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Abstract: - Particle systems present challenges that have warranted and attracted large amount of attention in both 
usage and optimization. The use of particle systems has driven complexity of simulation to greater needs of data 
size and accuracy. Optimization, thus, has become a moving target for researchers to reach. Studies show that 
multithreading has potential to make the simulation efficient while optimizing complex and data-intensive 
particle systems. The CUDA (Compute Unified Device Architecture) works with programming languages such 
as C/C++ and Python to make multithreaded parallel programming easier. This work serves to analyze particle 
systems using CUDA and provide an understanding about how various parameters such as the particle count and 
grid size influence the simulation performance. We improve the CUDA particles demo by Nvidia using our 
Python scripts and study the impact of particles and grids on execution time and throughput. Experimental results 
indicate that a required level of performance can be achieved by varying the number of particles, the size grids, 
and the orientation of grids as needed. 
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1 Introduction 
Particle systems provide simulation of real world 
events at both macro and micro scales. Particle 
systems have been used as a technique to simulate 
various effects, models, and game physics [1]. 
Particle systems were first introduced in a 1982 Start 
Trek movie. Particle systems represent collections of 
multitude of small particles, which move then die 
over time. Particle systems are most commonly used 
in video games but are also used in animations and 
arts [2]. Animators such as Pixar use it as an effective 
tool, which artists utilize to create realistic physical 
effects such as water, smoke and fire effects. In their 
movies, Pixar used millions of particles, where the 
more particles used, the closer it gets to real physics. 
These particle calculations, and keeping track of each 
individual particle out of the multitude of particles in 
the particle system, have formed a workload that may 
create issues with some computer hardware/software. 
Unity, a Danish-American video game software 
development company, uses particle systems when 
desiring to create some special physical effects [3]. 
Dynamic objects such as water are difficult to create 
through sprites or meshes; sprites and meshes are 
better for solid objects. Optimization of particle 
systems help creators save time by processing their 
work quicker without sacrificing accuracy. 

Simulation assists individuals in sciences, 
entertainment, businesses, and research and creates a 
more accurate and reliable approximation of their 
respective needs [4]. The study of optimizing a 
system provides an insight of how the system works 
and the progression of advancements in the related 
fields. Optimization techniques make use of 
calculation reductions, data savings, and better 
approximations to result in a better and faster 
processing time. Particle Swarm Optimization [5] is 
an optimization method, based on particle systems, 
which iteratively attempts to improve a candidate 
solution with respect to a quality measure. In this 
work, we study one such optimization technique and 
examine its improvements, drawbacks, and 
implication for future advancements. 
The CUDA (Compute Unified Device Architecture), 
a parallel computing platform and an Application 
Programming Interface (API), works with 
programming languages such as C/C++ and Python 
to make graphics processing unit (GPU)-assisted 
multithreading easier. OpenCL, another API, is 
designed to be an open platform agnostic standard. 
CUDA is a proprietary Nvidia property that performs 
multithreaded parallel programming on Nvidia GPU 
cards. Therefore, CUDA is expected to perform 
better because CUDA/GPU is a complete in-house 
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solution. In [14], Nvidia reports a top simulation 
performance of 64K colliding particles in 460 frames 
per second on an Nvidia Fermi GPU. 
In this paper, we optimize a particle system on a 
CUDA platform using Python. The goal of this 
optimization effort is to further performance of 
particle systems and identify system properties such 
as particle count and grid size on the performance 
(processing time, and throughput) of particle 
systems. 
This paper is organized as follows. Section 2 reviews 
related published articles. Section 3 describes the 
algorithm employed and the experiments conducted. 
The experimental results are presented and discussed 
in Section 4. Finally, Section 5 concludes the paper. 
 
