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Abstract: An iterative learning fault diagnosis (ILFD) algorithm for networked control systems (NCSs) subject to
random packet losses, time-varying delays, limited communication and actuator failure is proposed in this paper.
Firstly, in order to evaluate the effect of fault on system between every iteration, the information of state error
and information of fault tracking estimator from the preceding iteration are used to improve the fault estimation
achievement in the actual iteration. The state variable, the Bernoulli process of random packet losses, network
communication delay, limited communication and actuator failure are introduced to establish an extended state-
space model of the system. Secondly combining Lyapunov stability theory for linear repetitive processes and
linear matrix inequality (LMI) technique, new sufficient condition for the existence of an iterative learning fault
diagnosis is established. Finally, the feasibility and effectiveness of the proposed design method is illustrated on
a dynamic hydroturbine governing system model based on Matlab/Simulink and TrueTime toolbox.
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1 Introduction

Modern operation in the hydro power production in-
dustry is aimed oriented to remote control and moni-
toring. The constantly evolving economic challenges
lead to produce always more. The least failure on an
industrial process is harmful in an environment where
performance is essential. It is therefore necessary to
be ensured permanently of the optimal control of pro-
cess. Information making it possible to translate the
behaviour of a system is given by measurements of
the variables of this process. The quality of measure-
ments is an essential element to allow the monitor-
ing and the performance evaluation of a process. The
growing complexity of industrial systems which be-
came increasingly demanding in terms of reliability,
performances, safety constraint and availabilities has
given rise to growing interest in fault tolerant control
and diagnostics [1, 2, 3, 4].
The challenge of fault diagnosis has been studied
widely in the literature [5, 6, 7, 8, 9, 10, 11]. The
major part of research was devoted to the problem
of fault detection and isolation so as to determine the
operating condition of the system (normal or failing).

Several approaches andmethods are used to solve this
problem: H∞ fault detection filter [6, 7, 10, 13], Slid-
ing mode methods for fault detection [10, 11], adap-
tive fault detection filter [10, 12] , fuzzy inference
systems and artificial neural network based fault di-
agnosis [10, 14, 15]. However, majority industrial
processes are repetitive systems [16, 17, 18], learning
knowledge and operation upon the preceding iteration
are ignored in traditional fault detection approaches
above-mentioned. Nevertheless, with the develop-
ment of information treatment technology, huge re-
search efforts have been dedicated to development of
a fault estimation by utilizing neural networkmethods
[14, 15] and iterative learning approaches [19, 20, 21].
Overall, the methods of neural network have been ac-
complished for complex systems, moreover themodel
of the system is not available.
Nonetheless, Based on fault estimation challenges on
a perfect system, an iterative learning technique is a
more viable track. A fault tracking estimate and an it-
erative learning algorithm have been used to get fault
estimates functions for systems with time-delay in
[22]. Moreover in [23] , an iterative learning observer
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is developed by utilizing preceding yield estimation
errors and inputs. Inspired by the preliminary re-
view, this paper presents a Networked iterative learn-
ing Fault Diagnosis algorithm for systems with sensor
random packet losses, time-varying delays, limited
communication and actuator faults. Furthermore, it
is supposed that information transmission and recep-
tion bare made through the communication medium
with capacity constraint, random packet losses exists
in sensor-controller links , it is designed as a Bernoulli
process and actuator faults in a same pattern. More-
over, the actuator fault includes the proceedings of
failure and stuck fault. Thus, this work proposes an
approach of synthesis of an iterative learning observer
to estimate the exact information of fault.
The main contributions of this paper are highlighted
as follows:

• the actuator fault estimation problem is extended
for a class of networked control systems (NCSs)
with random packet losses, time-varying delays
and limited communication; employing the Lya-
punov stability theory, new sufficient conditions
are established to guarantee the iterative tracking
error trial to trial convergence.

• Application to a Hydro-turbine governing system
shows that the proposed iterative learning algo-
rithm achieves better fault estimation.

True-Time toolbox is used to reflect a more real-
istic numerical network communication and va-
lidity of the proposed designmethod is illustrated
on the model of hydroturbine governing system
[24].

The rest of this paper is organized as follows: sec-
tion 2 introduces the problem statement and prelim-
inaries, our step of fault estimation using an itera-
tive learning scheme is proposed to achieve desired
fault estimation results and the sufficient conditions
which make the considered system to be asymptoti-
cally stable and meet is given in section 3. The sim-
ulation results based on True-Time toolbox and Mat-
lab/Simulink will be given in section 4 to verify the
efficiency of proposed method. Finally, the paper is
concluded in section 5.

