
Free vibration analysis of piezoelectric cylindrical nanoshell:  
nonlocal and surface elasticity effects 

 
SAYYID H. HASHEMI KACHAPI 

Department of Mechanical Engineering 
Babol Noshirvani University of Technology 

Shariati Street, Babol, Mazandaran47148-71167 
IRAN 

sha.hashemi.kachapi@gmail.com 
 
Abstract: - Vibration analysis of piezoelectric cylindrical nanoshell subjected to visco-Pasternak medium with 
arbitrary boundary conditions is investigated. In these analysis simultaneous effects of the nonlocal, surface 
elasticity and the different material scale parameter are considered. To this end, Eringen nonlocal theory and 
Gurtin–Murdoch surface/interface theory considering Donnell's shell theory are used. The governing equations 
and boundary conditions are derived using Hamilton’s principle and the assumed mode method combined with 
Euler–Lagrange method is used for discretizing the equations of motion. The viscoelastic nanoshell medium is 
modeled as Visco-Pasternak foundation. A variety of new vibration results including frequencies and mode 
shapes for piezoelectric cylindrical nano-shell with non-classical restraints as well as different material 
parameters are presented. The convergence, accuracy and reliability of the current formulation are validated by 
comparisons with existing experimental and numerical results. Also, the effects of nonlocality, surface energy, 
nanoshell radius, circumferential wavenumber, nanoshell damping coefficient, and foundation damping are 
accurately studied on frequencies and mode shapes of piezoelectric cylindrical nanoshell. 
 Key-Words: - Piezoelectric nanoshell, Gurtin–Murdoch surface/interface theory, Eringen nonlocal theory, 
visco-Pasternak medium, natural frequency.  
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1 Introduction 
Recently, with the development of material science, 
nano-sized piezoelectric elements such as nano-
beams, nano-membranes and nano-shells have been 
fabricated, and are attracting worldwide attention in 
nano-electro-mechanical (NEM) devices [1-3]. 
Since the classical continuum theory is scale-free, it 
fails to predict the size-dependent response of 
nano-structures. Consequently, to consider the 
small scale effect, some non-classical continuum 
theories such as couple stress theory [4], nonlocal 
elasticity theory [5-6], strain gradient theory [7], 
and surface elasticity theory [8-9] have been 
introduced to develop the size-dependent 
continuum models. The electro-elastic 
surface/interface theory expanded from Gurtin-
Murdoch elasticity theory has been used to analyze 
the surface and the size dependent vibration of 
piezoelectric nano-structures [10-14]. In the past 
two decades, investigating the nano-sized and 
surface effects on the mechanical behavior of 

nanostructures have become one of the attractive 
research areas in nanomechanics, as evidenced by 
the large number of publications on this issue [15-
23]. The nonlinear buckling and postbuckling 
behaviors of shear deformable nano-shell under 
radial compressive load were studied by using the 
surface elasticity theory [16]. With considering the 
surface elasticity theory, vibration analysis of fluid-
conveying nanotubes was presented by Wang [18]. 
Surface effects on the dispersion characteristics of 
elastic waves propagating in an infinite 
piezoelectric nanoplate are investigated by Zhang 
et al. based on the surface piezoelectric constitutive 
theory [19]. Also the nonlinear free vibration and 
nonlinear postbuckling behaviors of nano-plates 
were studied by Wang et al. [20]. Theoretical 
formulation based on Sanders’ thin shell theory for 
the natural frequencies of vibration of functionally 
graded cylindrical shells is established by Rahimi 
et al. [21]. Avramov presented nonlinear vibration 
and bifurcation behavior of single-walled carbon 
nanotubes using the Sanders–Koiter shell theory, 
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nonlocal elasticity, Galerkin and the harmonic 
balanced methods [22]. Nonlinear harmonic 
vibration of a piezoelectric-layered nanotube 
conveying fluid flow is investigated by Saadatnia et 
al. using the nonlocal theory and energy approach 
[23]. Also the frequency-amplitude relationship and 
the frequency response of the system are studied. In 
an excellent monograph by Leissa [24], researches 
on the vibration analysis of thin shells before 1970s 
were reviewed. There are also more recent survey 
such as Liew et al. which review articles about 
vibration analysis of shallow shells [25]. Loy et al. 
presented the free vibration analysis of cylindrical 
shells using an improved version of the differential 
quadrature method [26]. According to 
surface/interface and small scale effects, recently, 
Hashemi Kachapi et al. investigated linear and 
nonlinear vibration and stability analysis of multi-
walled piezoelectric nanostructures [27-37]. 

