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Abstract: ­ Deep Neural Networks (DNNs) used in safety­critical systems cannot compromise their performance
due to reliability issues. In particular, soft errors are the worst. Selective software­based protection solutions are
among the best techniques to improve the reliability of DNNs efficiently. However, their most significant
challenge is precisely hardening portions of the DNN model to avoid performance degradation. In this work, we
propose a comprehensive methodology to analyze the reliability of object detection and classification algorithms
run on GPUs from the lowest (instruction) evaluation level. The ultimate goal is to avoid the performance penalty
of full instruction duplication by confidently identifying the vulnerable instructions. For this purpose, we propose
a technique, Instruction Vulnerability Factor (IVF). By applying our methodology on ResNet and YOLO models,
we demonstrate that both models’ most vulnerable instructions can be precisely determined. Moreover, we show
that YOLO is more sensitive to the changes caused by soft errors than ResNet. Also, ResNet depends on the input
image in its reliability, while YOLO tends to be independent.
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1 Introduction

The scope of what computers can learn has signif­
icantly been increased by Deep Neural Networks
(DNNs). In particular, the field of computer vision
is empowered by image classification [1] and object
detection [2] techniques. The state­of­the­art You
Only Look Once (YOLO) and Residual Networks
(ResNet) have shown impressive performances for
object detection and classification systems, respec­
tively [2]. Moreover, YOLO is one of the fastest accu­
rate detectors, while ResNet has been used in nineteen
modern detectors as their backbone feature extractor
[3]. Consequently, the past decade has witnessed the
widespread adoption of DNNs in various domains.
Numerous of these applications have been utilized in
safety­critical areas, such as self­driving cars [4], [5],

healthcare [6], [7], and in space [8]. The performance
of the DNNmodels in such environments is no longer
the only requirement, but also the reliability [9].

As the latency plays an essential role in safety­
critical applications for real­time responses, it is a risk
to run compute­intensive algorithms, such as DNNs,
on regular CPUs. Therefore, massively parallel ac­
celerators, such as Graphics Processing Unit (GPUs),
should be used to tackle this bottleneck [9]. In fact,
GPUs provide the lowest latency compared to other
accelerators [10].

A member of the US Technical Advisory Group
(TAG) to the ISO 26262, Kurt Shuler, has stated the
importance of reliability in self­driving cars “If we
want to be serious about autonomous vehicles, the
safety standard landscape needs to evolve beyond
pass/fail checklists” [11]. This statement indicates
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that, in critical domains, the model’s performance
cannot be compromised due to its reliability.

Many sources of faults cause unreliability for these
DNN systems. However, transient hardware faults
(i.e., soft errors) cause the majority of the system fail­
ures [12]. Transient faults are originated from various
sources, such as high­energy particles, temperature,
voltage variation, malicious attack, and clock skews
[13]. The biggest concern about transient faults for
DNNs is that they lead to incorrect predictions at the
model’s output. This type of error is called silent data
corruptions (SDCs), which are usually not detectable
by regular DNN algorithms, leading to misclassifica­
tion or misdetection [14], [15].

A common approach to address soft error issues
in GPUs is utilizing software­based solutions, espe­
cially selective software­based techniques. They al­
low hardening parts of the source code instead of full
duplication of the executing programs. These strate­
gies can tolerate transient faults at relatively lower
costs. However, they incur excessive overheads that
can severely harm the DNN model’s performance.
This is because prior selective hardening approaches
have been conducted at different levels of abstraction,
including the DNN layer’s level [15], [16] and DNN
kernel’s level [14], [16]. To our best knowledge,
DNN resilience from the assembly­language level has
not been investigated on GPUs.

A first­class downside of the prior protection
strategies is the degradation of performance that
stems from the solutions themselves. For instance,
self­driving cars must demonstrate the ability to re­
spond within a few milliseconds (per iteration) be­
fore they are deployed on the road [10], [17]. Ap­
plying traditional hardening techniques to such sys­
tems is likely to impact the latency by delaying the
response time, which is a risk. Therefore, our work
aims to identify the portions of the DNN models that
are the most sensitive to soft errors from the lowest
evaluation level of software­based solutions, instead
of high­level evaluations.

