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Abstract: - Vibration analysis of piezoelectric cylindrical nanoshell subjected to visco-Pasternak medium with
arbitrary boundary conditions is investigated. In these analysis simultaneous effects of the nonlocal, surface
elasticity and the different material scale parameter are considered. To this end, Eringen nonlocal theory and
Gurtin—Murdoch surface/interface theory considering Donnell's shell theory are used. The governing equations
and boundary conditions are derived using Hamilton’s principle and the assumed mode method combined with
Euler—Lagrange method is used for discretizing the equations of motion. The viscoelastic nanoshell medium is
modeled as Visco-Pasternak foundation. A variety of new vibration results including frequencies and mode
shapes for piezoelectric cylindrical nano-shell with non-classical restraints as well as different material
parameters are presented. The convergence, accuracy and reliability of the current formulation are validated by
comparisons with existing experimental and numerical results. Also, the effects of nonlocality, surface energy,
nanoshell radius, circumferential wavenumber, nanoshell damping coefficient, and foundation damping are
accurately studied on frequencies and mode shapes of piezoelectric cylindrical nanoshell.
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1 Introduction nanostructures have become one of the attractive

Recently, with the development of material science, research areas in nanomechanics, as evidenced by

nano-sized piezoelectric elements such as nano- the large number of publications on this issue [15-

beams, nano-membranes and nano-shells have been 23]. The monlinear buckling and postbuckling

fabricated, and are attracting worldwide attention in
nano-clectro-mechanical (NEM) devices [1-3].

behaviors of shear deformable nano-shell under
radial compressive load were studied by using the

Since the classical continuum theory is scale-free, it surface elasticity theory [16]. With considering the

fails to predict the size-dependent response of surface elasticity theory, vibration analysis of fluid-

conveying nanotubes was presented by Wang [18].
Surface effects on the dispersion characteristics of

nano-structures. Consequently, to consider the

small scale effect, some non-classical continuum
elastic ~waves propagating in an infinite

piezoelectric nanoplate are investigated by Zhang

theories such as couple stress theory [4], nonlocal
elasticity theory [5-6], strain gradient theory [7],
and surface elasticity theory [8-9] have been
introduced to develop the size-dependent
continuum models. The electro-elastic

et al. based on the surface piezoelectric constitutive
theory [19]. Also the nonlinear free vibration and
nonlinear postbuckling behaviors of nano-plates
were studied by Wang et al. [20]. Theoretical
formulation based on Sanders’ thin shell theory for

surface/interface theory expanded from Gurtin-
Murdoch elasticity theory has been used to analyze
the surface and the size dependent vibration of
piezoelectric nano-structures [10-14]. In the past

the natural frequencies of vibration of functionally
graded cylindrical shells is established by Rahimi

two decades, investigating the nano-sized and et al. [21]. Avramov presented nonlinear vibration

surface effects on the mechanical behavior of and bifurcation behavior of single-walled carbon

nanotubes using the Sanders—Koiter shell theory,
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nonlocal elasticity, Galerkin and the harmonic
balanced methods [22]. Nonlinear harmonic
vibration of a piezoelectric-layered nanotube
conveying fluid flow is investigated by Saadatnia et
al. using the nonlocal theory and energy approach
[23]. Also the frequency-amplitude relationship and
the frequency response of the system are studied. In
an excellent monograph by Leissa [24], researches
on the vibration analysis of thin shells before 1970s
were reviewed. There are also more recent survey
such as Liew et al. which review articles about
vibration analysis of shallow shells [25]. Loy et al.
presented the free vibration analysis of cylindrical
shells using an improved version of the differential
quadrature  method  [26].  According to
surface/interface and small scale effects, recently,
Hashemi Kachapi et al. investigated linear and
nonlinear vibration and stability analysis of multi-
walled piezoelectric nanostructures [27-37].

In the present study, the free vibration
analysis of a piezoelectric cylindrical nanoshell
subjected to Visco-Pasternak medium with
arbitrary boundary conditions is investigated usinf
Eringen nonlocal theory and the Gurtin—-Murdoch
surface/interface theory. A variety of new vibration
results including the effects of nonlocality, surface
energy,  nanoshell  radius, circumferential
wavenumber, nanoshell damping coefficient, and
foundation damping with non-classical restraints
are accurately studied on frequencies and mode
shapes of piezoelectric cylindrical nanoshell.

2 Problem formulation and governing

equations

A cylindrical nano shell embedded with a
piezoelectric layer and visco-Pasternak medium is
shown in Figure 1. The nano shell has length of L,
mid-surface radius R, thickness of 2hy, and
piezoelectric layer thickness of h,,. With the origin
of coordinate system located on the middle surface
of nano-shell, the coordinates of a typical point in
the axial, circumferential and radius directions are
described by x, 0, and z, respectively. Also, Ky, K,
and C, are stiffness coefficient of Winkler
foundation, shear layer of Pasternak foundation and
the damping factor of the visco-Pasternak medium
for the transverse motion, respectively. Ey, vy and
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pn represent Young modulus, Poisson ratio and the
mass density of cylindrical nano-shell. It is
assumed that the material properties nano-shell
vary through the thickness according to the power
law function. They are written as:

27z + hy\?
Bn = (B —B) (S5) +B, (1)
N
27 + hy\?
oy = (W —u) () + vy @
N
2z + hy\?
pn = (0o — p1) <—2hN N) +p; 3)

where q is the power-law exponent. The subscripts
O and I represent the properties of the nano-shell at
the outer and inner surfaces, respectively.
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Fig. 1. A piezoelectric cylindrical nano shell with
inner and outer surfaces
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Young modulus, Poisson ratio, piezoelectric and
dielectric constants and also the mass density of
piezoelectric layer are respectively expressed as E,,,
Up, €31p, €32p»> N33p and p,. The surface at the
outer piezoelectric layer is denoted by s,, and the
inner surface is denoted by s;. The material
properties of surface s, are Lamé’s constants A52,
u%2 residual stress ng and piezoelectric constants

S .
and e.% . Those of the inner surface are

32p-
I3 . S
Lamé’s constants A1, u*t and residual stress 7!

S2
eBlp

Due to the character of nano-shell, the state of
generalized plane stress of shells is assumed, and
the normal stress in the radial direction is zero. In
the cylindrical nano-shell, the constitutive relation
can be expressed as [37, 38];

OxxN Ciiv Ciov - 0 J(&xx
{JOON} = [Czw Coan O ]{599},
Tx6N 0 0 C66N Yx6

or {oy}=[Cyl{e},

4)
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In the outside piezoelectric shell, the constitutive
relation can be expressed as [37, 38]

Oxxp Ciip  Cizp 0 Exx
{099p}= Coip Cozp O {599}

Txop 0 0 Coop | \Vx6

0 0 eglp ?xp (5)
- [0 0 332p] Eep )

0 O 0 Ezp
or {ap}=[Col{e} — [ep){Ep}.

in which the subscripts N and P represent the
cylindrical nano-shell and piezoelectric layers,
respectively. {Ep} is the vector of electric field for
piezoelectric layers. [Cy] and [Cp] are the matrices
of elastic constants with following elements.