2 Problem Formulation
In this paper, the linear output sampling system with
time-varying, packet losses, limited communication
and actuator fault is considered. State-space model
of the dynamic process can be described by the
following form:

xk(t+ 1) = Axk(t) +Aτxk(t− τ(t)),
+BuFk (t)

yk(t) = Cxk(t), xk(0) = x0, 0 ≤ t ≤ Tc

(1)

where k denotes the iteration index, k ≥ 0, t is the
time index, Tc is the iteration length ; xk(t) ∈ Rn,
uk(t) ∈ Rp are the system state vector, control input
vector, x0 denotes the initial state. xk(t) ∈ Rn

and yk(t) ∈ Rp are system state vector and output

vector at discrete time t respectively, uFk (t) denotes
the actual output of the possible faulty actuator,
dk(t) ∈ Rq is the disturbance in the system, τ is is
the discrete time-varying communication delays such
as τ ∈ [τm, τM ]; τm and τM are constant positive
scalars representing the lower and upper bounds). A,
B, C, and Aτ are constant matrices with appropriate
dimensions.
The boundary conditions xk(0) = x0 represent the
initial condition of the system at the t time.
In a similar way to [25], the actuator fault model used
in this paper is described as follows

uFk (t) = λuk(t) + αufk(t) (2)

where

ufk(t) =
[
uf,1k (t) uf,2k (t) · · · uf,mk (t)

]T
(3)

λ ∈
{
λ1, λ2, · · · λl

}
(4)

α ∈
{
α1, α2, · · · αl

}
(5)

In which, l denotes the total faulty modes, λ and
α are the time-varying diagonal matrix of efficiency
actuator factor and

λj ∈


λj
1 0 · · · 0

0 λj
2 · · · 0

...
...

. . .
...

0 0 · · · λj
m

 (6)

αj ∈


αj
1 0 · · · 0

0 αj
2 · · · 0

...
...

. . .
...

0 0 · · · αj
m

 (7)

with
λj
i ∈

[
λ̄i, λi

]
, αj

i = 0 or 1.
Hence, we establish

λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

 , (8)

λ̄ =


λ̄1 0 · · · 0
0 λ̄2 · · · 0
...

...
. . .

...

0 0 · · · λ̄m

 , (9)
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Table 1. present the possible actuator failure con-
sidered in this paper.
If we denote by ũk(t) the control signals generated

Table 1: Actuator failure cases.

Case Actuator failure

λj = 1, αj=0 Actuator is normal

λj = 0, αj = 0 Actuator is outage

λj = 0, αj = 1 Actuator is stuck fault

by controller at discrete time t. Based on the above
communication sequence, the control input signal is
expressed as:

ũk(t) = M%(t).u
F
k (t) (10)

. where

M% =


%1(t) 0 · · · 0
0 %2(t) · · · 0
...

...
. . .

...
0 0 · · · %3(t)

 ,

and
%i(t) ∈ {0, 1} ,

∑m
i=1 %i(t) ≤ m.

It is suppose that random packet losses exist in
Sensors to controller link.
The following equations describe this phenomena
[26]:

ȳk(t) = βk(t)yk(t) + (1− βk(t))ȳk−1(t) (11)

where βk(t) is a stochastic variable which satisfies
Bernoulli distribution with

Pr {βk(t) = 1} = E {βk(t)} = β̄, (12)

where
0 ≤ β̄ ≤ 1

If βk(t) = 0, it assumes that the packet ȳk(t) is
lost, and the data of ȳk−1(t) would be used in the
system.
Substituting the fault matrix ( 2),( 10) and ( 11), the
dynamic of augmented model such as illustrated in
fig 1 may be obtained:

xk(t+ 1) = Axk(t) +Aτxk(t− τ(t))
+BλM%(t)uk(t) + αB

×M%(t)u
f
k(t)

ỹk(t) = βk (t)Cxk(t) + (1− β(t))
×Cỹk−1(t)

(13)

To end this section, we introduce the following lem-
mas which will be used there after.

Lemma 1 ([27]). Given matrices T = T T , X , Y , B
of appropriate dimensions, then:

• T +XBY + Y TBTXT < 0

for all B satisfying BTB ≤ I , if there exists a scalar
υ > 0 such that:

• T + υXXT + υ−1Y TY < 0

Figure 1: The proposed block diagram of networked
iterative learning fault diagnosis systems with sensor
random packet losses, time-varying delays and lim-
ited communication.