In the present study, the free vibration 
analysis of a piezoelectric cylindrical nanoshell 
subjected to Visco-Pasternak medium with 
arbitrary boundary conditions is investigated usinf 
Eringen nonlocal theory and the Gurtin–Murdoch 
surface/interface theory. A variety of new vibration 
results including the effects of nonlocality, surface 
energy, nanoshell radius, circumferential 
wavenumber, nanoshell damping coefficient, and 
foundation damping with non-classical restraints 
are accurately studied on frequencies and mode 
shapes of piezoelectric cylindrical nanoshell. 

 

2 Problem formulation and governing 
equations 

A cylindrical nano shell embedded with a 
piezoelectric layer and visco-Pasternak medium is 
shown in Figure 1. The nano shell has length of ܮ	, 
mid-surface radius ܴ, thickness of 2݄ே, and 
piezoelectric layer thickness of ݄௣. With the origin 

of coordinate system located on the middle surface 
of nano-shell, the coordinates of a typical point in 
the axial, circumferential and radius directions are 
described by ݔ,  ௣ܭ ,௪ܭ	,respectively. Also ,ݖ and ,ߠ

and ܥ௪ are
 

stiffness coefficient of Winkler 
foundation, shear layer of Pasternak foundation and 
the damping factor of the visco-Pasternak medium 
for the transverse motion, respectively. ܧே, ߭ே and 

 ே represent Young modulus, Poisson ratio and theߩ
mass density of cylindrical nano-shell. It is 
assumed that the material properties nano-shell 
vary through the thickness according to the power 
law function. They are written as: 

ேܧ(1) ൌ ሺܧ௢ െ ூሻܧ ൬
ݖ2 ൅ ݄ே
2݄ே

൰
௤

൅  ூܧ

(2)߭ே ൌ ሺ߭௢ െ ߭ூሻ ൬
ݖ2 ൅ ݄ே
2݄ே

൰
௤

൅ ߭ூ

ேߩ(3) ൌ ሺߩ௢ െ ூሻߩ ൬
ݖ2 ൅ ݄ே
2݄ே

൰
௤

൅ ூߩ

where ݍ is the power-law exponent. The subscripts 
ܱ and ܫ represent the properties of the nano-shell at 
the outer and inner surfaces, respectively. 

 
Fig. 1. A piezoelectric cylindrical nano shell with 

inner and outer surfaces 
 

Young modulus, Poisson ratio, piezoelectric and 
dielectric constants and also the mass density of 
piezoelectric layer are respectively expressed as ܧ௣, 

߭௣, ݁ଷଵ௣, ݁ଷଶ௣, ߟଷଷ௣ and ߩ௣. The surface at the 

outer piezoelectric layer is denoted by ݏଶ, and the 
inner surface is denoted by ݏଵ. The material 
properties of surface ݏଶ are Lamé’s constants ߣ௦మ , 

௦మߤ  residual stress ߬଴
௦మ  and piezoelectric constants 

݁ଷଵ௣
௦మ  and ݁ଷଶ௣

௦మ . Those of the inner surface are 

Lamé’s constants ߣ௦భ ௦భߤ ,  and residual stress ߬଴
௦భ

. 
Due to the character of nano-shell, the state of 
generalized plane stress of shells is assumed, and 
the normal stress in the radial direction is zero. In 
the cylindrical nano-shell, the constitutive relation 
can be expressed as [37, 38]; 

(4)
൝
௫௫ேߪ
ఏఏேߪ
߬௫ఏே

ൡ ൌ ൥
ଵଵேܥ ଵଶேܥ 0
ଶଵேܥ ଶଶேܥ 0
0 0 ଺଺ேܥ

൩ ൝
௫௫ߝ
ఏఏߝ
௫ఏߛ

ൡ,	 

or ሼߪேሽ ൌ ሾܥேሿሼߝሽ,  
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In the outside piezoelectric shell, the constitutive 
relation can be expressed as [37, 38] 