En (6)
Cin = m = Ca2n,
UnyEy
Cion = m = Ca1n,
Ey
C =—
66N T 2(1 + vy)
E (7
_ b _
Cllp - 1— Uz% - CZZpr
_ Wk _
Ci2p = 1_—1)5 = Ca1p)
E
Coop = =———
%P T 2(1 + vy)

Since the piezoelectric layers are very thin, E Eyp and
Eep are assumed to be zero (Exp = Eep = 0), and
only the radial component of electric field Ezp is
considered. Consequently, {Ep} can be written as
(39]

{Exp Egy Ezp}T ={0 0 Vp/hy}", (8)
where V, is the voltage applied to piezoelectric
layers. In addition, the voltages at the piezoelectric
surface S,(z = hy + hy) and S;(z = hy) are +V,,
_]/p ,
assumptions, the radial component of -electric
displacement D,,, can be presented as

and respectively. Based on these

sz = e31pExx T €32pEge T 7733pEzp )
2.1 Non- classical Shell theory (Gurtin—
Murdoch surface/interface theory)

Within the framework of classical shell theory, the

displacement fields of the nano-shell can be written
as [38]
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u,(x,0,2) = u(x,0) — ZW’ (10)
up(x,0,2) = v(x,0) _Ewl (11)
u,(x,6,z) = w(x,0), (12)

where u, v and w stand for the middle surface
displacements in the x, 6 and z directions,
respectively. The linear deflection and curvatures
are defined by Donnell's theory as [37, 38]

0
Exx Exx Kxx
9ot =14&39 ¢ + z{Kao
Vx6

Yo Kx
ou 0°w )
_J1ov 1 1 0%w
“\rae TRY[ ‘2962
10u OJdv 2 92w
R3§ " ox R 9x06/

in which €2, £Jy and y2y are the middle surface
strains, and k., ,kgg and k,g are the curvature
components of the nano-shell.

Due to the nano-sized property, the ratio of surface
to the volume becomes large, and the surface
energy around the shell imposes significant effect
on the vibration of nano-structure and the surface
effect needs to be considered. Based on the Gurtin—
Murdoch surface/interface theory, the constitute
relations for surfaces can be written as [8-10].

;% = Toz5a5 + (12 + )Lsz)sqq apB (14)
+2(us2 — 1, )saﬂ + 12U aﬁ SZEZp,
UOZ ngusz

Oaz = To' s (0,8 = x,6)

;}3 = Tol‘saﬁ + (70" + A7) egq8ap

+2(ut — 19 )egp + 75t ;13,

in which 8,p is the Kronecker delta. Furthermore,
the components of stress at the surfaces can be
expressed as

0p2 = (A%2 + 2u) ey + (132 + 2152 gy
+ng - e3ipEZp,

agg = (TSZ + Asz)sxx + (252 + 2u52)egg
e3§pEZP

_ s v z 9%w
— H7Vxe 9x R0xd0)’

5 s s, (10u z d*w
0, =.u2yx9_'[o > an D
8x R06 R oxd6

(15)

—TO R+‘L’
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S

N L

Xz "0 gx’ 70z R 960’

S1

0.51 — .L_51 a_W 0-51 — TLa_W

Xz "0 gx’ bz — R 90’

L= (A 4 205 ey + (15" + 251 g9

+Tg1
o = (Tsl + 251 ) gy + (A5 + 2p51) g9
—TO R + TO

s s s [0V z O%w
%%0 = F7Vx0 = To \ 5% T R9x08 )

st s s [10u z 0*w
Ogx =W%Wx0 —To \ 537" 5 )

RJ6 R OIx06

Based on the classical continuum models, o,, is
neglected due to its small value as compared to
But,
nonclassical continuum model, this assumption
does not satisfy the surface conditions. Thus, it is
supposed that a,, varies linearly through the
thickness and satisfies the balance conditions on
the surfaces [40], i. e.

other normal stress components. in the

Oy7 = (16)
90,2 L1 day; e 92w
1 dx R 06 a2
2 B Aoyt N l@o;; _ 02w
dx R 060 ot?
dogz 100y
dx R 060
5 0w
P - Dee /o,
2hy + hy, /aa;; 1 aa;;\
dx R 00
+ \ 52
—pS1
P o

By means of Egs. (15) and (16), o,, can be

rewritten as

/ (To _To \
Ozz k‘f‘Z(TO +TO )
2hy +
0’w 1 0%*w
(Wﬂe—ﬁ)
N ((ps1 —p%)  z(p™ + p52)>62w
2 2hy + b, ) 92

According to Eq. (17), from Eqgs. (4) and (5) the
normal stresses gy, and ggg can be rewritten as

(17)
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_ UNOzz
Oxxn = Crin€xx + Cran€go + T—uy (18a)
UNO-
pon = Coan€xx + Caznggo + 1 lZ)Z, (18b)
N
oxon = CesnYx6> (18¢)
Oxxp = Cllp‘sxx + ClZpEHB - e31pExp
VpOzz (19a)
1-v,
Ogop = Ca1p€xx + CazpEge — e32pE9p
UNOzz (l9b)
1-v,
Oxop = Ceep¥x6» (19¢)

2.1.1 Governing equations
In this section, the governing equations of motion
of the piezoelectric cylindrical nanoshell are
obtained by applying the assumed mode method.
The total strain energy considering the surface
stress effect is expressed as:

1 (L 27 chy
B _f f f (Uingij)RdZdde
21 hN+hp G i &
f f f l]p ij )Rdzdgdx
f f l] sif - EZle-SZ) X
0

dOdx
(R +hy +hy) (20)
27'[ 1
f f al] sU (R—hy)dOdx = >
5 xxgxx + N99899
T
f J +Nx9yx9 + MxxKxx RdOdx .

+M99K99 + Mxgkxg
+7733Ezp hp J

In addltlon, the kinetic energy of the nanoshell can

be formulated as:

T =
2
f fz” J ( %) ;W(%:) \l rdode @D
@)
where
I = f—}:’va dz + LZN-'-hPPp dz 22)

+0%2 | z=—ny + P z=hy+h,
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where py, p, and p° are the mass density of

nanoshell, piezoelectric layer and surfaces,

respectively.
The work done by the viscous damping and the
applied elastic medium load, modeled using spring

Winkler and shear Pasternak  constants,
respectively, can be expressed as

2n
W, = __f f { }Rd@dx (23)

27'[
W
=— w¢ RdOdx (24)
J;) L —KPVZW }

in which C,, V%K, and
coefficient of the viscoelastic medium, the Laplace
operator, Winkler modulus, and the shear modulus
of surrounding elastic medium, respectively [41].

