
Implementation of Network Traffic Monitoring using

Software Defined Networking Ryu Controller

OMRAN M. A. ALSSAHELI, Z. ZAINAL ABIDIN, N. A. ZAKARIA, Z. ABAL ABAS

Fakulti Teknologi Maklumat dan Komunikasi
Universiti Teknikal Malaysia Melaka

76100 Melaka, Malaysia

Abstract: - Network traffic monitoring is vital for enhancing the overall network performance and for optimizing
the traffic flows. However, an emerging growth of use in cloud services, internet-of-things, block-chain and data
analytics, demand the hardware-based-network-controller to provide more features for expanding network
architecture. Therefore, Software Defined Networking (SDN) offers a new solution in terms of scalability,
usability and programmable software-based-network-controller for the legacy network infrastructure. In fact,
SDN provides a dynamic platform for the network traffic monitoring using international standard. In this study,
SDN setup and installation method uses a Mininet emulator containing a controller Ryu with switching hub
component, OpenFlow switches, and nodes. The number of nodes is adding until reaches to 16 nodes and
evaluated through different network scenarios (single, linear and tree topology). Findings show that the single
topology gives a winning criterion compared to other topologies. SDN implementation is measured with
performance parameters such as Throughput, Jitter, Bandwidth and Round-Trip Time between scenarios using
the Ryu controller. Future research explores on the performance of SDN in larger network and investigates the
efficiency and effectiveness of SDN implementation in mesh topology.

Key-Words: - Network management, network performance, network traffic monitoring, software-defined
networking (SDN), SDN traffic monitoring, Mininet and Ryu controller.

Received: April 30, 2021. Revised: May 19, 2021. Accepted: May 21, 2021. Published: May 25, 2021.

1 Introduction
Internet offers a wide variety of resources and
software platforms for a rigorously growing numbers
of users in the cyber world. It is essential to monitor
the internet growth since it is used in daily
communication, education, industrial automation,
health management and online business. This
enormous expansion of internet brings many
challenges to the network administrator such as
cyber-attack, network management issues, network
configuration, network performance, safety, and
monitoring the overall network's health [1].

The networking infrastructure is widely implemented
in organizations with different types of network
services and mechanisms. With a huge number of
applications to monitor how the traffic behavior and
test the traffic network requirements requested, a
high usage in network controller arise. Moreover, the
scalability problem in network performance is
affected by different scenarios due to bottleneck
problem.

Network monitoring is a method of capturing and
carefully inspecting network traffic to determine
activities in the network. Several methods to perform
the network traffic are network analysis, protocol
analysis, packet sniffing and packet analysis. The
monitoring of network traffic is a collection of
techniques that are used successively to know the
nature of traffic per packet or per rate of flow.
Moreover, the network is monitored based on traffic
statistics and the network analysis depends on the
availability of network traffic measurement. The
network topology is analyzed using network
controller to monitor how the traffic behavior in a
network. Using a virtual machine, a Linux Operating
System is installed to run all the program. A network
topology is setup and experiment test on the network
traffic based on data packet is implemented using the
simulation software.

The scope of this research is to implement a network
monitoring using SDN Ryu controller. Therefore, the
network controller used in this study is SDN-Ryu
Controller. Section 2 describes about the SDN and

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 270 Volume 16, 2021

scenarios for further testing and analysis phase.
Section 3 explains about the experiment environment
in implementing the SDN-Ryu Controller. Section 4
describes about the results and section 5 concludes
the study about load balancing using SDN-Ryu
Controller in improving the network performance.

2 Related Works
A SDN is a software-based network controller
producing a flexible, scalable, cost effective and
adaptive features that is ideal for high-bandwidth and
complex application. Through incorporation of a few
of low-level features of the network application
instead of hardware implementation helps the
network administrators to be more manageable to
control the complex networks. Moreover, SDN
architecture integrates the network control and
forwarding function that allow a dynamic and
programmable configuration in a cloud-based
network monitoring controlled by a remote-control
plane.

However, due to the increasing demands for

internet bandwidth from the new devices and users,
the internet is still not sufficient to meet the high
network requirements, such as flow requests and
network statistics monitoring. For instance, one of
the network controllers, NOX is appropriate for small
to medium-sized networks serves 30K stream
demand in every second with a reaction time less than
10ms. In fact, this amount is not appropriate for some
network settings such as data center [5]. The packet
request handled by a network controller is
compounded by an increase in the number of network
devices.