In this study, we present and evaluate a method­
ology to analyze the reliability of DNNs on GPUs
at the assembly­language instruction level. The ul­
timate objective is to avoid unnecessary overheads
that would be produced by various source­code level
approaches. We consider the injection of transient
fault to characterize its impact on two DNN tech­
niques, image classification (ResNet) and object de­
tection (YOLO). Adopting our methodology, we are
able to precisely identify the vulnerable instructions
of the ResNet and YOLO models that cause unrelia­
bility to the system. The main contributions of this
paper are:
• A thorough methodology to analyze the proba­
bility of faults in the low­level instructions that

probable to cause a failure in the model’s predic­
tion.

• Instruction Vulnerability Factor (IVF) and apply­
ing it to two case studies (ResNet and YOLO
models) to calculate IVF according to the cor­
rupted predictions.

• Conducting an extensive analysis of the two
models through SASSIFI fault injection to char­
acterize the error resilience behaviors of im­
age classification and object detection systems
against soft errors.

• Error criticality measurement to classify instruc­
tions that tend to produce critical SDCs and de­
termine whether the critical error rate depends on
the model’s input.
The remainder of the paper is organized as follows.

Section 2 serves as a background on the two models,
transient errors, and the GPU architectures considered
in our work; and reviews related work. Section 3
demonstrates our analysis methodology. Experimen­
tal results are presented and discussed in Section 4.
Section 5 concludes the paper.

2 Background and Related Work
In this section, we first present a brief background on
object recognition benchmarks (i.e., object classifica­
tion and object). Then, an overview of transient errors
in GPUs is presented. Also, GPU architectures used
are presented. Last, we review related works.

2.1 Object Classification and Detection
DNNs are widely adopted in computer vision tasks.
Object classification and detection are the two most
efficient techniques of DNNs to extract meanings
from images and videos for computer vision tasks [2].
Image classification is the process of taking the entire
image and predicting which category this image be­
longs to. Object detection is the process of recogniz­
ing all the objects alongside their locations in a given
image [3]. The significant difference is that the later
technique deals with distinguishing between objects
within the same image. This means that it is tasked to
categorize and locate all known content in the scene.
Thus, detectionmeans classification plus localization.

In this study, we consider ResNet50 [18] as a clas­
sifier, and YOLO3 [19], as an object detector. These
models were pre­trained on the ImageNet dataset and
available on Darknet, an open­source DNN frame­
work [20]. After executing ResNet and YOLO, they
both predict a probability vector as a final output.
Thus, if the probability exceeds the predetermined
threshold (i.e., a precision value), objects are identi­
fied and classified. However, the fundamental differ­
ence between the two is that YOLO (for being a detec­
tor) goes beyond just classifying objects. It takes the
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Fig. 1: Main differences between CPU and GPU architectures.

entire image as an input and learns the bounding box
coordinates and their class probabilities. This means
YOLO divides each image into a grid of S x S, and
each grid predicts N bounding boxes and their confi­
dence. The confidence reflects the accuracy (i.e., pre­
cision) of the bounding box and whether it contains an
object (regardless of its class). Therefore, these mod­
els have different workflows to achieve their tasks.

When a transient fault modifies one of the prob­
ability values in that vector (in ResNet case), coor­
dinates, or confidences (in YOLO case), the model
may significantly suffer from precision degradation
impacting the rank of the classified or detected object.
Thus, it can lead to a wrong prediction. Hence, the re­
liability evaluation and behavior characterization for
these DNNs are of importance.

2.2 Transient Fault
A transient fault is a temporary disturbance in low­
level components of a device (e.g., flip­flop or
SRAM) such as a GPU. As we demonstrated in
our previous work [14], a transient fault can pro­
duce three types of errors (1) Silent Data Corrup­
tions (SDCs), severely undermining system’s relia­
bility (i.e., wrong prediction); (2) Detectable Un­
correctable Error (DUE), leading to program’s exit
or hang without completing the current execution;
(3) the error is masked without having any effect
(Masked).

SDC errors are our primary concern in this study
because any original DNN algorithm cannot detect
them [9]. Hence, they can cause misclassification
or misdetection. Also, prior studies have shown that
transient faults can lead to significant performance
losses or accuracy drops [13]­[16]. SDCs are eval­
uated by comparing the injected output with an error­
free output version [12], [14].