 
2 Literature Survey 
Particle systems are used to model fuzzy objects to 
represent changes of form, motion, and dynamics [1, 
3]; the particles of such a system may affect movie 
animations [2, 21] and 3D games [22]. 
Particle swarm optimization (PSO) is a population 
based stochastic optimization technique developed 
by Dr. Eberhart and Dr. Kennedy in 1995, inspired 
by social behavior of bird flocking or fish schooling 
[5]. Various applications of POS in fluid simulation, 
virtual reality, and computer animation show 
promises [6-8]. POS has gained distinction in the 
recent years due to its ease of application in 
unsupervised, complex problems that cannot be 
solved using traditional deterministic algorithms [9-
10]. 
In the realm of deep learning, two popular deep 
learning APIs PyTorch and TensorFlow both only 
support CUDA for GPU acceleration [11]. Part of the 
reason for PyTorch only supporting CUDA in the 
mainline instead of OpenCL seems to be Advanced 
Micro Devices’ (AMD) push for another computing 
language API: ROCm (Radeon Open Compute), 
which PyTorch AMD (an official branch of PyTorch) 
runs on. The classic XKCD comic regarding 
standards comes to mind. There was no official 
statement from Google on why TensorFlow only runs 
on CUDA for the GPU branch. A prior study utilizes 
the Adiabatic QUantum Algorithm (AQUA), which 
is “a Monte Carlo simulation of a quantum spin 
system written in C++” [12]. The Monte Carlo 
simulation itself is another naturally parallel problem 
as it is the averaging of many random guesses, so it 
is a kind of analog to the Mandelbrot set generator. It 
is found that CUDA performs better when 
transferring data to and from the GPU and that 
CUDA’s kernel execution is also consistently faster 

than OpenCL, despite the two implementations 
running nearly identical code [12, 13]. 
Historically, various applications have been studied 
on shared memory multiprocessors, GPUs, and 
message passing systems, and their performance 
evaluated on these systems [17, 18, 19, 20, 25, 26, 
27]. Uberflow [23] is a GPU-based particle engine 
featuring particle advection, sorting, and rendering. 
Drone [24] studied real-time particle systems on the 
GPU including storage requirements, integrating the 
motion equations with Euler integration and Runge-
Kutta methods, saving the particle states including 
position and velocity using double buffering, and 
changing particle behaviors as a result of changing 
the velocity or position of a particle. Particle systems 
were also implemented on the GPU to simulate 
hundreds of flocking spaceships, featuring collision 
avoidance, separation, cohesion, and alignment. 
Cohesion drives the spaceships to the common 
(position) center, while alignment drives the 
spaceships to the common velocity, where 
“common” is calculated by averaging positions or 
velocities. 
 
 
3 Algorithm and Experimentation 
CUDA, developed by Nvidia, allows developers to 
access GPU cards for extensive parallelization of 
their code. Nvidia provides code examples making 
use of the CUDA interface. One such example is 
about particles in a controlled environment with 
various parameters [14]. In this work, we explore 
such a particle system using CUDA. Due to the 
nature of particles being separate entities operating 
on well-defined physical properties, parallelization is 
a prime candidate for optimization of any system. 
The algorithm being discussed will make use of this 
advantage for great performance increases in the 
simulation while making full use of the GPU. 
Parallelization will be handled through the 
organization of particles into grid spaces. These grid 
spaces will hold particles that will likely interact with 
each other, but likely not with others outside. 
 
3.1 Algorithm Considered  
The discussed and tested algorithm, using the 
aforementioned CUDA example code by Simon 
Green [14], provides a framework and environment 
for testing various configurations and needs with 
their resulting performance metrics. The system 
being discussed, while processing particles 
individually for final updates, particles are 
approximated together in grids in order to limit the 
needed number of comparisons and thus reduce time 
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to update. Only particles sharing the same grid space 
are checked against each other for collision [14, 15]. 
This collision check happens with a simple check 
comparing the distance between two particles against 
the sum of their radii, as given P1 and P2 in Fig. 1, 
where P1 and P2 are three-component vectors 
representing points in three dimensional space, with 
radii R1 and R2, respectively. In 3D space as 
commonly used in Engineering and Science 
disciplines, collision check between P1 and P2 is 
conducted using Equation (1), as follows. 
 
√(𝑃1𝑥 − 𝑃2𝑥)2 + (𝑃1𝑦 − 𝑃2𝑦)2 + (𝑃1𝑧 − 𝑃2𝑧)2 2  

                   < (𝑅1 + 𝑅2)                                         (1) 

 

 
Fig. 1: Collision check between two particles 

Equation (1) is derived from the Pythagorean 
theorem and the Euclidean distance formula [16]. A 
true state of Equation (1) indicates intersection (i.e., 
collision) of particles, while a false state indicates no 
collision. It is important to understand that an 
optimization to the formula in Equation (1) by 
removing the square root, as shown in Equation (2), 
is needed for better performance. 
 