The network expand layers in SDN consists of
application and control layers, which responsible for
unified control action to solve the scalability issues,
as it decouples the control plane. Thus, the
decoupling condition creates the bottleneck function
in the control plane and demand the use of micro
controllers for better traffic management.
Furthermore, the controller struggles to manage more
events and flow requests, due to its limited
computing assets such as CPU and memory, which
make the network controllers as a bottleneck point.

To improve the network performance, SDN offers

a simulation platform for a better performance
compared to the traditional network management [2].
Layers in SDN consists of application, control and
data planes [3]. The upper layer is the application
plane, the middle layer is a control layer, which is
known as control plane and the lowest layer is the

data plane. Figure 1 illustrates the software-defined
network architecture.

 Fig 1. SDN Architecture

A top layer is an application layer, also known as
management plane, this layer is responsible for tasks
related to management and data transmission (for
instance, data traffic monitoring, mobility
management, routing, security and load balancing)
and for data traffic flow efficiency. The control plane
is separated from the core devices of the network and
responsible for unified the control action. A single
SDN controller is responsible for centrally managing
all data flows of an underlying network
infrastructure. [4]. In fact, the network control APIs
provides open device management, global network
view and forwarding space for user-friendly network
programming [5]. Data plane consists of ethernet
switches, packet switches and routers that tis
responsible for transmitting data packets regardless
of network architecture.

SDN control software sits in between the control
plane and data plane, which solving the scalability
issues, as it decoupling control plane from the data
plane and requires remote control mechanism that is
referring to the network controller management of
network devices. Thus, this separation performs in
significant overhead signaling due to the network
architecture scenario and applications executing on
the network controller, which creates the control
plane shows a bottleneck function with respect to the
system's scalability [6].

To increase the scalability and performance of the
control plane in the SDN architecture, Dynamically
Partial Reconfigurable Processor System is used to
micro controllers to allows for attempting
performance scale-out for the virtual device or
optimization of the physical processing location in
the network system [7]. Thus, improvements in the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 271 Volume 16, 2021

use efficiency of the network bandwidths and device
resources, as an issue on the data center network,
reduce the event resulting from network controllers
routing decisions to determine the shortest path.

3 Proposed Method
The proposed method for performing the network
traffic control uses the Mininet software as a
simulator to create the network scenarios. The
network scenarios are represented in topology. In the
SDN context, OpenFlow protocol is selected as the
interaction standard between controller and network
devices. OpenFlow helps network controllers to
establish network packet paths across a switch
network.

The performance and round-trip time (rtt) are used
as the parameter to measure the network
performance. The output of the throughput and
round-trip time (RTT) is recorded and analyzed using
multiple criteria. RTT is the period in milliseconds
(ms) from a starting point to a destination and back
to the starting point for a network request.
Throughput refers to the number of units that can be
handled by a system within a specified time period.
This parameter was used for analyzing the
performance in a network [8]. If the information is
not successfully transmitted between hosts in the
specified network topologies, then it affect the RTT
value and produces a direct effect to the network
performance.

There are 3 scenarios implemented in this study,

which are single topology, linear topology, and tree
topology. All of the experiment design is
implemented using simulation software, which is
Mininet since it is widely used for SDN network
controller as a research and development of prototype
[9]. This paper is executed using a simulation
environment. Every network topology design
consists of SDN Controller, switches, and hosts at the
different client connected, which is important for the
testing phase.

3.1 Experiment Environment
The experiment environment discusses the method of
a network configuration to be implemented. Section
3.1.1 to 3.1.3 explain on the topology (single, linear
and tree) based on the scenario. Section 3.2 explains
on experiment setup for the network controller and
3.3 used to monitor the behaviors in single, linear and
tree topology based on the integration of Wireshark
software application and the network controller.

The Mininet emulator is chosen since it has tools
for modeling the SDN, replicates and interacts with

the real-world SDN controllers. Moreover, Mininet is
an open-source application, stable and provide a
better control in network performance for SDN.
However, the NS3 mimics the functions of SDN
switch, demand another application to be combined
with NS3 to adopt SDN functions and more tools are
needed for SDN implementation [10].

3.1.1 Environment Setup for Single Topology

Figure 2 shows the flow of process created using a
single topology. This topology contains sixteen hosts,
one network controller and one switch. Two of total
hosts are changed to the HTTP server pools connect
to the single switch. It creates with an OpenFlow
controller using port 6633. The switch attaches to a
control plane available, and network controllers are
enabled remotely in the Mininet console using their
respective commands. Remotely enabled Ryu
controller is ready to connect to the IP address of
127.0.0.1 with the underlying network switches. A
single line command creates a single topology and
connect to the Ryu controller. To install the Mininet,
get the source code at git clone

git://github.com/,ininet/mininet.