K, are the damping

1 92
Also, Vz— =t e
In Eq. (20), the stresses and moment resultants are
defined as:
hy
(Nxx, Nog, Nxg) = fh oijn dz
—IN

hN+hp
+f Oijp dz + g, + 05,
hn

= (NxN'NBNr xQN) + ( xp:NGp:Npr)

1
+ <Uxxr To0.% (oxe + Uex)>

S1

1
+ (Uxx: 090, E (Uxe + U@x))
S2
hy

(e Moo, Myg) = j o 2dz

_hN

hN+hp
+f Oijp 2dz + 05, (hN + hp) — gs, hy
h

N

= (Myn, Mgy, Mygy) + (MxprMGp:Mpr)
1
+ <Uxx' Uee»z(axe + 09x)> (hy + hy)
S2
1
- (Uxx: 0-99»; (O-xG + O-Hx)) hN
S1

Nyx = A1182% + A1260g + Bi1Kax + Biakog
+(tg! + 152 — Nyp)

. 2°w 1 9w . 2%w
5 T R2 507 ) VG
Ngg = AZng(c)x + Az2€9g + Baakxx + Bazkog

(To + T0

R w+(T0 +T0

NBp)
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2°w 1 9w , 0w

Gzt reger) i g

0
Nyg = AgsVxg T Boskxo,
0
My = Bi1€9x + Bi2€gg + Di1Kyy
S S
+D12K99 + TOZ (hN + hp) - Toth - Mxp

. 0*w 1 9%w . 0w
TEn Gz YRz gen) T g

Mgg = BZlga(c)x + 322589 + Da1Kx
w
+D22K99 + T;Z (1 - E) (hN + hp)
w
—Tgl (1 - E) hN - Mgp

’w 1 0%*w
+ 11(6 2 +R2 692)

0w
611 G2
Mg = 366yx9 + Deskxp,
in which
Ajj = Ay + Agjp + Ajj,
B;; = Bijy + Bijp + B}
Dij = Dyjy + Dyjp + Dy,
Fiy = Fi1y + Fi1p, Ef1 = Efin + Ef1p,

and

hn
(AijN'BijN'DijN) = f CijN(llerZ) dz,
—hy

l]’

( ijp UP’ UP)

hN+hp

_ jh N
hN+hp _

( xp'N9p) ZL (331p'e32p)Ezp dz
N

+(e§1p' e?pr)Ezpr
hN+hp _

(Myp, Mgp) = f (e31p) €32p) Ezp 2d2
hn

+(e31p, e52p) Ecp (A + 1),
Al = Ay = (A% + 2p%)
+(A%2 + 2u%2),
12 =45 = (‘rs1 +251) + (132 + 4%2),

e e Ton s T

66 = (U1 —7)"'(# 2 —7),
Bj; = B3, = (A% + 2u%2) (hy + hy)
— (A% + 2u®1) (hy),
Bj, = B3y = (142 + 22)(hy + hy,)
—(zg* + 251) (hy),

737
Big = (uSz - %) (hy + hy)

Cijp(1,2,2%) dz,

(25¢)

(25%)

(25g)

(25h)

(26)

(27a)

(27b)

(27¢)

(27d)

(27¢)
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51
—(ur = —)(hN)

Di; = D3, = (A% + 2u%2) (hy + hp)2

+(2%1 + 2p%1) (hy)?,

D}, = D3y = (32 + 2%2) (hy + hy, )’

+(zg" + 251) (hy)?,

(271)
732 2
D¢ = (usz — %) (hy + hy)
Tt
s = ()2,
Fiin =
(To _To
th Uy 2
hy (1 — (‘l.' )Z
2hy + h
« 27
Fiyp = (27g)
/ (To - To \
th+hp Up 2
hy (1 Up) (To + 1 )Z
2hy + hy,
Jiin =
/ (o™ = p™)
th Uy 2 J
g A—v) | _ 7+ p)z |
2hy + Iy
" 27h
]11p = (27h)
/ (p5t — p%2) \
hn+hy g —
p
Y s s dz
fhzv (1-vy) _p A ez
2hy + hy
Efin =
N (To - To )Z
N Un 2
dz,
th 1- (To +15')2”
2hy + h,
% 271
Efip = ol
(To - To )Z
th‘I-hp U 2
hy 1- Up) (To +15")2”
2hy + hy
Giin = (27
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(p°r — p2)z
2

hn Uy
f_hN (L—vy | _ % +p%2)z?
2hy + hyy

dz,
* —
Gllp -

( (p51 — p*2)z w
hy+hp v, 5

f dz,
N (1 - Up)

\ (0% + p™)2?
2hy + hy,

Note that, because of geometric symmetry, the
expressions B;jy and Fijy are zero, i.e. (BijN =
Fiin =0) and also,
piezoelectric nanoshell V, is zero, as a result
(pr = Ngp = Myp = Mgy, = 0)-

In following, the equations of motion and
corresponding  boundary conditions of the
piezoelectric nano shell can be derived from
Hamilton’s principle. By taking the variations of
displacements u, v and w_integrating by parts, and

for free wvibration of

equating the coefficients of du « v and Sw to zero,
the governing equations of motion are derived as:
ON,, 10N,g 0%u
: — =1 28a
0 o tRae e (28
E)ng 1 8N99 621]
ov: — =] 28b
" Tx TR0 o (250)
Sw: 9°M My EazMxQ iazMQQ
" 0x%? R 0xd0 R? 002
N@g 02w N 1 9%w
R P\odx2  RZ? 062
+ K,w,

(28¢)

L
at2 w ot

and boundary conditions are obtained as follows:

1
Nxxnx + —ngng = 0,

ou=0 or R (29a)
1
Sov=0 or ngnx + ENgngg = O, (29b)
ow=0 or
<8Mxx 1 ang)

dx R 96 )™ (29¢)
10M,g 1 0Mgy

+(E 0x ﬁae)f’_o’

ow =0 M + 1 M =0

ox - 07 ek TR Z D (g0q)

ow 1

% =0 or Engnx RZ Mggne = 0 (29@)
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In this paper, the assumed mode method is used to
obtain the equations of motion using Euler—
Lagrange method. After substituting Egs. (25) into
strain and kinetic energies Eqgs. (20) and (21) and
using following dimensionless parameters