(5)

൝
௫௫௣ߪ
ఏఏ௣ߪ
߬௫ఏ௣

ൡ ൌ ቎
ଵଵ௣ܥ ଵଶ௣ܥ 0
ଶଵ௣ܥ ଶଶ௣ܥ 0
0 0 ଺଺௣ܥ

቏ ൝
௫௫ߝ
ఏఏߝ
௫ఏߛ

ൡ 

െ൥
0 0 ݁ଷଵ௣
0 0 ݁ଷଶ௣
0 0 0

൩൞

ത௫௣ܧ
തఏ௣ܧ
ത௭௣ܧ

ൢ, 

	or							൛ߪ௣ൟ ൌ ሽߝ௣൧ሼܥൣ െ ൣ݁௣൧൛ܧത௣ൟ,

in which the subscripts ܰ and ܲ represent the 
cylindrical nano-shell and piezoelectric layers, 

respectively. ൛ܧത௣ൟ is the vector of electric field for 

piezoelectric layers. ሾܥேሿ and ൣܥ௣൧ are the matrices 

of elastic constants with following elements. 
(6)

ଵଵேܥ ൌ
ேܧ

1 െ ߭ே
ଶ ൌ  ,ଶଶேܥ

ଵଶேܥ ൌ
߭ேܧே
1 െ ߭ே

ଶ ൌ  ,ଶଵேܥ

଺଺ேܥ ൌ
ேܧ

2ሺ1 ൅ ߭ேሻ
 

(7)
ଵଵ௣ܥ ൌ

௣ܧ
1 െ ߭௣ଶ

ൌ  ,ଶଶ௣ܥ

ଵଶ௣ܥ ൌ
߭௣ܧ௣
1 െ ߭௣ଶ

ൌ  ,ଶଵ௣ܥ

଺଺௣ܥ ൌ
௣ܧ

2ሺ1 ൅ ߭௣ሻ

Since the piezoelectric layers are very thin, ܧത௫௣ and 

ത௫௣ܧ) തఏ௣ are assumed to be zeroܧ ൌ തఏ௣ܧ ൌ 0), and 

only the radial component of electric field ܧത௭௣ is 

considered. Consequently, ൛ܧത௣ൟ can be written as 

[39] 

(8)൛ܧത௫௣ തఏ௣ܧ ത௭௣ൟܧ
்
ൌ ሼ0 0 ௣ܸ ݄௣⁄ ሽ், 

where ௣ܸ is the voltage applied to piezoelectric 

layers. In addition, the voltages at the piezoelectric 
surface ܵଶሺݖ ൌ ݄ே ൅ ݄௣ሻ and ଵܵሺݖ ൌ ݄ேሻ are ൅ ௣ܸ 

and െ ௣ܸ , respectively. Based on these 

assumptions, the radial component of electric 
displacement ܦ௭௣ can be presented as 

௭௣ܦ(9) ൌ ݁ଷଵ௣ߝ௫௫ ൅ ݁ଷଶ௣ߝఏఏ ൅  ത௭௣ܧଷଷ௣ߟ

 

2.1 Non- classical Shell theory (Gurtin–
Murdoch surface/interface theory) 
Within the framework of classical shell theory, the 
displacement fields of the nano-shell can be written 
as [38] 

(10)
,ݔ௫ሺݑ ,ߠ ሻݖ ൌ ,ݔሺݑ ሻߠ െ ݖ

,ݔሺݓ߲ ሻߠ

ݔ߲
, 

(11)
,ݔఏሺݑ ,ߠ ሻݖ ൌ ,ݔሺݒ ሻߠ െ

ݖ
ܴ
,ݔሺݓ߲ ሻߠ

ߠ߲
,
 

,ݔ௭ሺݑ(12) ,ߠ ሻݖ ൌ ,ݔሺݓ ,ሻߠ
where ݒ ,ݑ and ݓ stand for the middle surface 
displacements in the ߠ ,ݔ and ݖ directions, 
respectively. The linear deflection and curvatures 
are defined by Donnell's theory as [37, 38] 

(13)