Fig 2. Scenario Single Topology

3.1.2 Environment Setup for Linear Topology

The second design is a linear topology, which
consists of a network consisting of 3 hosts and each
host connects with its particular switch. The switches
are connected with each other linearly as shown in
Figure 3.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 272 Volume 16, 2021

Fig 3. Scenario Linear Topology

The OpenFlow-enabled switches are enabled and
connected with a remote network controller. The
network controllers are enabled remotely in the
Mininet console using their respective commands.
Remotely enabled Ryu controller is ready to connect
to the IP address of 127.0.0.1 with the underlying
network switches. Linear topology has an OpenFlow
network controller connected and using port 6633.

3.1.3 Environment Setup for Tree Topology

The third design shows all the OpenFlow-enabled
switches and hosts are connected with each other in a
hierarchical fashion.
 The tree topology uses customs topology. For the
custom topology, it needs to create using python
coding in order to activate Mininet using a single
command. Figure 4 depicts the tree topology using a
connected four switches plus a host and four hosts
connected as servers. All the OpenFlow-enabled
switches in turn gets connected with a remote
controller. The remote network controllers are
enabled remotely in the Mininet console using their
respective commands. Remotely enabled Ryu
controller is ready to connect to the IP address of
127.0.0.1 with the underlying network switches.

Fig 4. Scenario Tree Topology

3.2 Experiment Setup for Network

Controller
OpenFlow network controller is configured and
connected to the switch. It has several types of
controllers that could be implemented with Mininet
software. Table 1 shows that the Ryu controller using
a Load Balancer protocol. The Network uses IP
address 10.0.1.1, and the server uses IP address
10.0.0.1 for server one and 10.0.0.2 for server two.

 A comparison of performance is made by
comparing the total result obtained between the end
hosts. A round trip between hosts can be obtained
using the 'ping' (Echo request and reply message)
command to execute ICMP request message for a
connectivity test. An overall network performance
from the available throughput is achieved. A
throughput is defined as the quantity of data delivered
over a given time period. All the network topologies
created have 100 Mbps bandwidth physical
connection parameters with 1 ms propagation delay.

Table 1. Configuration of Network Controller

Parameter Description

Servers 10.0.0.1, 10.0.0.2

Debug Core PDX 0.5.0 eel, On CPython

Test Platform Linux 5.0.0-37, Ubuntu 19.04
x86_64

OpenFlow debug
info

Listening on [0.0.0.0:6633]

Network controllers’ performance in previously
defined network topologies is achieved using the
'ping' command (Echo request and reply message) to
perform the ICMP connectivity test. A ‘ping’ test for
the measurement of round-trip time (RTT) between
hosts is performed between end hosts h1 and h16 of
the specified network topologies.

3.3 Experiment Setup for Network

Monitoring

OpenFlow Wireshark is an application software or an
open-source tool that use to monitor a network
performance. To analyze the network performance,
Wireshark software is integrated with Mininet in

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 273 Volume 16, 2021

understanding the scenario in single topology, liner
topology and tree topology. Moreover, behaviors of
network topologies are demonstrated through the
simulation enabled, IP traffic is captured according to
the time stamp packet, which has the packet type,
source time and arrival packet at the destination IP
and the protocol of the IP traffic.

To capture packet transfer, Mininet needs
Wireshark to be executed at the background. "$ sudo
Wireshark &" command line was used to executed
the Wireshark in the background to capture
OpenFlow packet. The condition of "of" is needed to
fill in the filter box. Figure 5 shows Wireshark
monitoring IP packet in real-time as the network
topology is executed. Thus, based on the Wireshark,
the network monitoring process is successfully
implemented for further improvement. The red box
shows that the OpenFlow packet type is captured by
the Wireshark, which falls under the TCP packet
protocol.

Fig. 5 Monitoring IP Traffic using Wireshark

4 Results and Findings
Section 4 shows an overall result and findings of the
SDN performance according to scenarios (single,
linear and tree topology). The parameter of network
performance is based on throughput, bandwidth
utilization and jitter for every scenario.
 The result is captured and automatically drawn
delay between each packet and the highest amount of
data in given time is obtained. Moreover, in the era
of industrial revolution, the obtained data at the
specific time is widely used and all three created
topologies are using Mininet software application.

 Network throughput with different types of
topologies, show an overall network performance
and produces an average result of network
throughput between end nodes in different types of
topologies. The result of throughput is collected in 60
second of test. the graph for throughput in single
topology for each 10 seconds. For each 10 second,
the result captures and automatically draw by using
gnuplot. The highest throughput obtain is 65.5 Mbps
and the lowest is 55.6 Mbps. Figure 6 shows the
throughput result for a single topology.

