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Abstract: - The aim of this research is to apply the modified flower pollination algorithm (MoFPA) to the multiple 
vehicle routing problems (MVRP) with the time constraints. As one of the latest enhanced versions of the original 
flower pollination algorithm (FPA), the MoFPA utilizes the randomly switching probability for selection between 
local (self) and global (cross) pollinations in order to search for the better solutions and improve its search 
performance. In this paper, the MoFPA is applied to solve the MVRP problems with the time constraints based on 
the modern optimization approach. Ten standard MVRP problems with the time constraints consisting of 
approximately 100–500 destinations are selected and solved by the MoFPA. Results obtained by the MoFPA are 
compared with those obtained by original FPA, genetic algorithm (GA), tabu search (TS) and particle swarm 
optimization (PSO). Results reveals that the MoFPA can provide optimal solutions of all ten selected MVRP 
problems with shorter total distance than FPA, PSO, TS and GA, respectively. In addition, the execution time 
consumed by FPA and MoFPA are less than PSO, TS and GA, respectively. 
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1 Introduction 
In 2012, the flower pollination algorithm (FPA) was 
firstly proposed by Yang as the population-based 
metahueristic optimization search technique for 
solving both continuous and combinatorial, single-
objective and multi-objective optimization problems 
[1]. The FPA algorithm mimics the pollination 
behaviour of flowering plants in nature. The FPA 
algorithm was proved for the global convergent 
property [2]. Since 2012, the FPA has shown 
superiority to other popular metaheuristic algorithms 
including the genetic algorithm (GA) and particle 
swarm optimization (PSO) [1-3]. From literature 
review, the FPA has been successfully applied to 
solve various real-world engineering problems, such 
as economic/emission dispatch, reactive power 
dispatch, optimal power flow, solar PV parameter 
estimation, load frequency control, wireless sensor 
networks, linear antenna array optimization, frames 
and truss systems, structure engineering design, 
multilevel image thresholding, travelling 
transportation problem, control system design and 
model identification. Development and significant 
applications of the FPA have been reviewed and 
reported [4, 5]. 

Recently, many variants of FPA algorithms have 
been developed by modification, hybridization and 
cooperation manners in order to enhance its search 
performance for the complex optimization problems 
[5]. One of the modified flower pollination 
algorithms called the MFPA [6]. The MFPA 
hybridized the original FPA with the clonal selection 
algorithm (CSA) in order for generating some elite 
solutions. The binary flower pollination algorithm 
(BFPA) was developed for solving discrete and 
combinatorial optimization problems [7]. Another 
significant modification was proposed as the 
modified global FPA (mgFPA) [8]. The mgFPA was 
developed to utilize features of feasible solutions by 
extracting its characteristics, and utilize the 
exploration process to search for the optimal solution 
in specific search spaces [8]. One of the latest 
enhanced versions of the FPA is the modified flower 
pollination algorithm (MoFPA) proposed in 2020 by 
Pringsakul and Puangdownreong [9]. In the MoFPA 
algorithm, the switching probability for selection 
between local and global pollinations is changed 
from the fixed manner used in the original FPA to the 
random manner according to the pollination 
behaviour of flowering plants in nature. The MoFPA 
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was tested against several standard benchmark 
functions for global minimization. The superiority of 
the MoFPA to the original FPA for function 
optimization has been reported [9]. Moreover, the 
MoFPA has been completely applied to design the 
proportional-integral-derivative-accelerated (PIDA) 
controller for the temperature control system [10]. 

In this paper, the MoFPA [9, 10] is applied to 
solve the multiple vehicle routing problems (MVRP) 
with the time constraints based on the modern 
optimization in order to find the set of routes with the 
shortest total distance for overall minimum cost 
serving all the given demands by the fleet of vehicles. 
The usefulness of the study can be utilized in 
practical applicability for any real-world MVRP 
problem. This paper consists of six sections. After an 
introduction is given in section 1, the original FPA 
and MoFPA algorithms are illustrated in section 2. 
The MVRP models and details of ten selected 
standard MVRP problems are described in section 3. 
Experimental results of the MoFPA-based MVRP 
problem optimization are performed in section 4. 
Discussions are given in section 5. Finally, 
conclusions and future research are provided in 
section 6.   