2.3 Tested GPU Architectures
Since this paper focuses on investigating the re­
silience of low­level instructions, the specific archi­
tectures are necessary to be specified. NVIDIAGPUs
are programmed by Compute Unified Device Ar­
chitecture (CUDA), which is a programming model
and extended version of the C language that contains

both the host (i.e., CPU) code and device (i.e., GPU)
code [21]. NVIDIA GPUs, in general, have signif­
icantly different architectures compared to CPU ar­
chitectures, as illustrated in Fig. 1

As we are only concerned about the GPU part, it
is worth mentioning that the CUDA source code is
compiled with the NVCC, NVIDIA’s front­end com­
piler [22]. Then, NVCC translates code written in
CUDA into PTX (Parallel Thread Execution). Fi­
nally, the back­end compiler, PTX assembler (ptxas),
translates the PTX into machine code, which can then
be run on the CUDA processing cores [23]. PTX is
NVIDIA’s assembly and intermediate­level Instruc­
tion Set Architecture (ISA) that highly depends on the
GPU’s microarchitecture. Several microarchitecture
generations are available, such as Tesla, Fermi, Ke­
pler, Maxwell, Pascal, Volta, and Turing [24]. Each of
which has different compute capabilities and static as­
sembly instructions. At this point, the required notice
is that the PTX code is required to be translated into a
specific native­target hardware ISA before the actual
execution. Also, the propagation of low­level faults
is affected by microarchitectural divergences [15].

Therefore, specific microarchitectures should be
used for a particular study. In this study, we target
Maxwell and Pascal microarchitectures for two rea­
sons: (1) because they share the same ISA [24]; and
(2) they have been intensively used to accelerate deep
learning models [3], [12], [25].

2.4 Related Work
The reliability of DNN algorithms on GPUs against
soft errors has been widely studied. Unfortunately,
the existing selective software­based approaches have
been conducted at source code levels.

Santos et al. intensively analyzed and evaluated
the reliability of different DNN algorithms on differ­
ent GPUs [15]. Based on their analysis, the author
found that on an average of 76% of the GPU op­
erations for a DNN model are spent in matrix mul­
tiplications (MxM). Accordingly, they proposed a
solution based on Algorithm­Based Fault­Tolerance
(ABFT) to exploit the substantial utilization of MxM.
However, this solution is applied at a higher level
than the instruction level since it is an architectural­
independent technique. Further, this study evaluated
the vulnerability of Maxpooling layers and proposed
a solution to be applied at the layer’s level.

Hong et al. studied how soft errors in model pa­
rameters could affect the performance of the DNN
model [13]. They conduct this study by changing
the values of the parameters stored in a memory.
Their proposed methodology has been applied in six
DNN architectures. The authors demonstrate that the
DNNs have limitations against parameter perturba­
tions. They show that accuracy can drop by 99%.
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Table 1: Low­level static instructions used by both models,
grouped depending on their purposes.
LD_ST FP FxP Conv PR_CC Ctlr Misc
LDG FADD IADD LOP32I F2F PSETP BRA MOV
STG FADD32I IADD3 SHL F2I ISETP EXIT SEL

FFMA IADD32I SHR I2F FSETP JCAL S2R
FMUL ISCADD SHF I2I SSY
FMUL32I ISCADD32 XMAD SYNC
FCMP ISET RET
FCHK ICMP
MUFU LOP
RRO LOP3

In our previous works [14], [16], [26], we have an­
alyzed and evaluated DNN models’ reliability, from
two perspectives DNN kernel’s and layer’s levels,
to identify the vulnerable kernels and layers of the
DNN’s source code. By implementing our strategy,
we were able to determine the vulnerable portions
confidently. Accordingly, selectively hardened the
top critical portions (kernels or layers) to reduce po­
tential overheads.

From the above­reviewed works, we notice that
the fundamental difference between our work and its
prior counterparts is the evaluation level. All prior
studies apply their evaluation approaches “before” the
compilation of the source code, while we target the
PTX instructions, which “after” the compilation of the
front­end compiler (NVCC). Therefore, to the best of
our knowledge, our study is the first to characterize
the reliability of DNNs on GPUs from the instruction
level. We focus on low­level instructions to propose
a selection­based strategy that can guide designers
and developers to select the only vulnerable instruc­
tions for protection effortlessly. Hence, our strategy
would lead to even lower overhead. We validate our
methodology on image classifier (ResNet) and detec­
tor (YOLO) as our case studies.