U v W £ = x
u—hN,v—hN;W_hN; LJ
5 _b o _Ayn g Bijn
L% Ay’ Ajivhy
_ D;; _ A
Dijn - A =5,
Ajinhy A1y
o _ Ay = Biyp
Ay P Ay’
B _ BL*] — Dijp
Y Apnhy Apinhi’
A D;; me Fi1n
Y Apwhy UV Apvhy
= Fiip - Ef1n
Fiy, = JEf N = ,
P Ay Y Aqinhf
= Efyp - Ji1n
E* — , * — ,
e Aq1nhf Jiaw pnhi
W _Jw .. _ Giw (30)
]11p p2’ 1IN T Nhl?;/’
_ Gy _ S — Ny
Giklp = 111;, Nyp = - 'ng L ’
pPnhy Ay Ay
N7 * M;p M* Mgp
P Apanhy' % T Ay’
s T L1 L
TO - A11N lmO - R E'ml hN;
hy - - hy I
= — = h ) h = —, =
M2 =g T = s = o e
h epa A
P 0 11N
=T - T =t |z = Qtl
Ma =g R ETOT ’ZpNhNLZ
W = K,L*> _ K,
w=—, = )
Q mzA11n mzAi1n
_ C
C, = TW
Respectively, strain and kinetic energies are
obtained as follows:
f fZ” 2 XY
“1 T %5550
ou o7\ av
+agwaf+a4< ) +a5W +a6w89
. (8u) N (61])2 L 0008
“7\ag) T \ag) T %5500
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ou 0w ou 0w v 0%w

a1 §T§Q+ a11a_§w+ a1z 30 982
0w ovo*w _0%w
+a3W—— 982 +a1460 602 WW

L 92w L 92w s 22w\’
%1650 9500 T “17 95 oca0 T V18 \ 9g2

02w 2w 92w\’ 92w\’
+aq9 WW + o (W) + azq <6§W)

_ ou ov 0w
+ay,w + azga—f + a24% + O.’Z5W

0%w 0*w

azsg 902 912
_0%w
rra

0w 02w 0%w
+aye W + ayy a—fzﬁ +

ou 0w v 0%w
tazg 7 o2 + aso 30 972 +as;

+133EZ, hp}Rdex,
+(617>2
f f 2n ar )
)
T

where coefficients of aj (k = 1..31) are introduced

RdOdx

in Appendix 1.
Also the visco-pasternak effects are obtained as

follows:
2m —
W___ff { }Rd@dx (33)
Wp
K, w \

L r2m 62_17\/ _ (34)
—ff 0&2 W} Re

0 Yo 22

Mo gez)) )

2.2 Nonlocal Eringen shell theory

According to Eringen [5, 6], for the piezoelectric
cylindrical shell, the nonlocal constitutive relations
for Egs. (4) and (5) can be expressed

OxxN OxxN
Ogon ¢ — (ega)?V?{060n

TxoN TxoN
Ciiv  Cion 0 Exx (35)
= !C21N Coan 0 ]{899},
O O C66N YXG

or {on} — (eoa)ZVZ{UN} = [Cy]{e},

Uxxp O-xxp
{0-9919} — (ega)?V? {0-9910} (36)
Txop Tx0p
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-Cllp C12p 0 ] Exx
= Cle CZZp 0 {599}
| 0 0 Coop | \Vxo0
0 0 eglp Exp
-lo o e32p] Egp ¢,

0 0 0 Ezp

or {0y} — (eo@)?V*{s,}

=[G {e} = [, [{Ep},

Also, the radial component of electric displacement
D, Eq. (9) can be presented as
sz - (eoa)zszzp = €31p&xx
+esapeoo + M33pksp

where V2= 02/0x? + 0%/0(RA)? is the Laplace
operator; (ega) is the scale coefficient revealing
the size effect on the response of nanostructures.
From Eqgs. (35)-(37) and using Egs. (25a, b) and
ignoring of surface energy effects for
NxxJNGGleH'MxxJMHG and ng in EqS (253, b),
we have

Nyx — (€0@)*V?Nyy = Aq162y

(37

(38a)
+A12539 + Bllkxx + BlZKBB - pr
Ngg — (e0a)*V*Ngg = Az1 €3y 380
+A22€09 + Ba1Kxx + Baakgg — Ngp (380)
Nyo — (e0@)?V2Nyg = Asc¥ g -
+BgcKxo) (38¢)
My — (eoa)ZVZMxx = Bllga(c)x 18d
+B1269g + D11Kyy + D1zkgp — My, (38d)
Mgg — (ega)*V2Mgg = By1€9,

(38¢)

+B32€9g + Dy1Kxx + D2zkeg — Mgy,
Mo — (€0a)?V2Myg = BgYyg + Deskxa, (38f)

Note that all relations of equations (25)-(27) with
the elimination of all surface effect parameters are
established for the Eringen nonlocal theory.
Substituting Eqs. (38a)-(38f) into the governing
equations (28a-c) and (29a-¢) yields

Su: aNxx laNxG
" dx R 96 (392)
52
_ 202
= (- (P T
S ONyg  10Nge
" dx R 00 (30b)
52
= (1~ (eo@*V) 0y
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Sw- 0?Myx  20°Myg 1 8°Mpg
0x%? R 0x00  R? 002
—% = (1 - (ega)?V?) x
2w ow (39¢)
(Iatz +Cwat+K w

K 2%w +182w ’
\ P\ 9x2  R2 062

and boundary conditions are obtained as (29a)-
(29¢). By ignoring of surface energy effects Egs.
(25¢)-(25h) and substituting into Egs. (392)-(39¢),
we obtain the following equations of motion:
2 0%u +A66 0%u  (Ayp + Agg) 0%V
19x2 " RZ 962 R 9x06
Ay 0w 3w
Rox Tnox

(—By2 — 2Bg) 3w
—(-N
t g axa02 T ax (TNw)
92u
= (1 - (epa)?v2)1 22
= (1= (VD) 5,
A666 u  Ayn 0%u 4 62v+A22 0%v
"R 962 ' R 0xd6 ' °®o9x2 ' R? 002
@a_w _ (B21 + 2366) (73W
R? 06 R 0x200
40b
_ B 0°w  10Ngy oo
R3 063 R 00
2p
=(1- 2y —,
= (1~ (&) V) 5
Ay 0u B d3u
R ax ‘1ox3
(By1 +2Bgg) 03u Ay, 0v
R? 0x00%2 RZ 06
(312 +2Bgg) 0%v 4 By, 03v Ay
RZ  9x200 ' R® 06° Rz "
n (Blz + BZI) (7 w 2B22 (72W
R 0x? R3 002
6 w (D12 + D21 + 4D66) 64 (400)

AREir o R2 0x2002

D,, 3*w Ny, aZMxp 1a1v19,,
R* 06* R x> R? 062
= (1 - (ea)?V?) x

2w

122 ¢, 2 1k,
atz Wt W

X 0w N 1 0%w
P\ ox?2  RZ?0902

And by introducing the dimensionless parameters
(30), Egs. (40a)-(40c) can be expressed in the
dimensionless form as
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62a+ 62ﬂ+ 0%v N ow

03w a3w 0%u (41a)

+Ps 983 + Be 92067 = (1 —p?V 2) 572"
0%u 0%u 0% 0%v
B7 392 + Bs 3200 + Bo 922 + B1o 392
ow 23w 23w
+B11 55 30 + P12 98200 + P13 393