Fig. 6 Throughput – Single Topology

The average throughput result is obtained. The result
for average throughput is calculated in between 10 to
60 seconds. For 100Mbps bandwidth link that we
created for this topology, the throughput that
obtained is around 56 Mbps to 61 Mbps.

On the other hand, throughput for linear topology
is implemented as depicted in Figure 7. For each 10
second, the result captures and automatically drawn
by the computer using gnuplot. The highest
throughput obtain is 65 Mbps and the lowest is 44
Mbps.

Fig. 7 Throughput – Linear Topology

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 274 Volume 16, 2021

Figure 8 explains on an average throughput that is
measured for a tree topology between 10 to 60
seconds. For 100Mbps bandwidth link has been
created and the throughput that obtained is around
52.7 Mbps to 52.2 Mbps. Throughput in the tree
topology has been executed for each 10 seconds. For
each 10 second, the result captures and automatically
draw by using gnuplot. The highest throughput obtain
is 70 Mbps and the lowest is 36 Mbps.

Fig. 8 Throughput – Tree Topology

Jitter is defined as a variance in packets arrivals at
the destinations due to network congestion and
incorrect queuing. The longer route for data packets
to travel, the higher the jitter, which reduce the
quality of the data transmission. In fact, this steady
data stream produced to be unbalanced.

For a single topology in figure 9, the User
Datagram Protocol (UDP) packet type is analyzed for
monitoring the jitter. UDP is faster than Transmission
Control Protocol (TCP) packet since UDP uses
smaller packet header and no speed limit. Compared
to TCP, it has speed limits and fixed at eight bytes.

By using “iperf” command and set the protocols
to UDP, the jitter is recorded for 60 seconds test with
10 second of interval. The highest jitter for single
topology produced 1.78 ms.

Fig. 9 Jitter – Single Topology

According to the result in figure 10, it shows that
the highest jitter value is 9 ms. Moreover, this high
value of jitter occurred since every node has a
dedicated connection to each OpenFlow switches,
which produce data packet delay. The data packet is
delayed because update of information at every
switch needs to be implemented in switch table and
this condition consumes computational processing
time. If the updates are in one switch, then less
processing time is required. Figure 10 shows the jitter
performance in linear topology.

Fig. 10 Jitter – Linear Topology

For single and linear topology, the jitter sparks at the
early stage of the data packet transmission and later
there is a constant distribution of data packet in the
network.

However, in figure 11 illustrates the jitter
performance in the tree topology. The jitter value
starts to drastically increase as the number of nodes
are added to the network. The jitter value is almost
0.8 ms at the time of 50 second nonetheless shows a
steady performance at the early distribution of data

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 275 Volume 16, 2021

packets. Based on the outcome, the tree topology
handles a better jitter situation compared to single
and linear topologies.

Fig. 11 Jitter – Tree Topology

Bandwidth is measured as how many amounts of
data that can be transferred over a one point to
another within a network in amount of time.
Bandwidth utilization for all three topologies is
obtain by using “iperf” command in Mininet. Table 2
produced the highest bandwidth obtain in the result is
single topology since the single topology using an
Open-Flow Switch to connect with all hosts. Rather
than other topologies are using more than one Open-
Flow Switch to connect with all hosts.

Table 2. Bandwidth Utilization

Bandwidth Single
Topology

Linear
Topology

Tree
Topology

Maximum 72.4
Mbps

58.8
Mbps

59.7
Mbps

Minimum 60.1
Mbps

57.0
Mbps

57.9
Mbps

To test the performance of bandwidth utilization
using the Ryu controller is through video streaming.
Video streaming is a parameter and widely used for
measuring the bandwidth. In this study, the VLC
media player is used for video streaming. VLC is a
free and open-source cross-platform media player.
VLC plays many media files and various streaming
protocol.

Three topologies (single, linear and tree) created
are using the same size of links that is 100 Mbps
bandwidth. Then, the media files used in this study is

MP4. All topologies are streaming at the same type
of media files that is 100Mbps of bandwidth link
since a small bandwidth gives less network problems
to delivered the data. Figure 12, 13 and 14 shows
video packet captured during video streaming for
bandwidth performance for single, linear and tree
topology. Even though the topology (single, linear
and tree) is not similar in architectural design but the
bandwidth performance shows almost a similar
output graph for a three topology (single, linear and
tree).

