (~1)) + 3us

430632 fe™ 0 4 vy (20 + @)
+ug(BPe 0™ 42 6)7).
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