(41b)
2_
=(1-p 2\72)8 >
ou 0%u 3u ov
Bl‘l- af +ﬁ15 653 +ﬁ16 afaez +ﬁ17 69
030 030 _
+ﬁ18 agzag + ﬁlg 693 + ﬁZOW
0w 0w 04w
+B21 322 + B2z 302 + B23 et
04w 04w
+ﬁ24m+ﬁ25w+ﬁ26

= (1 — u?v?) x

0'w +C, ow —+K,,
912 ot w
_ (0*w  ,0%W
\ "% (G 662>/
v2

where =0%2/0§2+m%9%/06% and also
coefficients of S, (k = 1..26) are introduced in
Appendix 2. Then, using Egs. (25a, b) and ignoring
of surface energy effects for N,,, Ngg, Nyg, My,
Mgg,and M, and substitution into boundary
conditions Egs. (29a)-(29¢) and dimensionless
parameters (30), the boundary conditions can be
expressed in the dimensionless form as

(41c)

_ 6ﬂ+ _ 617+ .
B p1 ¢ B EY: Bsw .
5u == 0, aZM_/ 82_ B xlonx
N _6u+_6v+_62v_v o127 = 0
_ 6ﬁ+ _ 0V
oV = 0, _ 62\/_\/ xlonx
\ +B12 %00
ou v (420)
P13 % + P14 30 + B1sW .
+  %m . 9% 01" =0,
+B16 =577 922 +B17 557 302 + Pig
E-ISSN: 2224-2856 149

Sayyid H. Hashemi Kachapi

6w =0,
0%u 0’u _ 0%
Blg afz +ﬁ20 692 +ﬁ21 agag

ow W )
+Ba2 =7 3% + Bz =55 x[ony

93
_ 0w
o’u - 0% - 0%
ﬁ25 afag +B26 652 +B27 aez\l

ow ~ 0w 2T
( +Ba8 7 30 + Booo7 FYE 815" = 0,
ow

(42¢)

3w
30 55250

3 0,

0
_ 0u v
( 31 af + B3z 30 + B33 \
x|

1
’w - 0*w
ou

] | (42d)
+ﬁ346_§2 + Bss W + 336/

2_

<ﬁ37 30 +ﬁ38 6{ + B39 (;3580>49|27r =0,
ow
Fr

_odu . o0v . O0*w
<.340 39 + Ba1 57 3% + Baz 6{69>x|0nx

au . o . (42¢)
/ ﬂ43a_§+.344£+ﬁ4sw \

21 _
Tl e ozw olo" =0,
+'B468_52+'847W+'B48

where coefficients of B, (k = 1..48) are introduced
in Appendix 3.

2.3 Solution procedure

In the assumed mode method, displacement
and shear deformation are written in terms of
generalized coordinate and mode function as
follows [38]:
u(x H t) =

Z Z Up,j c(T) cos(jO)

gy 5 5() sin(G6) | ¥ )
m= 1]

(43a)
+ Z um,O(T)XmO(E) =

m=1
My+MxN

> w@u©8®)

i=1
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v(x 6,t) =
vm,j,c(T) sin(j6)
Z Z [+vmjs(r) cos(j0)

+ Z va(T)quO(f) =
M2+M1><N

> n@8,(Oar(0)

r=1
w(x 6,t) =

Wm,j,c(T) cos(j6)
2 Z [+ijs(r) sin(j0)

+ Z Wm, 0(T)Bmo(§) =
M2+M1><N

> W @BEWL(6)

s=1
where x;(£), ¢,-(§) and Bs(&) are modal functions
which satisfy the required geometric boundary
conditions. u; (1), v,(t) and wg(7) are generalized
coordinates. In the present work, the Euler
Bernoulli bending mode shapes are used to solve
the classical theory of shell as B(¢) and also the
mode shape of the rod is used for y; (&) and ¢,.(¢)
modal functions which satisfy the required
geometric boundary conditions in all shell theories
for these two directions.
Substituting Egs. (43) into Egs. (31)-(34) and using
Euler-Lagrange method the following reduced-

¢m j (f)

(43b)

Bm j (f)

(43¢c)

order model of the system is obtained.

(M), 1} + [(M)y, 1{w} + (KO (442)
+HE) T} + (K ) {w} = upL;
(O016)+ ORI + 0@,
+HE) o 1T} + (K l{iw} = vpL,
(G0ZI0) + ORI+ O8@

+[(K)1VJVL]{E} + [(K)W ]{W} = _pr;
where [(M) L] [(C)w] and [(K)r] are mass,
damping and stiffness matrices, respectively, i

directions of u, v and w (r,q = u,v,w) . Also,
FupL, FupL and prL are applied loads by
piezoelectric voltage and surface stress. For free
vibration of piezoelectric nanoshell F are zero, and
(FupL = vaL = prL =0). Al
coefficients of mass and stiffness matrixes Egs.
44(a)-(c) are presented in Appendix 4. Also for

as a result
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Hamilton principle, substituting Eqs. (43) into Egs.
(41)-(42) results in the following reduced-order
model of the system:
(M) + (Mpe)iiy {ui}
+H(K)un + Kpe)unl{ut}
+H(K)un + Kpe)un {7}
+[(K)VuVH + (Kbc)gH]{W} + FupH =0,
(D71} + [ED)py + Kp)pw {1}
+H Ko + Kp)yu {0} + [(K)pn1{w}
+Fypn =0,
(M)l {w} + [(C)yy 1w}

+HEwh + Kpcwa (T}

+H K wn + Kp)wu {7}
+[(K)wH + (Kbc)wH]{V_V} + prH =0,
where [(M)7y] L [(©)]
damping and stiffness matrices, respectively, in

(45a)

(45b)

(45¢)

and [(K)ZH] are mass,

directions of u, v and w (r,q = u,v,w). Also,
FupH, F,,pH and prH are applied loads by
piezoelectric voltage and surface stress and for free
vibration of piezoelectric nanoshell F are zero, as a
result (Fup = va = 0). All coefficients of
mass and stiffness matrlxes Egs. 45(a)-(c) are
presented in Appendix 5.