Lemma 2 ([28]) Given constant matrices of com-
patible dimensions Σ11,
Sigma12 and Σ22 ∈ Rn×n, where Σ11 = ΣT

11 and

Σ22 = ΣT
22 ; the following conditions are equivalent:

1

[
Σ11 Σ12

ΣT
12 Σ22

]
< 0

2 Σ11 < 0,Σ22 − ΣT
12Σ

−1
11 Σ12 < 0

3 Σ22 < 0,Σ11 − ΣT
12Σ

−1
22 Σ12 < 0

where the symbols (∗) denote the symmetric terms.
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3 Iterative learning observer design
According to ( 13), the observer based fault detection
for the system is developed as follows

x̂k(t+ 1) = Ax̂k(t) +Aτ x̂k(t− τ(t)),
+BλM%(t)uk(t)

+αBM%(t)û
f
k(t)

+L [ỹk(t)− ŷk(t)]

(14)

ŷk(t) = βk (t)Cx̂k(t) + (1− β(t))
×Cŷk−1(t)

(15)

Where x̂k(t) m and ŷk(t), û
f
k(t) denote the state esti-

mate of the system, the estimate of the output vector
and estimate of fault signal at k iterations learning re-
spectively , L is the matrix gain observer.
We define εk(t) the estimation error in the k

th trial as

εk(t) = xk(t)− x̂k(t) (16)

the output error by

r̄k(t) = yk(t)− ŷk(t) (17)

and the fault estimation error by

ŭfk(t) = ufk(t)− ûfk(t) (18)

According to ( 13)-( 16), the expression of the
dynamic error εk(t) is obtained as

εk(t+ 1) = [A+ Lβ (t)C] εk(t)
+Aτεk(t− τ(t)) + αBM%(t)ηk(t)

+(1− β(t))rk(t− 1)
(19)

Thus, the following iterative learning based fault
estimation is proposed as

ûfk(t+ 1) = ûfk(t) + Λ1ek(t)
+Λ2ek(t+ 1)

(20)

where Λ1 and Λ2 are consistently dimensioned
matrices gain fault to be conceived.
For the purpose of facilitate the following expres-
sions, It can denote the error of iterative learning
fault estimation as

εk(t+ 1) = Ā1εk(t) +Aτεk(t− τ(t))
+B̄1ηk(t) + C̄1rk(t− 1)

(21)

ηk(t+ 1) = ηk(t) + Ā2εk(t)
+Λ2Aτεk(t− τ(t))

+B̄2ηk(t) + C̄2rk(t− 1)
(22)

where
Ā1 = A+ Lβ (t)C
B̄1 = αBM%(t)
C̄1 = (1− β(t))I
Ā2 = Λ1 + Λ2 (A+ Lβ (t)C)

B̄2 = αΛ2BM%(t)
C̄2 = Λ2(1− β(t)).

Denote extended vectors:

ε̄k(t) = [ εk(t) εk(t− τ(t) ]
T

η̄k(t) = [ ηk(t) rk(t− 1) ]
T

According to ( 21) and ( 22), the following equation
can be obtained

ε̄k(t+ 1) = Π1ε̄k(t) + Π2η̄k(t)
η̄k(t+ 1) = Π3ε̄k(t) + Π4η̄k(t),

(23)

where

Π1 =

[
Ā1 Aτ

Ā2 Λ2Aτ

]
,

Π2 =

[
B̄1 C̄1

I + B̄2 C̄2

]
,

Π3 =

[
Ā2 Λ2Aτ

β(t)C 0

]
,

Π4 =

[
I + B̄2 C̄2

0 (1− β(t))I

]
,

Theorem 1 .The ILFDS system ( 23) at k iteration is
stable along the elapse it if exists a scalar ζ > 0 and
positive matrices P̄1 > 0, Q̄1 > 0 , P̄2 and Q̄2 such
that the following LMI holds:


−P̄−1

1 ∗ ∗ ∗ ∗
0 −Q̄−1

1 ∗ ∗ ∗
P̄−1
1 Π1 P̄−1

2 Π̄21 Π̄33 ∗ ∗
P̄−1Π3 Π̄41 −ζI Π̄44 ∗
P̄2 Q̄2 0 0 −ζI

 < 0

(24)
where
Π̄33 = −P̄−1

1 + ζI
Π̄44 = −Q̄−1 − ζI

If this LMI holds, the fault matrices gains Λ1 and
Λ2 can be determined on the basis