൝
௫௫ߝ
ఏఏߝ
௫ఏߛ

ൡ ൌ ቐ
௫௫଴ߝ

ఏఏߝ
଴

௫ఏߛ
଴
ቑ ൅ ݖ ൝

௫௫ߢ
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௫ఏߢ

ൡ 

ൌ

ە
ۖ
۔

ۖ
ۓ

ݑ߲
ݔ߲

1
ܴ
ݒ߲
ߠ߲

൅
1
ܴ
ݓ

1
ܴ
ݑ߲
ߠ߲

൅
ݒ߲
ݔ߲ ۙ

ۖ
ۘ

ۖ
ۗ

െ ݖ

ە
ۖۖ
۔

ۖۖ
ۓ

߲ଶݓ
ଶݔ߲
1
ܴଶ

߲ଶݓ
ଶߠ߲

2
ܴ
߲ଶݓ
ۙߠ߲ݔ߲

ۖۖ
ۘ

ۖۖ
ۗ

 

in which ߝ௫௫଴ ఏఏߝ ,
଴  and ߛ௫ఏ

଴  are the middle surface 

strains, and ߢ௫௫ ,	ߢఏఏ and ߢ௫ఏ are the curvature 
components of the nano-shell. 
Due to the nano-sized property, the ratio of surface 
to the volume becomes large, and the surface 
energy around the shell imposes significant effect 
on the vibration of nano-structure and the surface 
effect needs to be considered. Based on the Gurtin–
Murdoch surface/interface theory, the constitute 
relations for surfaces can be written as [8-10]. 