Natural frequencies and mode shapes can be
obtained from solving following eigenvalue
equation:

[[K]- (46)

Wmn M]]{umn Umn Wmn}T =0,

3 Numerical results and Discussions

In this section, at first, convergence study of
a piezoelectric cylindrical nano-shell with arbitrary
boundary conditions is investigated for Gurtin—
Murdoch surface/interface theory and Eringen
nonlocal theory. Then the surface energy effects
using the Gurtin—-Murdoch surface/interface theory
on the free vibration analysis of a piezoelectric
cylindrical nano-shell with arbitrary boundary
conditions is investigated and at the end, the natural
frequency analysis of a simply supported
piezoelectric cylindrical nano-shell is presented
using the Eringen nonlocal theory. In order to
simplify the presentation, CC, SS, CS and CF
represent clamped edges, simply supported edges,
clamped-simply supported edges and clamped-free
edges, respectively and also for simplification of
surface effect is represented SE. The non-
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the
following examples is composed of stainless steel

homogeneous nano-shell considered in
and nickel and the nonhomogeneous distribution of
properties in the thickness direction is varied
according to the volume fraction power-law
function. The material properties for nanoshell
(stainless steel and nickel) and the
piezoelectric layer (PZT-4 material) are shown in

Table 1 and Table 2, respectively [42].

also

Table 1 Properties of stainless steel and nickel [42]

Stainless steel Nichel
Ep(GP¢ vp | pg(kgm’| Er(GPG vr | pr(kgm’
208 | 0.381 8166 205 | 0.31 8900

Table 2 Properties of PZT-4 [42]
E (G vy e31,(C/ e32,(C/ M33,(107Y p,(kg 1
95 | 0.3 —5.2 —5.2 560 7500
Also, the material property of surface effects and

geometrical parameters used in all following results
are shown in Table 3.

Table 3 The material property of surface effects
and geometrical parameters

Rm) | L/R | hy/R | h,/R | 251(N/ psi(N,
1x10° 10 0.05 0.03 | 4.448 | 2.774
Tyt | pSilkg, Vo(V) | A2(N/1 p:(N/ ©2 (N,
(N/m)
0.6 |317x11x107 4448 | 2.774 @ 0.6
eglp(c e?pr(C. pSz(kg/ CW(N"S KW(N/ Kp(
N)
-3x1 -3x1(561x73 1 1

x 1077 | x 10%2°| x 107

Of course, the geometrical parameters can be
varying according to the type of problem. In this
paper, the results are presented in dimensionless
form and thus the results are not limited to a
particular type of matter. The data presented in the
form of sample data to approximate the numbers
used in the actual range.

3.1 Convergence and comparison studies

The method proposed in this paper is validated by
comparing the present numerical results with
previously published in the literature. If we neglect

E-ISSN: 2224-2856

151

Sayyid H. Hashemi Kachapi

the piezoelectric, visco-Pasternak and surface
effects, the present model can be reduced to the

macroscopic  cylindrical ~ shell The
frequencies (a)n =

QR\/(1 —v?)p/E ) of present work are compared

cylindrical ~ shell ~ which
previously given by Loy et al. [26] that is shown in
Table 4 for the three classical boundary conditions.
The parameters used in this example are: m = 1,
L/R =20, hy/R =0.01, and v = 0.3. It can be
observed from Table 4 that the present results agree

model.

dimensionless natural

with  macroscopic

very well with the reference solutions, which
indicates that the method presented in this paper is
suitable and of high accuracy for free vibration
analysis of cylindrical shells with classical
boundary conditions. The slight differences in the
results may be attributed to the different shell
theories and solution approaches adopted in the
literature and in this paper.

Table 4 Comparison of dimensionless natural
frequencies for SS, SC and CC boundary
conditions for a homogeneous cylindrical shells

n| SS CS CC
Prese | Loy Prese | Loy Prese | Loy
nt et al. | nt et al. | nt et al.
(1997 (1997 (1997
) ) )
1/0.016 | 0.016 | 0.023 | 0.023 | 0.034 | 0.032
101 101 299 974 074 885
2/ 0.005 | 0.009 | 0.010 | 0.011 | 0.014 | 0.013
225 382 963 225 202 932
310.021 | 0.022 | 0.018 | 0.022 | 0.018 | 0.022
753 105 553 310 713 672
41 0.034 | 0.042 | 0.036 | 0.042 | 0.041 | 0.042
303 095 300 139 386 208

Also, in all wave numbers shown, the natural
frequency of the CC is greater, and the natural
frequency of the SS is lower than the rest. The only
significant difference is related to the state of SS in
modes n = 2 and n = 4. By removing the equation
from the dimensionless state and by referring to the
analytical solution given by Rao SS [45], the
solution obtained by the present paper, compared to
reference Loy et al. [26], is much closer to the
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solution presented in reference Rao SS [45], as a
result the lower frequency found in this paper is
correct. As an example of the Rao SS [45], the
natural frequencies of transverse vibration of a
circular cylindrical shell simply supported at x = 0
and x =1 for the following data: E = 30 X
10° psi, v=03,p=7324%x10"11b —
sec?/in*, R=10in,l =40 in and h = 0.1 in for
the (m,n) = (1,2), (1,3) and (3,2) are 2,375.8223,
1,321.9526 and 10,086.031, respectively and for
present work with the same data as given reference
Rao SS [45] and for the (m,n) = (1,2),(1,3) and
(3,2) are 2,394.635 , 1,343.182 and 10,211.415,
respectively. The slight differences in the results
may be attributed to the different shell theories and
solution approaches adopted in the literature and in
this paper.

Table 5 show a complete convergence of the
natural frequency parameter, w,, for SS, CS, CC
and CF piezoelectric nanoshell for N = 2,4,6
considering with the Gurtin—Murdoch
surface/interface theory and the material and
geometrical parameters of Tables (1-3). It is
observed that for all boundary conditions as the
number of polynomial terms, N, is increased, the
value of the frequency parameter, w,, converges
rapidly. With considering of the two succesasing
values of N, it is shows that as N increases, the
percentage difference between the successive
frequency approximations decreases. Thus the error
as shown above is less 1 per cent, which is well
within the limits of engineering tolerance. The
minimum frequency in this case is associated with
the circumferential wave number n = 2. This
assertion is valid for the entire range of shell
parameters and for all type of boundary conditions.

Table 5 Convergence of dimensionless undamped
natural frequencies w, = Q,R/L of the SS, SC,
CC and CF piezoelectric cylindrical shells

SS CS
n| N N N N N N
= =4 =6 =2 =4 =
0 0.059 | 0.059 | 0.059 0.059  0.059 | 0.059
839 | 839 839 839 |839 | 839
1]0.021 | 0.021 | 0.021 | 0.029 | 0.024 | 0.022
835 | 835 | 835 098 138 | 793
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0.025
910
0.059
408

21 0.025
465

310.059
553

0.025
465
0.059
554

0.027
229
0.059
553

n N N N N N N
=6 =4 =
0.059 0.029

839 919
0.024 0.007
021 387
0.026 0.024
886 108
0.059 0.059
517 171

As can be seen from Table 5, in all wave numbers
shown, the natural frequency of the CC is greater,
and the natural frequency of the CF is lower than
the rest. Also, a convergence and accuracy study of
the natural frequency w, of the SS piezoelectric
nanoshells for Eringen nonlocal theory with the
material and geometrical parameters of Tables (1-
3) is presented in Table 6 with varying total
numbers of nodes N and for various circumferential
wave numbers 1.