3 Analysis Methodology
In this study, we aim to investigate the error resilience
of ResNet and YOLO by performing a comprehen­
sive fault­injection campaign into GPU’s low­level
instructions that execute these models. Hence, the
main objective of this study is to identify the vulner­
able instructions of each model.

3.1 Fault­injection Setup
To inject faults into NVIDIA’s GPUs (i.e., Maxwell
and Pascal architectures), we use a fault injector intro­
duced by NVIDIA, called SASSIFI [27]. It is worth
noting that SASSIFI allows researchers to choose
where to inject faults and what type of faults to be
injected, depending on the study the researchers will
conduct. These two parameters (i.e., where and what)
will form the fault model of our study.

For where to inject, two injection modes are avail­
able: Register file (RF) mode and Instruction Output

Table 2: The occurrence rate of the instruction groups.
Group LD_ST FxP FP PR_CC Ctrl Conv Misc
ResNet 3.56 56.08 4.52 8.85 3.50 7.11 16.38
YOLO 3.72 56.27 4.40 9.28 3.45 6.88 16.00

(IO) mode. In our study, as we plan to analyze indi­
vidual instructions’ resilience, we only need IO mode
to perform instruction output­level injections. Thus,
faults are injected in the output of the currently exe­
cuting instruction, which is randomly selected. The
purpose is to examine the probability that the desti­
nation register’s value or address (for the current in­
struction) is subjected to errors [27].

For what to be injected, SASSIFI provides sev­
eral bit­flip models (BFMs). We choose random­
value BFM because it represent both single and dou­
ble BFMs.

Once the above setup is finalized, we perform a
fault­injection campaign of 1000 injections at each in­
jection site with the given BFM. Then, we collect all
the experimentally­obtained results and compare each
with the model’s golden (original) result and record
the difference.

3.2 Instruction Groups
By implementing and profiling our two models
(ResNet and YOLO) on the Darknet framework with
SASSIFI, we found that each of them requires tens
of low­level static instructions to be executed. Each
of these instructions is used by thousands of threads
to become a dynamic instruction per run. Hence, it
is impractical to analyze every static instruction indi­
vidually. Instead, it is more practical to organize these
instructions into groups, then analyze and interpret the
common and anomalies.

It should be mentioned that SASSIFI provides
fixed instruction groups for evaluation, which are
common to every parallel application run on it. How­
ever, those groups do not provide any exclusive in­
sights about DNN algorithms, which have unique
characteristics distinct from traditional applications
[9], [10]. Therefore, we create our customized in­
struction groups based on the GPUmicroarchitectures
and models considered in our study. The grouping is
based on the purpose, where static instructions in the
same group achieve one larger purpose [24]. As listed
in Table 1, we distribute all the instructions used in our
models into seven groups (the first row of Table 1):
• Load and Store (LD_ST) instructions: Are used
to access memory elements for loading data from
or storing data to.

• Floating­point (FP) instructions: Are used to
execute Add and Multiply (MAD) operations,
specifically for operating on single­precision
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(a) (b)

Fig. 2: The vulnerability analysis of instruction group for (a) ResNet model and (b) YOLO model.

(32­bit) and fused or non­fused floating­point
numbers.

• Integer/Fixed­point (FxP) instructions: Are used
to execute Add and Multiply (MAD) operations,
specifically for operating on single­precision and
fused or non­fused integer numbers.

• Conversion (Conv) instructions: Are used for
special registers to convert a value with a partic­
ular type (i.e., FP or FxP) and length to another
value with a different type and/or length.

• Predicate Registers and Condition Code
(PR_CC) instructions: Are used to set special­
purpose registers. A predicate register (PR)
works as a mask to select active threads for
operations. That means instructions use PR to
determine whether the thread takes a branch or
not (i.e., conditional branch), and true or false.

• Control (Ctrl) instructions: Are used to consti­
tute the control flow of the given program (i.e.,
model), such as instruction dispatch units and
block/warp schedulers of the GPU.