ఈఉߪ(14)
௦మ ൌ ߬଴

௦మߜఈఉ ൅ ൫߬଴
௦మ ൅  ఈఉߜ௤௤ߝ௦మ൯ߣ

൅2൫ߤ௦మ െ ߬଴
௦మ൯ߝఈఉ ൅ ߬଴

௦మݑఈ,ఉ
௦మ െ ݁௣

௦మܧ௭௣, 

ఈ௭ߪ
௦మ ൌ ߬଴

௦మݑ௭,ఈ
௦మ  

ఈ௭ߪ
௦భ ൌ ߬଴

௦భݑ௭,ఈ
௦భ , ሺߙ, ߚ ൌ ,ݔ ሻߠ

 
ఈఉߪ
௦భ ൌ ߬଴

௦భߜఈఉ ൅ ൫߬଴
௦భ ൅  ఈఉߜ௤௤ߝ௦భ൯ߣ

൅2൫ߤ௦భ െ ߬଴
௦భ൯ߝఈఉ ൅ ߬଴

௦భݑఈ,ఉ
௦భ , 

in which ߜఈఉ is the Kronecker delta. Furthermore, 

the components of stress at the surfaces can be 
expressed as 

௫௫ߪ(15)
௦మ ൌ ሺߣ௦మ ൅ ௫௫ߝ௦మሻߤ2 ൅ ൫߬଴

௦మ ൅  ఏఏߝ௦మ൯ߣ

൅߬଴
௦మ െ ݁ଷଵ௣

௦మ  ,௭௣ܧ

ఏఏߪ
௦మ ൌ ൫߬଴

௦మ ൅ ௫௫ߝ௦మ൯ߣ ൅ ሺߣ௦మ ൅  ఏఏߝ௦మሻߤ2

െ߬଴
௦మ ݓ
ܴ
൅ ߬଴

௦మ െ ݁ଷଶ௣
௦మ  ௭௣ܧ

௫ఏߪ
௦మ ൌ ௫ఏߛ௦మߤ െ ߬଴

௦మ ቆ
ݒ߲
ݔ߲

െ
ݖ
ܴ
߲ଶݓ
ߠ߲ݔ߲

ቇ ,

ఏ௫ߪ
௦మ ൌ ௫ఏߛ௦మߤ െ ߬଴

௦మ ቆ
1
ܴ
ݑ߲
ߠ߲

െ
ݖ
ܴ
߲ଶݓ
ߠ߲ݔ߲

ቇ 
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௫௭ߪ
௦మ ൌ ߬଴

௦మ ݓ߲
ݔ߲

, ఏ௭ߪ			
௦మ ൌ

߬଴
௦మ

ܴ
ݓ߲
ߠ߲
,	 

௫௭ߪ
௦భ ൌ ߬଴

௦భ ݓ߲
ݔ߲

ఏ௭ߪ								,
௦భ ൌ

߬଴
௦భ

ܴ
ݓ߲
ߠ߲
, 

௫௫ߪ
௦భ ൌ ሺߣ௦భ ൅ ௫௫ߝ௦భሻߤ2 ൅ ൫߬଴

௦భ ൅  ఏఏߝ௦భ൯ߣ

൅߬଴
௦భ  

ఏఏߪ
௦భ ൌ ൫߬଴

௦భ ൅ ௫௫ߝ௦భ൯ߣ ൅ ሺߣ௦భ ൅  ఏఏߝ௦భሻߤ2

െ߬଴
௦భ ݓ
ܴ
൅ ߬଴
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௫ఏߪ
௦భ ൌ ௫ఏߛ௦భߤ െ ߬଴

௦భ ቆ
ݒ߲
ݔ߲

െ
ݖ
ܴ
߲ଶݓ
ߠ߲ݔ߲

ቇ, 

ఏ௫ߪ
௦భ ൌ ௫ఏߛ௦భߤ െ ߬଴

௦భ ቆ
1
ܴ
ݑ߲
ߠ߲

െ
ݖ
ܴ
߲ଶݓ
ߠ߲ݔ߲

ቇ, 

Based on the classical continuum models, ߪ௭௭ is 
neglected due to its small value as compared to 
other normal stress components. But, in the 
nonclassical continuum model, this assumption 
does not satisfy the surface conditions. Thus, it is 
supposed that ߪ௭௭ varies linearly through the 
thickness and satisfies the balance conditions on 
the surfaces [40], i. e. 

௭௭ߪ(16) ൌ 

1
2

ۉ

ۈ
ۇ
ቆ
௫௭ߪ߲
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ߠ߲
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ቇ
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ۋ
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1
ܴ
ఏ௭ߪ߲

௦మ
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൅

ۉ
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ی

ۋ
ۋ
ۋ
ۋ
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 ݖ

By means of Eqs. (15) and (16), ߪ௭௭ can be 
rewritten as 

(17)

௭௭ߪ ൌ

ۉ

ۈ
ۇ

൫߬଴
௦మ െ ߬଴

௦భ൯
2

൅
൫߬଴ݖ

௦మ ൅ ߬଴
௦భ൯

2݄ே ൅ ݄௣ ی

ۋ
ۊ
ൈ 

ቆ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ቇ 

൅ቆ
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2
െ
௦భߩሺݖ ൅ ௦మሻߩ

2݄ே ൅ ݄௣
ቇ
߲ଶݓ
ଶݐ߲

, 

According to Eq. (17), from Eqs. (4) and (5) the 
normal stresses ߪ௫௫ and ߪఏఏ can be rewritten as 

(18a)ߪ௫௫ே ൌ ௫௫ߝଵଵேܥ ൅ ఏఏߝଵଶேܥ ൅
߭ேߪ௭௭
1 െ ߭ே

, 

(18b)ߪఏఏே ൌ ௫௫ߝଶଵேܥ ൅ ఏఏߝଶଶேܥ ൅
߭ேߪ௭௭
1 െ ߭ே

, 

(18c)ߪ௫ఏே ൌ ,௫ఏߛ଺଺ேܥ

(19a)
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൅
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,
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൅
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1 െ ߭௣

,

(19c)ߪ௫ఏ௣ ൌ  ,௫ఏߛ଺଺௣ܥ

 
2.1.1 Governing equations  
In this section, the governing equations of motion 
of the piezoelectric cylindrical nanoshell are 
obtained by applying the assumed mode method. 
The total strain energy considering the surface 
stress effect is expressed as: 

(20)
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In addition, the kinetic energy of the nanoshell can 
be formulated as: 

(21)
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where  

(22)
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where ߩே, ߩ௣ and ߩ௦ are the mass density of 

nanoshell, piezoelectric layer and surfaces, 
respectively. 
The work done by the viscous damping and the 
applied elastic medium load, modeled using spring 
Winkler and shear Pasternak constants, 
respectively, can be expressed as  

(23)௖ܹ ൌ െ
1
2
න න ቊܥ௪ ൬

ݓ߲
ݐ߲
൰
ଶ

ቋ
ଶగ

଴

௅

଴
 ݔ݀ߠܴ݀

(24)௪ܹ௣ ൌ െන න ൜൬
ݓ௪ܭ

െܭ௣׏ଶݓ
൰ݓൠ

ଶగ

଴

௅

଴
 ݔ݀ߠܴ݀

in which ܥ௪, ׏ଶ,  ௣ are the dampingܭ ௪ andܭ

coefficient of the viscoelastic medium, the Laplace 
operator, Winkler modulus, and the shear modulus 
of surrounding elastic medium, respectively [41]. 