 
 

2 FPA and MoFPA Algorithms 
2.1 FPA Algorithm 
As proposed by Yang in 2012 [1], the original FPA 
algorithm mimics the pollination behaviour of 
flowering plants in nature for survival and 
reproduction. The flower pollution in nature can be 
divided into two categories (self and cross 
pollinations) with two types of pollinator (biotic and 
abiotic pollinators) [11-13]. Self-pollination occurs 
from pollen gamete of the same flower or different 
flowers of the same plant. It usually occurs within 
short distance by abiotic pollinators such as wind and 
diffusion in water. Cross-pollination occurs from 
pollen gamete of the different flowers of different 
plants. It usually occurs at long distance by biotic 
pollinators such as insects and animals.  

In the FPA algorithm, self-pollination with abiotic 
pollinators is regarded as the local pollination by 
using the random walk to search for the feasible 
solutions in local search spaces. With the local 
pollination, a new solution xi (flower or pollen 
gamete) can be calculated by (1), where xj and xk are 
randomly selected solutions in the current iteration t 
and  stands for a random with the uniform 
distribution that can be calculated by (2), where a and 
b are lower and upper bounds of random.   
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Cross-pollination with biotic pollinators is 

regarded as the global pollination by using the Lévy-
flight to search for the feasible solutions in global 
search space. With the global pollination, a new 
solution xi can be calculated by (3), where g* is the 
current best solution and L is a random with the Lévy-
flight distribution that can be calculated by (4), where 
() is the Gamma function as stated in (5). 
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In the original FPA algorithm, selection between 

local and global pollinations is controlled by the 
switch probability p. The values of p are 
recommended to be fixed at any value between 0.15–
0.25 [1-3]. The original FPA algorithm can be 
summarized by the pseudo code as shown in Fig. 1. 

 

Define the objective function f(x), x = (x1, x2, , xd)
Define the search spaces W
Randomly initialize a population of n flowers within W
Find the best solution g* among the initial population via  f(x) 
Define a switching probability p  [0, 1] (p is fixed)
Define t = 1 and maximum generation (Max_Gen)
while (t < Max_Gen)
       for i = 1 : n (all n flowers in population)
            Random rand  [0, 1] (not fixed)
            if rand > p (global pollination)
                  Calculate L with Lévy-flight distribution from (4)-(5)
                  Get new solutions from (3)
            else (local pollination)
                  Calculate  with random walk from (2)
                  Get new solutions from (1)
            end if

            Evaluate new solutions via  f(x) 
            if f(x) < f(g*)
                  Update g* = x   
            end if

       end for

       Find and report the best solution g*

end while

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 
Fig. 1 Pseudo code of FPA algorithm. 

 
2.2 MoFPA Algorithm 
The MoFPA algorithm [9, 10] was proposed as one 
of the enhanced versions of the original FPA to 
improve its search performance. The MoFPA 
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algorithm utilizes the randomly switching probability 
for selection between local and global pollinations. 
This leads the opportunity of the global finding 
according to the flower pollination behaviour in nature.  

Regarding to the original FPA algorithm in Fig. 1, 
the condition of selection between local and global 
pollinations is rand > p, where rand  [0, 1] is 
random number drawn from a uniform distribution 
and p = 0.20 is a fixed value. If rand > p, the global 
pollination will be activated as shown in Fig. 2(a). 
Otherwise, the local pollination will be invoked. For 
the MoFPA algorithm, the condition of selection 
between local and global pollinations is changed to 
rand > randp, where rand  [0, 1] and randp  [pmin, 
pmax] are random numbers drawn from a uniform 
distribution. With a new selecting condition, if rand 
> randp, the global pollination will be activated as 
shown in Fig. 2(b). Otherwise, the local pollination 
will be invoked. The MoFPA algorithm can be 
represented by the pseudo code as shown in Fig. 3. 
The randp is recommended to be varied between 
0.50–0.75 [9, 10]. Although the modification in the 
MoFPA algorithm is very simple, it performs 
amazingly higher search performance than the 
original FPA [9, 10]. 