Table 6 Convergence of dimensionless undamped
natural frequencies w,, = Q, R/L of the Eringen
nonlocal theory for SS piezoelectric cylindrical

shells
nu=0

N=2

0.543459

1.060514

u=0.02
N=1 N =2
0.554995 | 0.531641
0.987180 | 0.982913
1.350387 | 1.349085
1.632448 | 1.631933

u=0.1
N =2
0.372328
0.469163
0.495676
0.505961

N=1

0.567012
1.064967
1.577035 | 1.575583
2.093065 | 2.092441

u = 0.05

N=1 N=2

0.502426 | 0.480069
0.748597 | 0.744961
0.871548 | 0.870564
0.933748 | 0.933389

I QUSRS R -]

N=1

0.391778
0.471781
0.496306
0.506176

AW N~ 3
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Note that the nonlocal parameter u =20
corresponds to the piezoelectric cylindrical
nanoshell without the nonlocal effect. As can be
seen from Table 5, the dimensionless natural
frequency of SS piezoelectric nanoshells decreases
with increase of nonlocal parameter u. The reason
is that a higher nonlocal parameter u leads to a
decrease in the nanoshell stiffness, and cause to
lower natural frequencies of nanoshell, showing the
softening effect observed by others (see Ke [46]).
Also, for all nonlocal parameter u, the natural
frequencies decrease with increase of the node
number N and increase with increase of the
circumferential wave number n. As a result, the
convergence mode number for both cases of the
paper results (Table 5-6), i.e., Gurtin—Murdoch
surface/interface and Eringen nonlocal theories is
n=2 and =2 . Some other studies in Applied
Mechanics can be checked in [43] and [44].

3.2. Parametric study

The convergence and comparison study of the
present work was verified in the previous
subsection. In this subsection, we will study the
effect of important parameters of cylindrical
piezoelectric nanoshell on vibration behavior of
this system.

In this subsection, first, the surface energy effects
using the Gurtin—-Murdoch surface/interface theory
on the free vibration analysis of a piezoelectric
cylindrical nanoshell with arbitrary boundary
conditions is investigated and then, the natural
frequency analysis of a simply supported (SS)
piezoelectric cylindrical nanoshell is presented
using the Eringen nonlocal theory.

Figure 2 (a, b) illustrates the effect of
dimensionless stiffness coefficient of Winkler
foundation K,, on dimensionless undamped natural
frequencies (w, = Q,R/L) of the piezoelectric
nano-shell. It can be seen that for all boundary
conditions with and without surface energy effects,
with the
coefficient, the fundamental frequency increases.

increase of the nanoshell stiffness
As can be seen from Figure 2 (a, b), the natural
frequency of the CC is greater, and the natural
frequency of the CF is lower than the rest. It is
quite clear that considering the effects of the
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surface energy will lead to a significant decrease in
the natural frequency of the nanoshell.

0.14 ; . .
012 e
,d*" i
@ ,a"' f::“‘"
¥ o0l o .
" .
§ 4""‘—‘:(‘(‘(‘(r
L » ” 4
g 0.08 P < =-S5 with SE
1 - ot .
E o ‘lv:f' === (S with SE
L, -, 4
g 06T o ==-CCwith SE
E /:/ CF with SE
0.04?I/ 4
K
0.02 1
" L L L L TR L L L
0 04 08 12 16 2 24 28 3
K,
(@)
3
n
7]
K
L
2
LX)
s — S without SE
£ o008t —(Swithout SE| -
R — (C without SE
0.06 CFwithout SE| -
0'04_””\H.‘\HH\HH\.H‘\HHM.H\‘_
0 04 08 12 16 2 24 28 3
K,
(b)

Fig. 2. The effect of dimensionless stiffness
coefficient of Winkler foundation K, on
dimensionless natural frequencies (w,, = Q,R/L)
for (a) with surface effect (b) without surface
effect

Furthermore, mode shapes associated to the natural
frequencies of cylindrical piezoelectric nano-shell
are illustrated in Figure 3 (a-h) for different
dimensionless stiffness coefficient of Winkler
foundation K, and for mode number (m = 3,n =
4).
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Fig. 3. Some selected mode shapes for different
dimensionless stiffness coefficient of Winkler
foundation K,

The effect of dimensionless shear layer of
Pasternak foundation K, on dimensionless natural
frequencies of the piezoelectric nano-shell are
depicted in Figure 4. It can be seen that for all
boundary conditions with and without surface
energy effects, with the increase of the nanoshell
shear layer coefficient, the fundamental frequency

increases.
0.23¢ Sy pampn i
s
. \ ===5§ with SE
E 0.2281 -=-CSwithSE 1
2 i ==-(Cwith SE
oy f’ ;’ .
8 Py CF with SE
2 0.226 R 1
LSS
§ 4 S ,/
Q02241 S 1
0.222 1
L L L L L L L
0 04 08 12 16 2 24 28 3
K,
(a)
T T ———
0.542¢ 8
0.54+
=SS without SE
3~ 0538 ——— | =—CSwithoutSE
2 0536- = (CC without SE
% — CF without SE
S 0534F
B
’_-_-_’-
S 0.532r
£
2 (.53r
0,528+
0,526+ ‘
L I I I I 1 I I
0 04 08 12 16 2 24 283
K,
(b)

Fig. 4. The effect of dimensionless shear layer of
Pasternak foundation I?p on dimensionless natural
frequencies (w, = Q,R/L) for (a) with surface
effect (b) without surface effect

As can be seen from Figure 4 (a, b), the natural
frequency of the CC is greater and with boundary
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conditions SS and CS, there is little difference, and
also the natural frequency of the CF is lower than
the rest. It is quite clear that considering the effects
of the surface energy will lead to a significant
decrease in the natural frequency of the nanoshell.
The dimensionless undamped natural frequency of
the piezoelectric nanoshell versus length-to-small
radius ratio (L/R) is illustrated in Figure 5 (a, b).

===§Swith SE

===CSwith SE
\ ===CCwith SE
S CF with SE

-
-
. S~
h..~
-
~
-

n
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Dimentionless »
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a1 o
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=

e o

NN

w e
;
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Lo
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L/R
(a)
0.75]
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=— (S without SE
0.7 CC without SE| ]
= ' — CF without SE
g \
W /
§ 0.65 1
Pty
s
B
-
3
‘g 0.6r N 7
Q
0.55¢ 1
I
L L L L L L L L L L L
4 6 8 10 12 14
L/R
(b)

Fig. 5. The effect of length-to-small radius ratio
L/R on dimensionless undamped natural
frequencies (w,, = Q,R/L) for (a) with surface
effect (b) without surface effect

As it is seen, for all boundary conditions with and
without surface energy effects, with the increase of
the length-to-small radius ratio L/R, the
fundamental frequency decreases. In addition, the
length-to-small radius ratio of cylindrical shell has
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an important effect on natural frequency. The
reason is that a higher L/R ratio lead to a decrease
in the nanoshell stiffness, and cause to lower
frequencies the
vibrational behavior of the shell with the larger

natural of nanoshells and
L/R ratio is less sensitive to variations of boundary
conditions. As can be seen from Figure 5 (a, b), the
natural frequency of the CC is greater and with
boundary conditions SS and CS, there is little
difference, and also the natural frequency of the CF
is lower than the rest. It is quite clear that
considering the effects of the surface energy will
lead to a significant decrease in the natural
frequency of the nanoshell.