(𝑃1𝑥 − 𝑃2𝑥)2 + (𝑃1𝑦 − 𝑃2𝑦)2 + 
                  (𝑃1𝑧 − 𝑃2𝑧)2    < (𝑅1 + 𝑅2)2              (2) 
 
Equation (2) provides a less computationally 
expensive early exit before performing more 
expensive collision resolution, especially when 
multithreaded parallel computing is used.  
The simulation environment constructs a 2 x 2 x 2 
cube area centered at the origin (0, 0, 0) and proceeds 
to fill it with the given number of particles in the 
specified arrangement. Arrangements can be in either 
an organized grid spaced evenly among the particles, 
or a random location for each particle within the 
cube. The cube is then divided in memory into grid 
cells where each grid cell can hold a small number of 

particles (the cell size should be ideally around the 
size of a few particles). Since each particle is in a 
three-dimensional space with a three-dimensional 
volume, a particle at minimum will be in one grid 
cell, but can be at maximum in eight grid cells (by 
being placed in their intersection points). Each grid 
cell can then keep a reference to each cell in their 
region and only process updates on these particles. 
Updates are able to run in parallel and brought 
together at the end of the total batch set. Resolution 
of resulting collisions is handled in this step using 
digital elevation model (DEM) data. This allows 
particles to transfer “energy” between each other 
until the collisions in the local system have 
dissipated, and participants come to rest. 
 
3.2 Experimental Details  
For this study, the CUDA particles demo [14] by 
Nvidia is modified and managed to create a 
benchmark. The data measuring performance 
changes because of the multithreaded algorithm 
properties. The properties of the particle system 
configuration are modified to measure results such as 
processing time and throughput, and information 
about the algorithm. 
The existing code in the particles demo provides a 
large amount of configuration and a platform for 
performing tests. However, we modify the code to 
allow for additional testing on the particles 
simulation. The main improvement is to allow for an 
extra command line argument for benchmarking that 
would set the starting organization of the particles. In 
the original demo, benchmark mode would default 
particle positions to an organized grid that chooses an 
equal distance from neighboring particles. The demo 
code is also modified to allow for a random 
positioning of particles. Experiment data is collected 
using an Nvidia GeForce 940MX GPU card with 384 
CUDA cores. 
 
3.2.1 Experiment Automation Script   

In order to facilitate the increased needs and provide 
easy collection of data, a Python script is developed 
to wrap calls to the benchmark demo and to pass the 
correct configuration values. The Python script 
allows for: 

• A variable number of particles to simulate in 
the system at one time. 

• The grid size to divide into each axis. For 
example, a grid of size 24 would be 24 x 24 x 
24 = 13824 total grid cubes. 

• A type of simulation (GRID or RANDOM) to 
run. The type determines the starting 
orientation of particles in the system as 
discussed earlier. 

P1 

R1 

P2 

R2 
X 

Y 

Z 

P1 

X 
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• A number of iterations to run the simulation for 
the benchmark. 

• A number of test runs with the same 
configuration values. The average values of 
each run are considered and calculated. 

 
Parameters used in Test Run 1: 

• Particle Amount: varied from 8192 to 65536 
• Grid Size: 64 
• Arrangement: GRID 
• Iterations: 300 
• Number of trials: 100 
 

Parameters used in Test Run 2: 
• Particle Amount: 32768 
• Grid Size: varied from 32 to 256 
• Arrangement: GRID 
• Iterations: 300 
• Number of trials: 100 
 

Parameters used in Test Run 3: 
• Particle Amount: varied from 8192 to 65536 
• Grid Size: 64 
• Arrangement: RANDOM 
• Iterations: 300 
• Number of trials: 100 
 

Parameters used in Test Run 4: 
• Particle Amount: 32768 
• Grid Size: varied from 32 to 256 
• Arrangement: RANDOM 
• Iterations: 300 
• Number of trials: 100 
 

Test run 3 is an exact copy of Test run 1 except that 
the particle arrangement is RANDOM instead of 
GRID. Similarly, Test run 4 is an exact copy of Test 
run 2 except that the particle arrangement is 
RANDOM instead of GRID. Test runs 1 and 3 vary 
the particle count while keeping the grid size fixed at 
64. Test runs 2 and 4 vary the grid size while keeping 
the particle count fixed at 32768. 