 

rand [0, 1]

0 1.00.2

p = 0.2
(fixed)

Local 
pollination

Global 
pollination

Random

rand [0, 1]

0 1.00.5

Global 
pollination

Local 
pollination

Random

randp [pmin, pmax]

(a) FPA

(b) MoFPA  
 

Fig. 2 Selecting conditions between local and global 
pollinations of FPA and MoFPA. 

Define the objective function f(x), x = (x1, x2, , xd)
Define the search spaces W
Randomly initialize a population of n flowers within W
Find the best solution g* among the initial population via  f(x) 
Define t = 1 and maximum generation (Max_Gen)
while (t < Max_Gen)
       for i = 1 : n (all n flowers in population)
            Random rand  [0, 1] (not fixed)
            Random randp  [pmin, pmax] (not fixed)
            if rand > randp (global pollination)
                  Calculate L with Lévy-flight distribution from (4)-(5)
                  Get new solutions from (3)
            else (local pollination)
                  Calculate  with random walk from (2)
                  Get new solutions from (1)
            end if

            Evaluate new solutions via  f(x) 
            if f(x) < f(g*)
                  Update g* = x   
            end if

       end for

       Find and report the best solution g*

end while

1
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19
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21
22
23

 
Fig. 3 Pseudo code of MoFPA algorithm. 

 
3 MVRP Problem Models 
3.1 MVRP Models 
The MVRP model can be formulated based on the 
graph theory [14-20] as the multiple traveling 
salesman problem (MTSP). Generally, the MVRP 
consists of n cities (nodes or destinations) and m 
vehicles in a fleet. The distances between the i-th and 
j-th cities is represented by cij. In the symmetric case, 
cij = cji, for all cities (i, j). They can be displayed by 
the distance metrix d:nn. Assume that all 
vehicles will start at the home city (or depot). All 
vehicles in a fleet will take a route such that each city 
is visited by exactly one vehicle until all vehicles in 
the fleet return to the home city at the end of the tour. 
Based on the modern optimization, the MVRP model 
is then formulated as the objective function in (6), 
where c(i, j) is the distances between the i-th and j-th 
cities and i,j,k is the logical statement. If the vehicle 
k can travels from any city i to any another city j, i,j,k  
= 1. Otherwise, i,j,k  = 0.  
 Commonly, the MVRP problem model with time 
constraints possesses seven constrained functions as 
stated in (7)-(13). 

 Constrained function-1 as expressed in (7) is 
used to ensure that all vehicles in a fleet will 
leave the home city exactly once. 

 Constrained function-2 as stated in (8) is 
conducted to guarantees that all vehicles in a 
fleet will return to home city exactly once. 

 Constrained function-3 as expressed in (9) is 
performed to ensure that all cities (except the 
home city) will be left from each vehicle in a 
fleet exactly once.  
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 Constrained function-4 as stated in (10) is used 

to ensure that all vehicles in a fleet will return 
only once to each city (except the home city). 

 Constrained function-5 as expressed in (11) is 
conducted to ensure that the number of times 
that a vehicle spends for visiting all cities 
(except the home city) equals the number of 
times that all cities are left.  

 Constrained function-6 as stated in (12) is 
performed to ensure that no sub-tours exist 
(degenerate routes that do not include the 
home city), by using n – 1 as dummy variables 
of u2,...,un.  

 Constrained function-7 as expressed in (13) 
where Ti,j,k  is the traveling time of the vehicle 
k from the i-th city to the j-th city and Tmax is 
the maximum working time of each vehicle. 
This is the time constraints conducted to 
ensure that each vehicle in a fleet spends the 
working time within its defined maximum 
working time. 

The objective of the MVRP problem in (6) 
associated with the constrained functions in (7)-(13) 
will be minimized by searching for the total traveling 
distances. In this work, only one home city and the 
symmetric case are assumed.  

3.2 Ten Selected MVRP Problems 
Recently, VRP and MVRP problems have been 
solved by the original FPA [21 , 22]. In this work, ten 
standard MVRP problems with the time constraints 
consisting of 100–500 destinations, approximately, 
from literatures [23, 24] are selected and solved by the 
MoFPA algorithm. Details of ten selected MVRP 
problems are summarized in Table 1. The city 
locations of MVRP#1 (EIL101) are plotted in Fig. 4 
to display their locations as an example, where  
stands for the city locations. 
 