• Miscellaneous (Misc) instructions: Are used for
special registers to achieve a particular task, such
as data movement instruction. They hold a few
special values, such as ThreadIdx.x and Block­
Idx.

3.3 Instruction Vulnerability
To implement our methodology, we propose a tech­
nique, Instruction Vulnerability Factor (IVF), to
quantify the impact of a fault in the instructions that
are used by each model. IVF is the probability of a
fault in an instruction to affect the model’s computa­
tions. The average IVF value is calculated for every
static instruction used in the DNN algorithm.

As shown by [28], regardless of the GPU archi­
tecture used, the error rate always depends on the
executed code. Therefore, it is reasonable to in­
vestigate the error resilience of image classification

(ResNet) and object detection (YOLO) models from
an instruction­level perspective.

4 Results and Analysis
Following the methodology demonstrated in Section
3, we report and analyze the experimentally obtained
results in this section. To present a detailed analysis
of the targeted models, we separately analyze the in­
struction groups’ vulnerability, SDC criticality, and
input dependency.

4.1 Instruction Groups Analysis
As introduced in Section 3.3, IVF can be used to cal­
culate the overall error probability of a given model
from an instruction perspective. First, we show each
instruction group’s occurrence rate, the percentage
that the group contributes to the entire model’s exe­
cution. Second, we present the error probability of
each group.

For the instruction occurrence analysis, Table 2
lists the occurrence rate of all instruction groups for
ResNet and YOLOmodels. By looking at Table 2, we
observe that the two models have roughly the same
distribution rates for all instruction groups. The rea­
son is that even though the two models have differ­
ent computing characteristics (classification vs. ob­
ject detection), and also YOLO has more layers (107)
than ResNet (69). However, there is no significant
difference in their central structure. They follow the
same structure, which is a series of convolution op­
erations interleaved with Residual operations. There­
fore, it is reasonable for the two models to share al­
most (99%) the same static instructions. Neverthe­
less, this does not mean injecting faults into these
models would also lead to the same trends because
the sensitivity of each lies behind their prediction se­
mantics. This is explained in the next subsection.

Major observations for the occurrence rates are re­
ported as follows:

FxP instructions contribute to the most signifi­
cant percentage of the occurrence rate (at least 56%).
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(a) Error­free prediction (b) Condition one (c) Condition two
Fig. 3: YOLOmeeting different conditions for error criticality: (a) YOLOmet no condition (predicted normally), (b) YOLOmet condition
one (the number of the objects unmatched), (c) YOLO met condition two (the labels of the detected objects are different).

This is due to the parallelism in the GPU architecture,
which has been built around the concept of Single In­
struction Multiple Thread (SIMT) fashions (see Fig.
1). Many ALUs are utilized per fetching [29]. While
FP instructions also fall under the same parallelism
rule that FxP follows, they show one of the lowest oc­
currence rates (no more than 4.52%). This ultimately
depends on the program (i.e., model) being executed.
ResNet and YOLO use integer operations more often
than floating­point ones.

Ctrl and LD_ST instruction groups have the small­
est percentage of occurrence, respectively, at most
3.49% and 3.72%. For Ctrl, by looking at Fig. 1,
we find that GPU’s control unit occupies only a small
portion of the hardware area. Thus, GPUs inherently
have a tiny number of control instructions. For the
LD_ST group, GPUs have relatively less memory ac­
cess in order to reduce memory transactions and, thus,
hide memory latency [29].

PR_CC instruction group occurs more than twice
of LD_ST andCtrl groups (at least 8.85%). EachGPR
instruction can be predicated if it has active threads.
This means instructions use PR to determine whether
a thread takes the branch or not (i.e., conditional
branch), and true or false. Moreover, PR_CC can be
an integer, floating­point, or condition code. There­
fore, their rates are relatively higher than in LD_ST
and Ctrl.

For the error analysis, we injected a total of 10,000
faults into eachmodel, observing the average of 2,687
and 1,543 SDCs from ResNet and YOLO, respec­
tively. The disruption of various low­level instruc­
tions causes these SDCs. Therefore, we use IVF (our
measurement unit) to measure the error percentage of
each instruction group. As shown in Fig. 2, IVF val­
ues are presented for DUE, SDC, andMasked for both
models.