Figure 6 (a, b) illustrates the effect of thickness
shell to small radius ratio hy/R on dimensionless
undamped natural frequencies (w, = Q,R/L) of
the piezoelectric nano-shell. It can be seen that for
all boundary conditions with and without surface
energy effects, with the increase of the nanoshell
stiffness coefficient the fundamental frequency
increases.
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Fig. 6. The effect of different hy /R ratio on

dimensionless undamped natural frequencies

(wn = Q,R/L) for (a) with surface effect (b)
without surface effect

As can be seen from Figure 2 (a, b), the natural
frequency of the CC is greater and with boundary
conditions SS and CS, there is little difference, and
also the natural frequency of the CF is lower than
the rest. Similar to other previous figures, it is quite
clear that considering the effects of the surface
energy will lead to a significant decrease in the
natural frequency of the nanoshell.

Also the
frequencies (w, = Q,R/L) of the piezoelectric
nano-shell versus thickness piezo to small radius
ratio (h,/R) with and without surface effects are

dimensionless undamped natural

presented in Figure 7 (a, b). As shown in Figure 7,
for all boundary conditions the behavior of the
cases with and without surface effects is almost the
opposite. It can be shown that for all boundary
conditions without surface effects, the fundamental
frequency decrease with the increase of the h,/R
ratio and vice versa, with surface effects, the
fundamental frequency increases with the increase
of the h,, /R ratio. The reason is that in case of with
surface effects a higher h,/R ratio leads to an
increase in the nanoshell stiffness, and cause to
higher natural frequencies of nanoshells. Similar to
other previous results, the natural frequency of the
CC is greater and with boundary conditions SS and
CS, there is little difference, and also the natural
frequency of the CF is lower than the rest and also
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the considering the effects of the surface energy
will lead to a significant decrease in the natural
frequency of the nanoshell.
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Fig. 7. The effect of h,, /R ratio on dimensionless
undamped natural frequencies (w,, = Q,R/L)
for (a) with surface effect (b) without surface

effect

Figure 8 discusses the effect of the length-to-small
radius ratio (L/R) on the dimensionless undamped
natural frequency w, of simple supported (SS)
piezoelectric nanoshells for different values of
nonlocal parameter g using Eringen nonlocal
theory.
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Fig. 8. The effect of length-to-small radius ratio
L/R on dimensionless undamped natural
frequencies (w, = Q,R/L) with different values of
nonlocal parameter y and SS boundary condition

For simple supported (SS) piezoelectric nanoshells,
the dimensionless natural frequency decreases with
the increase of the ratio (L/R). As shown in Figure
8, the natural frequency decreases with increase of
nonlocal parameter yu. The reason is that a higher
nonlocal parameter u leads to a decrease in the
nanoshell stiffness, and cause to lower natural
frequencies of nanoshell.

And finally, the effect of the small radius ratio
hy/R on dimensionless natural frequencies
(wp = QuR/L) of the simple supported (SS)
piezoelectric nanoshell for different values of
nonlocal parameter u are shown in Figure 9 using
Eringen nonlocal theory. As shown in Figure 9, the
dimensionless natural frequency increase with the
increase of the ratio hy/R. Also, the natural
frequency decreases with increase of nonlocal
parameter u. The reason is that a higher nonlocal
parameter y leads to a decrease in the nanoshell
stiffness, and cause to lower natural frequencies of
nanoshell.
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4. Conclusion

Vibration analysis of piezoelectric cylindrical
nanoshell subjected to visco-Pasternak medium
with arbitrary boundary conditions is investigated
by accounting for the simultaneous effects of the
surface elasticity and the different material scale
parameter. To this end, Eringen nonlocal theory
and Gurtin—Murdoch surface/interface theory and
Donnell's theory are used. The governing equations
and boundary conditions are derived using
Hamilton’s principle and also, assumed mode
method combined with Euler—Lagrange method is
used for discretizing equations of motion. The
viscoelastic nanoshell medium is modeled as visco-
Pasternak. A variety of new vibration results
including natural frequencies with and without
nonlocal and surface energy effects for
piezoelectric cylindrical nano-shell with non-
classical restraints as well as different material
parameters are presented, which may serve as
benchmark solution for future researches. The
convergence, accuracy and reliability of the current
formulation are validated by comparisons with
and numerical results
with  excellent
agreements the effects of
nonlocality, nanoshell radius,
circumferential wavenumber, nanoshell damping

existing experimental
published in the literature,
achieved. Also,
surface energy,

coefficient, and foundation damping are accurately
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studied on frequencies and mode
piezoelectric cylindrical nanoshell.

shapes of

Some conclusions are obtained from this study:

v' With comparing the previously published in the
literature, the present results agree very well
with the reference solutions, which indicates
that the methods are suitable and of high
accuracy for free
cylindrical nanoshell.

v For all boundary conditions for as the number

vibration analysis of

of polynomial terms, N, is increased, the value
of the frequency parameter, w,, converges
rapidly and also the convergence mode number
for both cases of the paper results, i.e., Gurtin—
Murdoch  surface/interface and  Eringen
nonlocal theoriesisn =2 andm = 2.

v With the increase of the dimensionless stiffness
coefficient of Winkler foundation K,,, for all
boundary conditions with and without surface
energy effects, the fundamental frequency
increases.

v For all boundary conditions with and without
surface energy effects, with the increase of the
dimensionless  shear of Pasternak
foundation I?p, the fundamental frequency

layer

increases.
v With the increase of the L/R ratio, the
fundamental frequency for all boundary

conditions with and without surface effects
decreases.

v" For all boundary conditions with and without
surface energy effects, with the increase of the
nanoshell stiffness coefficient hy/R the
fundamental frequency increases.

v For all boundary conditions, with considering
of ratio (h,/R), the behavior of the cases with
and without surface effects is almost the
opposite. In case of without surface affects, the
fundamental frequency decrease with the
increase of the hy, /R ratio and vice versa, with
surface effects, the fundamental frequency
increases with the increase of the h,, /R ratio.

v In all mention results, the natural frequency of
the CC is greater and with boundary conditions
SS and CS, there is little difference, and also
the natural frequency of the CF is lower than
the rest.
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For all boundary conditions, the dimensionless
natural frequency decreases with the increase
of the ratio (L/R) and the nonlocal parameter
U.

For all boundary conditions, the dimensionless
natural frequency increase with the increase of
the ratio hy/R and also because of a higher
nonlocal parameter u leads to a decrease in the
nanoshell stiffness, the natural
decreases with increase of nonlocal parameter

U.

frequency
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