Table 1 Ten selected MVRP problems [20, 21]. 

Problems Names 

No.  

of 

Cities 

Optimal 

Tour for 

One 
Vehicle 

(Km.) 

Comments 

MVRP#1 EIL101 101 629 Eilon 
MVRP#2 CH150 150 6,528 Churritz 
MVRP#3 BRG180 180 1,950 Rinaldi 
MVRP#4 D198 198 15,780 Reinelt 
MVRP#5 GIL262 262 2,378 Gillet 
MVRP#6 LIN318 318 42,029 Kernighan 
MVRP#7 GR431 431 171,414 Groetschel 
MVRP#8 PCB442 442 50,778 Juenger 
MVRP#9 ATT532 532 92,794 Padberg 
MVRP#10 PA561 561 2,763 Kleinschmidt 

 

 

Fig. 4 City locations of MVRP#1 (EIL101). 

4 Experimental Results 
Ten selected MVRP problems in Table 1 will be 
solved by the MoFPA algorithm compared with GA, 
TS, PSO and original FPA. Therefore, algorithms of 
GA, TS, PSO, FPA and MoFPA were coded by 
MATLAB version 2018b run on Intel(R) Core(TM) 
i5-3470 CPU@3.60GHz. 50 trial-runs are executed 
for each MVRP problem to search for its best 
solution. In order to set the time constraint in (13), 
the daily working time all vehicles in a fleet is 
considered. Commonly, the daily working time of 
any vehicle should not longer than 8 hr. Therefore, 
Tmax = 8 hr. is set as the maximum working time in 
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Table 2 Optimal solutions of ten MVRP problems by GA, TS, PSO, FPA and MoFPA (Case-I). 

Problems 

No. of 

Vehicle 

m 

Optimal Tour (Km.) Execution Time (sec.) 

GA TS PSO FPA MoFPA GA TS PSO FPA MoFPA 

MVRP#1 5 765.99 761.72 738.90 733.46 724.66 112.89 91.15 57.63 35.09 35.08 

MVRP#2 8 16,022.36 14,755.90 12,427.25 11,466.73 10,912.64 144.61 106.79 76.20 41.85 41.83 

MVRP#3 10 2,802.85 2,650.48 2,511.26 2,476.12 2,406.95 225.33 154.66 102.65 67.22 67.19 

MVRP#4 11 38,994.21 37,325.68 36,986.03 35,128.87 34,358.26 236.12 176.28 135.98 71.68 71.66 

MVRP#5 15 3,363.03 3,295.83 3,102.64 2,898.57 2,876.40 258.37 198.62 150.23 80.29 80.26 

MVRP#6 17 65,035.74 64,690.15 63,672.71 62,989.32 62,576.08 341.83 256.10 198.41 105.63 105.65 

MVRP#7 24 311,585.18 298,705.84 279,664.02 258,303.63 254,934.07 439.66 344.58 215.86 136.35 136.31 

MVRP#8 25 73,980.55 73,104.66 72,602.71 71,556.08 71,120.43 466.50 362.47 256.34 144.07 144.01 

MVRP#9 28 148,690.42 146,159.07 144,024.53 142,606.71 141,534.29 557.61 443.42 312.40 173.32 173.38 

MVRP#10 30 3,508.97 3,362.10 3,188.73 3,016.46 2,955.02 589.81 467.05 346.82 182.80 182.84 

 

Table 3 Optimal solutions of ten MVRP problems by GA, TS, PSO, FPA and MoFPA (Case-II). 

Problems 

No. of 

Vehicle 

m 

Optimal Tour (Km.) Execution Time (sec.) 