By looking at Fig. 2, for both models, SDC errors
aremore likely to occur thanDUE errors. For ResNet,
26% of the total injected faults result in SDCs, while

YOLO produces 15% SDCs of total injected faults.
An interesting observation is that LD_ST and FP are
among the lowest occurrence rates, respectively, no
more than 3.72% and 4.52%. But, they show the high­
est rates of SDC in bothmodels, where LD_ST andFP
groups produce about 9% IVF in ResNet and 7% IVF
in YOLO.

These values make these two instruction groups
are the most vulnerable ones amongst all groups. For
LD_ST, this occurs due to the working mechanism of
DNNs, in which data is massively loaded from the
previous layer to the current layer, and also the pro­
cessed data is stored again in the memory (per layer).
Considering the number of layers per model and the
number of filters (32 up to 256) per layer, we note
that an enormous amount of Load and Store instruc­
tions are required. For FP, to maintain the model’s
precision, data stored in the image (matrix) and filters
(also matrices) are typically represented in floating­
point formats. This means that many floating­point
(FP) operations are required.

The most noticeable difference between the two
models is that when faults are injected into PR_CC
instructions. ResNet is likely to generate a consider­
able amount (0.06% IVF) of SDCs with this instruc­
tion (see Fig. 2a). YOLO, on the other hand, tends to
mask the vast majority (0.17% IVF) of errors injected
into this instruction group, where only significantly
less (0.01% IVF) SDCs are produced (see Fig. 2b).
The reason why YOLOmasks errors with PR_CC in­
jection is as follows: although YOLO takes the entire
image as an input (the same as ResNet), it divides the
image into grids. Then, image classification and lo­
calization are applied to each grid. Last, it predicts
the bounding box coordinates and their correspond­
ing class probabilities for objects (if there is any) [19].
Thus, there will be regions (i.e., grids) in the image
which do not contain any objects. Therefore, faults
injected in PR_CC are mostly masked. This is not the
case with ResNet since it considers the whole image
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(a) (b)

Fig. 4: SDC criticality analysis for (a) ResNet model and (b) YOLO model.

in its predictions.
The two models show the same trends in the DUE

errors, where 12% of the injected faults produced
DUEs and, more importantly, about 92% of the DUEs
in the entire model caused by FxP. One instruction
group responsible for 92% of the overall IVF is worth
looking at. We believe that this finding can help
GPU designers to consider putting a watchdog for
FxP units to resolve DUE’s problem.

In conclusion, LD_ST and FP instructions are the
most vulnerable ones against SDCs. For LD_ST,
due to the vast data transmission among layers, FP
instructions are susceptible due to the sensitivity in
the model’s precision. Accordingly, only instructions
with the highest IVF values are nominated for pro­
tection to avoid overheads that stem from mitigation
techniques.

4.2 SDC Criticality Analysis
As demonstrated in the previous subsection, only
LD_ST and FP were found to be the most vulnera­
ble instruction groups to SDCs in both models. SDC
errors can cause incorrect predictions. However, not
all SDCs lead to failure in classification or object de­
tection systems. Therefore, it is necessary to quantify
whether the obtained SDC is critical (i.e., causes mis­
classification or misdetection). In this subsection, we
analyze the criticality of SDCs and classify them into
critical and non­critical SDCs.

For ResNet, to differentiate between critical and
non­critical SDCs, we consider only one condition.
If and only if the error propagated, reached the model
output, and altered the probabilities vector. Thus, it
changed the class’s rank. Then, it is categorized as
a critical SDC. As a result, it incorrectly predicts a
different object rather than the one that appears in the
image (e.g., a bird instead of a truck).

For YOLO, we defined three conditions for criti­
cal SDC: (1) If the number of objects in the error­free
and injected versions is different; (2) condition one

is false, but the name of the objects are different; (3)
conditions one and two are false, but the top­ranked
object’s coordinates have been altered by +/­5% com­
pared to the error­free version. These conditions are
demonstrated in Fig. 3. In the error­free prediction,
YOLO detected six objects (two persons, two cars,
a bus, and a truck). Thus, the model correctly pre­
dicted all objects (Fig. 3a). When it met condition
one, it only detected three objects while missing three
significant objects (Fig. 3b). When YOLO met con­
dition two, five of the labels attached to the objects
are different (Fig. 3c). Indeed, it “incorrectly” de­
tected objects do not even exist in the image. We did
not show condition three’s image output due to the pa­
per’s space limit. This condition adjusts the location
of “the colored rectangle surrounding an object,” the
top­ranked object (the green rectangle in this case) by
+/­5%.