 

3.2.2 Experiment Questions   

The experiments conducted in this work are to find 
answers to four questions, each one is important for 
its own implication. 
 

The first question: How the number of particles 
being simulated in the benchmark would affect the 
processing time? What implication would it have? 
This question has the possibility to display the 
improvements of multithreading in particles 
simulation. 

The following hypothesis seek to give answers to the 
question: If the number of particles is increased, then 
the time to process all computations scales linearly. 
This is because, while multithreaded, all cores are 
used and threads are processed in all cores 
simultaneously. 
 

The second question: What difference would the 
grid size make on the performance of the system? 
This question is very interesting because this is the 
main optimization that the demo focuses on. The grid 
size determines the number of checks against the 
neighboring particles. The grid size also determines 
how the particles are organized in memory. Thus, 
results could be used to comment on the data access, 
data manipulation, and overall performance. 
The following hypothesis seeks to give answers to the 
question: If the grid size is increased, the time to 
process all computations decreases. This is because, 
in case of an increased grid size, there are fewer 
collisions to be removed from the system resulting in 
a breakdown of the optimization algorithm. In case of 
a decreased grid size, the time to process increases 
because there are more particle comparisons to be 
made each update. 
 

The third question seeks to answer what impact 
would it have on the throughput of the system while 
changing the number of particles and the size of grid. 
The throughput measures the thousands of particles 
that must be processed per second in the simulation. 
A higher throughput should be able to give a better 
indication of the efficient processing of the system 
and efficient use of the hardware. 
The following hypotheses seek to give answers to the 
question: If the particle count or grid size is varied, 
then the throughput will change linearly with the 
change of each variation, because the throughput is 
directly proportionate to the amount of processed 
particles (a larger grid size should have a higher 
particle count) at that time. 
 

The fourth question is about the grid arrangement, 
whether the results would differ when conducted 
with a GRID or RANDOM orientation at the starting 
point. If the results differ, how? The GRID 
orientation should provide a consistent and overall 
stable result, while a RANDOM orientation of 
particles could result in more complex and 
unpredicted ways (when compared with the results 
from the GRID orientation). 
The following hypothesis seek to give answers to the 
question: If the processing times due to a random start 
and a grid start are compared, then a random start 
should require more time to process, on average, 
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because a random start should create compact groups 
of particles that requires more iterations of the DEM 
solving than a grid start. 
 

 

4 Experimental Results & Discussion 
This section serves to present the experimental 
results and then attempts to reason why they 
occurred, and what could possibly be learned from 
the information. Numbers reported are averages of 
100 runs or trials. 
 

4.1 Number of Particles  
The processing time obtained by changing the 
number of particles used in the simulation is as 
expected on the surface, i.e., the time increases on 
higher particle counts and decreases on lower ones, 
as shown in Fig. 2, for both GRID and RANDOM 
orientations. The grid size is fixed at 64. The GRID 
arrangement slightly outperforms the RANDOM 
arrangement with a particle count of 32768, or 
greater. 
 

 
Fig. 2: Processing time due to particle count. 

 
 
However, a deeper analysis shows that there must be 
some more information to extract from the results. As 
the particle size increases, the time to process does 
not linearly increase with the particle size. Therefore, 
in the case of ~16K particles, the time to process was 
0.00137 sec. each update, but with ~32K particles, 
the time to process was only 0.00216 sec each update. 
A doubling of the particles would possibly indicate a 
doubling of the processing time (minus overhead of 
each update setup), but this was not the case, instead 
the result is about ~58% increase in processing time. 
This proportional gap between processing times for 

doubled particle size seems to get smaller as particle 
size increases. The interesting trend of this data 
seems to indicate that multiplicative growth in 
particle count causes only linear (and not 
multiplicative) growth in processing time. 
Another interesting trend is the change in throughput 
at low particle count in a GRID or RANDOM 
arrangement. The grid size is fixed at 64. The 
throughput increases from a low point when the 
particle number is increased as shown in Fig. 3 (grid 
size =64). This may be due to more difficulty in 
parallelizing the lower particle amounts, or possibly 
a limitation of the algorithm used. 
 