Λ1 = P̄2P̄1

Λ2 = Q̄2Q̄1
(25)

Proof 1 . we select the Lyapunov function in the fol-
lowing way

Vk(t) = ēTk (t)P̄1ēk(t) + η̄Tk (t)Q̄1η̄k(t)(t) (26)

∆Vk(t) = ēTk (t+ 1)P̄1ē
T
k (t+ 1)

+ēTk (t)P̄1ēk(t) + η̄Tk (t+ 1)Q̄1η̄k(t+ 1)
−η̄Tk (t)Q̄1η̄k(t)

(27)
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∆Vk(t) =
[
ēTk (t+ 1) η̄Tk (t)

]
×

(
Π̄TDΠ̄−D

) [
ēTk (t+ 1)
η̄Tk (t)

]
(28)

where

Π̄ =

[
Π1 Π2

Π3 Π4

]
, D = diag

{
P̄1 Q̄1

}
,

Therefore, ( 23) is stable along the elapse it if exists
D > 0 so that

Π̄TDΠ̄−D < 0 (29)

Applying Schurs complement to ( 29) yields
−P̄−1

1 ∗ ∗ ∗
0 −Q̄−1

1 ∗ ∗
Π1 Π2 −P̄−1

1 ∗
Π3 Π4 0 −Q̄−1

1

 < 0 (30)

the multiplication of inequality ( 30) by left and

right side by diag
{

P̄−1
1 Q̄−1

1 I I
}
to get

−P̄−1
1 ∗ ∗ ∗
0 −Q̄−1

1 ∗ ∗
P̄−1
1 Π1 P̄−1

1 Π2 −P̄−1
1 ∗

P̄1
−1

Π3 P̄−1
1 Π4 0 −Q̄−1

1

 < 0

(31)
Moreover

Ξ1 + Ξ2αΞ3 + ΞT
3 α

TΞT
2 < 0 (32)

where

Ξ1 =


−P̄1 ∗ ∗ ∗
0 −Q̄1 ∗ ∗

P̄−1
1 Π1 P̄1

−1
Π̄21 −P̄−1

1 ∗
P̄−1
1 Π3 Π̄41 0 −Q̄1

−1

,
Ξ2 = [ 0 0 I I ]

T
,

Ξ3 =
[
Π̄22P̄

−1
1 Π̄42Q̄

−1
1 0 0

]
,

Π̄21 =

[
αBM%k C̄1

I C̄2

]
,

Π̄22 =

[
M%k 0

Λ2M%k 0

]
,

Π̄41 =

[
I C̄2

0 (1− β(t))I

]
,

Π̄42 =

[
M%k 0
0 0

]
,

According to Lemma( 1), as a result ( 29) holds if
it exists a scalar ζ>0 so that

Ξ1 + ζΞ2αΣ0Ξ
T
2 + ζ−1Ξ3Ξ

T
3 < 0 (33)

Applying Schurs complement to ( 31), following
equation can be obtained[

Ξ1 + ζΞ2αΞ
T
2 ∗

Ξ3 −ζI

]
< 0 (34)

Finally, introducing the following equations

P̄2 = Λ1P̄
−1
1 ,

Q̄2 = Λ2Q̄
−1
1

(35)

the proof is complete.

4 Simulation Results
In this section, we propose a numerical example of
simulation to illustrate the effectiveness of ILFD al-
gorithm presented in this work.
We consider the model of networked control hydro-
electric power plant given in [24]. The flowchart of
winnowing device control and communication net-
work is represented on Fig 6.

Figure 2: Schematic diagram of networked control
hydro turbine governor system.

The state space representation of dynamic model
with actuator fault may be presented as follows :

xk(t+ 1) = Axk(t) +BuFk (t)
+Aτxk(t− τ(t)) + Γd(t)

yk(t) = Cxk(t)
(36)

The parameters are given as follows by

A =

 1.1840 −0.4046 0
0.5000 0 0

0 0.5000 0

, B =

 1
0
0

,
C = [ 0.2943 0.3382 0.0001 ] and
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Aτk =

 0.034 0 −0.01
0.031 0.03 0
0.04 0.05 −0.01

,
According to the time scale, we define the time-
varying communication delays as τi(t)(i = 0, 1, 2),
the communication constraints is fixed to one channel
(%i = 1) .
we presume that hydro turbine governor system
accomplish the same assignment above a finite time
repetitively, the length is T= 130 s.
The following two cases of actuator failure are
considered in this simulation:

• Case 1: Actuator outage fault, we assume that the
actuator outage fault is occurred between 110s−
115s with λ = 0, α = 0.