GA TS PSO FPA MoFPA GA TS PSO FPA MoFPA 

MVRP#1 5 908.83 899.94 893.85 890.02 886.86 112.92 91.12 57.65 35.04 35.10 

MVRP#2 8 17,488.29 15,084.12 13,936.77 12,529.65 11,562.34 144.58 106.83 76.18 41.86 41.84 

MVRP#3 10 2,978.56 2,797.53 2,687.74 2,615.31 2,571.56 225.36 154.61 102.60 67.13 67.19 

MVRP#4 11 40,126.44 38,981.70 38,012.68 36,412.66 35,503.78 236.07 176.24 135.78 71.65 71.68 

MVRP#5 15 3,550.05 3,401.46 3,258.71 3,101.88 2,994.07 258.32 198.59 150.26 80.31 80.27 

MVRP#6 17 66,912,42 65,887.24 64,925.63 64,022.97 63,876.51 341.85 256.16 198.47 105.62 105.65 

MVRP#7 24 318,707.66 310,886.33 291,320.09 262,515.80 259,458.03 439.69 344.45 215.83 136.37 136.32 

MVRP#8 25 75,607.12 74,550.20 73,904.48 72,105.75 71,988.62 466.45 362.50 256.38 144.06 144.03 

MVRP#9 28 149,010.53 147,088.46 144,988.71 144,090.60 143,612.55 557.67 443.48 312.47 173.31 173.39 

MVRP#10 30 3,616.04 3,586.83 3,311.64 3,206.75 3,164.30 589.86 467.12 346.80 182.95 182.90 

 

(13). The average speed of vehicles is 80 Km/hr., 
approximately. Thus, the overall distance of each 
vehicle should not longer than 640 Km/day. These 
data are utilized to define the number of vehicles m 
in a fleet for each MVRP problem. 
 For comparison, searching parameters of GA, TS, 
PSO, FPA and MoFPA algorithms are set from  
recommendations and preliminary studies as follows: 
(i) for GA, number of offspring = 50, percentage of 
crossover = 80% and percentage of mutation = 20%, 
(ii) for TS, number of neighborhoods = 50 and 
percentage of search radius = 20%, (iii) for PSO, 
number of particles = 50, cognitive learning rate = 
2.0, social learning rate = 2.0, inertia weight min = 
0.4 and max = 0.9, (iv) for FPA, number of flowers n 
 = 50 and switching probability p = 0.2 (fixed) and 
(v) for MoFPA, number of flowers n   =  50 and 
randomly switching probability randp  [0.50, 0.75] 
(random). The maximum iteration (Max_Iter = 
10,000) is set as the termination criteria for all 
algorithms.  
 The experimental tests consist of two cases. For 
the first case, the central city of each MVRP problem 
will be set as the home city. For the second case, the 
corner-end city of each MVRP problem will be set as 
the home city. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Case-I 
Once setting the central city as the home city, results 
of MVRP problem optimization obtained by GA, TS, 
PSO, FPA and MoFPA algorithms are summarized in 
Table 2. In this case, the convergent rates of the 
MVRP#1 (Eil101) by the MoFPA algorithm over 50 
trial-runs are plotted in Fig. 5 as an example. Each 
curve line in Fig. 5 represents the convergent rate of 
each trial-run. In addition, the optimal tours of all 
vehicles in a fleet of the MVRP#1 (Eil101) obtained 
by GA, TS, PSO, FPA and MoFPA algorithms are 
displayed in Fig. 6–10, where  stands for the home 
city. 
 
4.2 Case-II 
When the corner-end city is set as the home city, 
results of MVRP problem optimization obtained by 
GA, TS, PSO, FPA and MoFPA are summarized in 
Table 3. For the second case, the convergent rates of 
the MVRP#1 (Eil101) by the MoFPA algorithm over 
50 trial-runs are plotted in Fig. 11 as an example. 
Each curve line in Fig. 11 represents the convergent 
rate of each trial-run. The optimal tours of all vehicles 
in a fleet of the MVRP#1 (Eil101) obtained by GA, 
TS, PSO, FPA and MoFPA are displayed in Fig. 12–
16, respectively. 
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Fig. 5 Convergent rates by MoFPA (case-I). 
 

 

Fig. 6 Optimal tour of MVRP#1 by GA (case-I). 

 

Fig. 7 Optimal tour of MVRP#1 by TS (case-I). 

 

Fig. 8 Optimal tour of MVRP#1 by PSO (case-I). 

 

Fig. 9 Optimal tour of MVRP#1 by FPA (case-I). 