 
Fig. 3: Throughput due to particle count. 

 
 

4.2 Size of Grid  
The grid size, starting at 32 and moving up to 256, 
shows a decrease in processing time for both 
orientations, as shown in Fig. 4, with the particle 
count fixed at 32764. Before size 128, the processing 
time decreases sharply as the grid size increases. Past 
grid size 128, the processing time remains nearly the 
same, to a degree. Note that as the grid size increase 
from 32 to 256, the processing times drops by about 
4% for the GRID arrangement case, and by 
approximately 2% for the RANDOM arrangement 
case. 
The behavior of the processing time with the grid size 
128 or higher could be due to the higher grid size 
spreading the particles away from each other and 
thereby reducing the number of collisions computed, 
as only particles sharing the same grid space are 
checked against each other for collision. When the 
particles are positioned far from each other, they are 
also checked for collision. However, given that the 
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particles are far from each other, computations 
related to collisions, such as updating the velocities 
and direction of colliding particles, are skipped, 
thereby reducing the execution time.  
 

 
Fig. 4: Processing time due to grid size. 

 
The grid size to throughput results are demonstrated 
in Fig. 5. The plots of Fig. 5 were obtained with the 
particle count fixed at 32764. In the GRID starting 
orientation, the throughput flattens to a consistent 
value for the higher grid sizes (128 and above). In 
case of the RANDOM orientation, the throughput 
increases steadily with the grid size as would have 
been more expected. These results can be explained 
by the predictable nature of the grid resulting in even 
distribution of particles, while random would result 
in not so even distribution of particles in the grids, 
thus a less optimal distribution of particles. 
  

 
Fig. 5: Throughput due to grid size. 

Moreover, there seems to be higher parallelism 
taking place in the GPU with larger grid sizes 
resulting in lower processing time and higher 
throughput, until the grid size reaches 128-256 at 
which point the number of particles processed per 
second starts to saturate. 
 

4.3 Orientation of Particles  
In the experiments, the particles’ starting orientation 
is varied between GRID and RANDOM 
arrangements. It is observed, in Fig. 2, that the 
processing time consistently increases when the 
particle count increases from ~8K to ~64K for both 
orientations. However, for both orientations, the 
processing time decreases sharply when the grid size 
increases from 32 to 128 and remains about the same 
for higher grid sizes as shown in Fig. 3. 
From Figs. 3 and 5, the average throughput increases 
when either the particle count or the grid size 
increases, as expected. However, for the GRID 
arrangement, the average throughput seems to even 
out at grid size 128 and higher as illustrated in Fig. 5. 
Although more parallelism takes place at higher grid 
sizes, the fixed particle count dilutes the number of 
particles processed in parallel resulting in the 
flattening of the throughput curve starting with a grid 
size of 128.  
 
5 Conclusion 
Particle simulations are important for many modern 
applications including scientific research and 
exploration, where the data size and complexity is 
ever growing. As a result, particle simulations require 
constant improvement through more accurate 
simulation and higher particle count. The need for 
improved simulation has led to a constant demand for 
optimization of both hardware and software. Studies 
show that particle placement and organization in 
memory form one such optimization area that can 
provide large performance improvement. The 
improvement has shown the potential of parallel 
computing in the simulation for less time and more 
throughput. 
In this work, we study a particle system using CUDA 
Python that provides an understanding about how 
various parameters such as the particle count and grid 
impact on the simulation performance. According to 
the experimental results, both the processing time and 
throughput increase when the particle count increases 
from ~8K to ~64K. The uses of grids in particle 
optimization may reduce the processing time by 
checking and processing particle collisions against 
the immediately near ones. For a required 
performance, the grid size and arrangement can be 
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varied as needed depending on particle properties 
such as radius and collision response.  
We plan to study the impact of particle configuration 
variance on performance in one of our next 
endeavors. 
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