Also, ׏ଶൌ
డమ

డ௫మ
൅

ଵ

ோమ
డమ

డఏమ
. 

In Eq. (20), the stresses and moment resultants are 
defined as: 

(25a)

ሺ ௫ܰ௫, ఏܰఏ, ௫ܰఏሻ ൌ න ௜௝ேߪ
௛ಿ

ି௛ಿ

 ݖ݀

൅න ௜௝௣ߪ
௛ಿା௛೛

௛ಿ

ݖ݀ ൅ ௦భߪ ൅ ௦మߪ  

ൌ ሺ ௫ܰே, ఏܰே, ௫ܰఏேሻ ൅ ൫ ௫ܰ௣, ఏܰ௣, ௫ܰఏ௣൯ 

൅ቆߪ௫௫, ,ఏఏߪ
1
2
ሺߪ௫ఏ ൅ ఏ௫ሻቇߪ

௦భ

 

൅൬ߪ௫௫, ,ఏఏߪ
1
2
ሺߪ௫ఏ ൅ ఏ௫ሻ൰ߪ

௦మ
 

(25b)

ሺܯ௫௫,ܯఏఏ,ܯ௫ఏሻ ൌ න ௜௝ேߪ
௛ಿ

ି௛ಿ

 ݖ݀ݖ

൅න ௜௝௣ߪ
௛ಿା௛೛

௛ಿ

ݖ݀ݖ ൅ ௦మ൫݄ேߪ ൅ ݄௣൯ െ  ௦భ݄ேߪ

ൌ ሺܯ௫ே,ܯఏே,ܯ௫ఏேሻ ൅ ൫ܯ௫௣,ܯఏ௣,ܯ௫ఏ௣൯ 

൅ቆߪ௫௫, ,ఏఏߪ
1
2
ሺߪ௫ఏ ൅ ఏ௫ሻቇߪ

௦మ

൫݄ே ൅ ݄௣൯ 

െቀߪ௫௫, ,ఏఏߪ
ଵ

ଶ
ሺߪ௫ఏ ൅ ఏ௫ሻቁߪ

௦భ
݄ே 

(25c)

௫ܰ௫ ൌ ௫௫଴ߝଵଵܣ ൅ ఏఏߝଵଶܣ
଴ ൅ ௫௫ߢଵଵܤ ൅  ఏఏߢଵଶܤ

൅൫߬଴
௦భ ൅ ߬଴

௦మ െ ௫ܰ௣൯ 

൅ܨଵଵ
∗ ቆ

߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ቇ ൅ ଵଵܬ
∗ ߲ଶݓ
ଶݐ߲

,

(25d)
ఏܰఏ ൌ ௫௫଴ߝଶଵܣ ൅ ఏఏߝଶଶܣ

଴ ൅ ௫௫ߢଶଵܤ ൅  ఏఏߢଶଶܤ

െ
൫߬଴

௦భ ൅ ߬଴
௦మ൯

ܴ
ݓ ൅ ሺ߬଴

௦భ ൅ ߬଴
௦మ െ ఏܰ௣ሻ 

൅ܨଵଵ
∗ ሺ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ሻ ൅ ଵଵܬ
∗ ߲ଶݓ
ଶݐ߲

,
 

(25e)௫ܰఏ ൌ ௫ఏߛ଺଺ܣ
଴ ൅  ,௫ఏߢ଺଺ܤ

(25f)

௫௫ܯ ൌ ௫௫଴ߝଵଵܤ ൅ ఏఏߝଵଶܤ
଴ ൅  ௫௫ߢଵଵܦ

൅ܦଵଶߢఏఏ ൅ ߬଴
௦మ൫݄ே ൅ ݄௣൯ െ ߬଴

௦భ݄ே െܯ௫௣ 

൅ܧଵଵ
∗ ሺ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ሻ ൅ ଵଵܩ
∗ ߲ଶݓ
ଶݐ߲

,
 

(25g)