• Case 2: Actuator suffer of struck fault, likewise,
actuator struck fault occurs between with struck
fault ufk(t) = 2+1.5sin(20(t− 5)), λ = 0 , and
α = 1.

The bounds of actuator effectiveness are set as

λ =

 0.7 0 0
0 0.75 0
0 0 0.77

 and

λ̄ =

 0.85 0 0
0 0.85 0
0 0 0.85

.
In simulation, we are choosing the initial state

of ILFD system as x0 = [ 0.1 0 −0.1 ]
T
,

λ̂(0) =
(
λ̄+ λ

)
/2, and ûf (0) = 0.1;the sampling

period is Te = 1s.

The range of input control current of servomotor
is set as [ 0 5mA ] , the reference input speed of
hydroturbine is set as yr(t) = 12.56rad/s and we let
Prob {β(t) = 1} = β = 0.75.

According to Theorem 1 , we have solved the
optimization algorithm in Matlab LMI toolbox,
so observer gain L, fault estimator gain matrices
and scalar ς can be obtained in the Table 2 and Table 3.

Table 2: Fault estimator gain matrices Λ1, Λ2 and
observer gain L for case1.

Parameters Matrices

Λ1 [ −0.32 0.27 0.1 ]
Λ2 [ 0.021 0.61 −0.45 ]

L [ 0.56 −0.71 0.01 ]
T

Table 3: Fault estimator gain matrices Λ1, Λ2 and ob-
server gain L for case2.

Parameters Matrices

Λ1 [ −0.3 0.28 0.1 ]
Λ2 [ 0.035 0.60 −0.43 ]

L [ 0.66 −0.63 0.21 ]
T

Fig. 3 and Fig 4 present the estimated fault signal
and actual fault signal of actuator outage fault and
struck fault at the first to sixth iterations, respectively.
We can obtain that when iterative index increases, the
estimating of fault achieve better result. The response
curve of actuator outage fault and struck fault show
that the proposed approach can track the actual
signal best. It also may be observed that the fault is
estimated with high precision According to Fig 2 and

Figure 3: Actual fault and estimated fault for case 1.

Fig 5, The residual signal is increased near of actual
fault with iterations growing. At third iteration, the
residual signal has sufficient of convergence with the
actual fault.
we can observed that of actuator outage fault and

Figure 4: Actual fault and estimated fault for case 2.
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struck fault are estimated with great precision. It
appears that the iterative learning fault estimation
observer has highly successful to estimate the actual
fault.

To improve illustration of the effectiveness of

Figure 5: Residual convergence signals for case 1.

Figure 6: Residual convergence signals for case 2.

iterative learning diagnosis algorithm proposed in a
class of NCSs with sensor random packet losses,
time-varying delays, limited communication and
actuator failure , the maximum value of absolute
error index ξk is established to assess the efficiency
of fault estimation operation in different trials. The
denotation of ξk is is defined by

ξk = sup
∣∣∣ŭfk(t)∣∣∣

t ∈ [0, 300]
(37)

Fig 3 and Fig 6 show the changes of tracking per-
formance index (TPI) with actuator outage fault and
struck fault, respectively.
In accordance with Fig 4 and Fig 6, we notice that
when the iteration increases the TPI converge to zero,
so we can restore the tracking accomplishment to its
initial step.It is obvious that the suggested ILFD algo-
rithm can versatility detect and estimate different ac-
tuator faults under disturbance, it will guarantee the
remote control of the hydroturbine governor system
better surely and effectively in actuator fault occur. .

Figure 7: Tracking performance index case 1.

Figure 8: Tracking performance index case 2.

5 Conclusion

In this paper, a class of NCSs with random sensor-
controller channels packet losses, time-varying de-
lays, limited communication and actuator failure is
investigated to design an iterative leaning fault diag-
nosis algorithm. Initially, corresponding fault signal
is established to describe the effectiveness of infor-
mation of actual fault upon process during every it-
eration. For designing the observer based on itera-
tive learning fault diagnosis, virtual fault is used to
estimate the corresponding actual fault through at ev-
ery iteration. The asymptotic stability theory of the
residual systems and the convergence conditions in
terms of LMIs are applied to design iterative learning
gain matrices. The dynamic of hydro turbine gover-
nor system model has been used to verify the effec-
tiveness of the proposed algorithm based on TrueTime
and Matlab/ Simulink. Also, it has been proven that
the proposed algorithm may be suitable to more over-
all NCSs.
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