 

Fig. 10 Optimal tour of MVRP#1 by MoFPA (case-I). 
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Fig. 11 Convergent rates of by MoFPA (case-II). 
 

 

Fig. 12 Optimal tour of MVRP#1 by GA (case-II). 

 

Fig. 13 Optimal tour of MVRP#1 by TS (case-II). 

 

Fig. 14 Optimal tour of MVRP#1 by PSO (case-II). 

 

Fig. 15 Optimal tour of MVRP#1 by FPA (case-II). 

 

Fig. 16 Optimal tour of MVRP#1 by MoFPA (case-II). 
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5 Discussions 
From the experimental results of case-I in section 4.1, 
it was found from Table 2 and Fig. 6–10 that the TS 
can provide shorter total distance than the GA for all 
ten MVRP problems with time constraints. The PSO 
can yield shorter total distance than the TS. The FPA 
can give shorter total distance than the PSO, while 
the MoFPA can provide shorter total distance than 
the FPA for all selected MVRP problems. Once 
considering the execution time, it can be observed 
that the TS consumes less execution time than the 
GA. The PSO consumes less execution time than the 
TS, while the FPA and MoFPA consume almost the 
same execution time which is less than the PSO. In 
addition, the execution time for searching the optimal 
solution (total distance) of all algorithms depends on 
the number of cities of the problem of interest. The 
more the number of cities, the more the execution 
time of all algorithms. 
 For the experimental results of case-II in section 
4.2, it was found in Table 3 and Fig.12–16 that the 
TS can provide shorter total distance than the GA for 
all selected MVRP problems. The PSO can give 
shorter total distance than the TS. The FPA can yield 
shorter total distance than the PSO, while the MoFPA 
can provide shorter total distance than the FPA for all 
selected MVRP problems. When considering the 
execution time, it was found that the TS consumes 
less execution time than the GA. The PSO consumes 
less execution time than the TS, while the FPA and 
MoFPA consume almost the same execution time 
which is less than the PSO. Like case-I, the execution 
time for searching the optimal solution depends on 
the number of cities of the problem of interest. The 
more the number of cities, the more the execution 
time of all algorithms. 
 By comparison between case-I in Table 2 and 
case-II in Table 3, it can be noticed that the total 
distance of the MVRP problems in which the central 
city is set as the home city is shorter than that of the 
MVRP problems in which the corner-end city is set 
as the home city. From entire results, the MoFPA 
performs the superiority to other algorithms by 
providing the shorter total distance than FPA, PSO, 
TS and GA, respectively. The execution times of the 
FPA and MoFPA are almost the same, but they are 
less than that of PSO, TS and GA, respectively. Some 
relevant studies can be found [25, 26]. 
 

 

6 Conclusions 
The application of the modified flower pollination 
algorithm or MoFPA to the MVRP problems with 
time constraints has been proposed in this paper. The 

MoFPA, one of the latest enhanced versions of the 
original FPA utilizing the randomly switching 
probability for selection between local and global 
pollinations, has been applied to solve ten standard 
MVRP problems with time constraints consisting of 
approximately 100–500 destinations. Results obtained 
by the MoFPA have been compared with those 
obtained by GA, TS, PSO and original FPA. As 
experimental results, the MoFPA could provide 
optimal solutions of all ten selected MVRP problems 
with shorter total distance than FPA, PSO, TS and 
GA, respectively. The execution times of FPA and 
MoFPA are almost the same, but they are less than 
that of PSO, TS and GA, respectively. The execution 
time of all algorithms is increased, once the number 
of cities is increased. This confirms that the MVRP 
problem is in the class of NP-hard problems. In 
addition, the total distance of the MVRP problems in 
which the central city was set as the home city is 
shorter than that of the MVRP problems in which the 
corner-end city was set as the home city. The 
contribution and usefulness of this study can be 
applied in practical applicability for other real-world 
MVRP problems.  For future research, the MoFPA 
will be applied to solve the vehicle routing balancing 
problems (VRBP) for balancing the working time, 
number of cities and distance of each vehicle in the 
fleet. The multiple-depots multiple-vehicle routing 
problems (MD-MVRP) will be also investigated by 
MoFPA and other novel metaheuristic optimization 
search techniques. 
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