Fig. 4 shows the IVF values of the critical and non­
critical SDCs for the instruction groups, both mod­
els. For ResNet (Fig. 4a), we observe that 55% of the
SDCs (for the whole model) were critical, and 51% of
them caused be LD_ST and FP groups. For YOLO
(Fig. 4b), 91% of the SDCs (for the whole model)
were Critical, and 87.3% of them caused be LD_ST
and FP. We can conclude that YOLO is much more
sensitive to SDC changes than in the ResNet case.
The reason behind these occurrences is the number of
metrics (conditions) used to identify whether the error
is critical or not. For ResNet case, only one metric is
required to cause misclassification, while for YOLO,
three metrics are required. Thus, having three choices
to decide is not the same as having only one choice.

4.3 Input­dependency Analysis
The model’s input (i.e., image) can have various
characteristics (i.e., single or multiple objects within
the same image) and different qualities (i.e., color,
brightness, focus, sharpness, and contrast). Besides,
ResNet and YOLO handle images differently. There­
fore, in this subsection, we investigate whether the
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(a) (b)

Fig. 5: SDC input­dependency analysis for different (ten) images to compare IVF values of the instruction group for (a) ResNet model and
(b) YOLO model.

model’s reliability has a dependency on the input sam­
ple. In other words, how these models react when fed
with different inputs in the presence of soft errors?
For this investigation, we performed fault injection
for ten different images with each model. Fig. 5 de­
picts the input­dependency analysis for both models.

As a confirmation of the previous findings in Sec­
tion 4.1 and 4.2, even with different images, LD_ST
and FP instruction groups produce the highest critical
SDC rate for both models. However, we note a vari­
ance regarding the input’s dependency. By taking a
close look at Fig. 5a, we can find that FP produces
1.6% IVF “critical” with image number 2, while it
produces 3.11% IVF with image number 7 (doubled
the amount of image number 2). Despite we only
focus on critical SDCs, even the percentage of non­
critical errors considerably varies. This means that
ResNet depends on the input image in its reliability.
On the other hand, YOLO seems very consistent in
its error rate with all different inputs (see Fig. 5b).
We believe that the same causes that led to critical
SDCs are applied to this analysis. Therefore, even if
the input is different for the YOLO case, the number
of critical errors would remain significant because the
probability of meeting one of the three conditions is
high. We can conclude that YOLOmaintains its error
criticality rate with different inputs due to the detec­
tor’s increased number of metrics. Whereas ResNet
depends heavily on the input image since only one
metric is measured.

5 Conclusion
In critical domains, the DNN model’s performance
cannot be compromised due to its reliability. Selec­
tive software­based mitigation techniques are com­
monly used to mitigate the impact of soft errors in
DNNs. However, these methods still introduce un­

desirable overheads since the evaluation is performed
at higher levels, which is more harmful if the latency
is a determining factor in these systems.

In this study, we proposed a methodology to ana­
lyze the reliability of DNN algorithms run on GPUs
from the lowest (instruction) level. For this method­
ology, we proposed a technique, Instruction Vulner­
ability Factor (IVF). We validated our methodology
on image classification (ResNet) and object detec­
tion (YOLO) models. We have conducted an in­depth
analysis of the given models to characterize their be­
haviors against soft errors. Our strategy demonstrates
that only LD_ST and FP are the most vulnerable in­
structions. Further, YOLO is much more sensitive to
SDC changes than in the ResNet case. Also, ResNet
depends on the input image in its reliability, while
YOLO is likely independent.

This methodology provides an opportunity for
the designers and developers (who concern about
DNN’s reliability) to identify the vulnerable instruc­
tions. Consequently, the trade­off can be balanced be­
tween the use of mitigation solutions and model per­
formance. The proposed methodology is promising
to be valid for other DNNs algorithms on NVIDIA
GPUs.

As future work, we plan to (1) extend our method­
ology to other DNN frameworks than Darknet; (2)
consider other architectures than Maxwell and Pas­
cal; and (3) discover selective hardening techniques
based on our methodology.
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