Fig. 12 Bandwidth – Single Topology

Fig. 13 Bandwidth – Linear Topology

Fig. 14 Bandwidth – Tree Topology

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 276 Volume 16, 2021

5 Conclusion
In this investigation, the aim was to implement and
monitor the network traffic using SDN controller.
Furthermore, the SDN performance is evaluated
based on parameters such as throughput, jitter and
bandwidth utilization. To measure the SDN
performance, a simulation-based experiments have
been conducted to replicate the real environment of
the SDN functions based on scenarios (single, linear
and tree).

Results of this study shows that for throughput
performance, the single topology provides a high
throughput, the linear topology gives low throughput
and tree topology shows an unbalance throughput.

Findings of throughput summarized a single
topology has a successful data transmission from one
node to another node in a given time of duration. On
the other hand, linear topology gives a low
throughput that indicates an unsuccessful data
transmission due to data packet lost. In tree topology,
the throughput shows an unbalance condition since to
hardware failure factor.

Findings in jitter indicates a decreasing value in
single and linear topologies. This means the irregular
time delay during sending and receiving the data
packet is small that not more than 1% of packet loss.
If the jitter performs an imbalance condition in the
tree topology, thus this outcome indicates that
number of loads really effect the jitter performance.

Findings in bandwidth performs a similar pattern
of graph, for single, linear and tree topology in a
normal condition. However, bandwidth is not
affected by data speed, bottleneck forming and
number of nodes in the network, which the latency
needs to be reduced for higher speed in data
transmission.

It is recommended that further research be
undertaken in exploring on the performance of SDN
in cloud computing and investigates the efficiency
and effectiveness of SDN implementation in larger
network.

6 Acknowledgement
Thank you to Fakulti Teknologi Maklumat dan
Komunikasi and Universiti Teknikal Malaysia
Melaka.

References:

[1] M. Hartung and M. Korner, SOFTmon-Traffic
Monitoring for SDN, in International Workshop
on Application of Software-Defined
Networking in Cloud Computing, Procedia

Computer Science, Vol. 110, 2017, pp. 516-523.

[2] K., Benzekki, El Fergougui, A, Elbelrhiti A.,
Elalaoui, Software‐ defined networking (SDN):
a survey. Security and Communication

Networks, Vol. 9, No.18, 2018, pp. 5803-5833.
[3] I.Z. Bholebawa and U.D. Dalal, Design and

Performance Analysis of OpenFlow-Enabled,
Network Topologies Using Mininet.

International Journal of Computer and

Communication Engineering, Vol. 5, 2016, pp.
419-427.

[4] I.Z. Bholebawa, and U.D. Dalal, Performance
Analysis of SDN/OpenFlow Controllers: POX
Versus Floodlight, Wireless Personal

Communication. Vol. 98, No. 2, 2018, pp. 1679-
1699.

[5] T., Feng, J., Bi, and H., Hu, TUNOS: A novel
SDN-oriented networking operating system. In
2012 20th IEEE International Conference on
Network Protocols (ICNP), 2012, (pp. 1-2).

[6] M. Karakus and A. Duressi, Quality of Service
(QoS) in Software Defined Networking (SDN):
A survey, Journal of Network and Computer

Applications, Vol. 80, 2017, pp. 200-218.
[7] M. Kirchhoff, P. Kerling, D. Streitferdt and W.

Feng, A Real-Time Capable Dynamic Partial
Reconfiguration System for an Application-
Specific Soft-Core Processor, International

Journal of Reconfigurable Computing, Vol.
2019, Article ID 4723838, pp. 1-14, 2019.

[8] I.Z., Bholebawa, R.K. Jha, and U.D. Dalal,
Performance Analysis of Proposed OpenFlow-
Based Network Architecture Using Mininet,
Wireless Personal Communication, Vol 83,
2015, pp. 1-18.

[9] Omran M. A. Alssaheli, Z. Zainal Abidin, N.A.
Zakaria, Mininet Network Emulator: A Review,
International Journal of Computer Science and

Network Security, Vol. 19, No 9, 2019, pp. 147-
155.

[10] I., Jared, Y., Hemin, Z., Chuanji and R., George,
Comparing a Scalable SDN Simulation
Framework Built on ns-3 and DCE with
Existing SDN Simulators and Emulators. ACM
Conference, 2016, pp. 153-164.
10.1145/2901378.2901391.

 Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2021.16.23

Omran M. A. Alssaheli, Z. Zainal Abidin,
N. A. Zakaria, Z. Abal Abas

E-ISSN: 2224-2856 277 Volume 16, 2021