ఏఏܯ ൌ ௫௫଴ߝଶଵܤ ൅ ఏఏߝଶଶܤ
଴ ൅  ௫௫ߢଶଵܦ

൅ܦଶଶߢఏఏ ൅ ߬଴
௦మ ቀ1 െ

ݓ
ܴ
ቁ ൫݄ே ൅ ݄௣൯ 

െ߬଴
௦భ ቀ1 െ

ݓ
ܴ
ቁ ݄ே െܯఏ௣ 

൅ܧଵଵ
∗ ሺ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ሻ ൅ ଵଵܩ
∗ ߲ଶݓ
ଶݐ߲

,
 

(25h)ܯ௫ఏ ൌ ௫ఏߛ଺଺ܤ
଴ ൅  ,௫ఏߢ଺଺ܦ

in which 

(26)

௜௝ܣ ൌ ௜௝ேܣ ൅ ௜௝௣ܣ ൅ ௜௝ܣ
∗ , 

௜௝ܤ ൌ ௜௝ேܤ ൅ ௜௝௣ܤ ൅ ௜௝ܤ
∗ ,	 

௜௝ܦ ൌ ௜௝ேܦ ൅ ௜௝௣ܦ ൅ ௜௝ܦ
∗ , 

ଵଵܨ
∗ ൌ ଵଵேܨ

∗ ൅ ଵଵ௣ܨ
∗ , ଵଵܧ

∗ ൌ ଵଵேܧ
∗ ൅ ଵଵ௣ܧ

∗ ,

and 

(27a)

൫ܣ௜௝ே, ,௜௝ேܤ ௜௝ே൯ܦ ൌ න ,௜௝ேሺ1ܥ ,ݖ ଶሻݖ
௛ಿ

ି௛ಿ

 ,ݖ݀

൫ܣ௜௝௣, ,௜௝௣ܤ  ௜௝௣൯ܦ

ൌ න ,௜௝௣ሺ1ܥ ,ݖ ଶሻݖ
௛ಿା௛೛

௛ಿ

,ݖ݀
 

(27b)
൫ ௫ܰ௣, ఏܰ௣൯ ൌ න ൫݁ଷଵ௣, ݁ଷଶ௣൯ܧത௭௣

௛ಿା௛೛

௛ಿ

 ݖ݀

൅൫݁ଷଵ௣
௦ , ݁ଷଶ௣

௦ ൯ܧത௭௣, 

(27c)
൫ܯ௫௣,ܯఏ௣൯ ൌ න ൫݁ଷଵ௣, ݁ଷଶ௣൯ܧത௭௣

௛ಿା௛೛

௛ಿ

 ݖ݀ݖ

൅൫݁ଷଵ௣
௦ , ݁ଷଶ௣

௦ ൯ܧത௭௣൫݄ே ൅ ݄௣൯, 

(27d)

ଵଵܣ
∗ ൌ ଶଶܣ

∗ ൌ ሺߣ௦భ ൅  ௦భሻߤ2
൅ሺߣ௦మ ൅  ,௦మሻߤ2
ଵଶܣ
∗ ൌ ଶଵܣ

∗ ൌ ൫߬଴
௦భ ൅ ௦భ൯ߣ ൅ ൫߬଴

௦మ ൅  ,௦మ൯ߣ

଺଺ܣ
∗ ൌ ሺߤ௦భ െ

߬଴
௦భ

2
ሻ ൅ ሺߤ௦మ െ

߬଴
௦మ

2
ሻ, 

(27e)

ଵଵܤ
∗ ൌ ଶଶܤ

∗ ൌ ሺߣ௦మ ൅ ௦మሻ൫݄ேߤ2 ൅ ݄௣൯ 

െሺߣ௦భ ൅  ,௦భሻሺ݄ேሻߤ2
ଵଶܤ
∗ ൌ ଶଵܤ

∗ ൌ ൫߬଴
௦మ ൅ ௦మ൯൫݄ேߣ ൅ ݄௣൯ 

െ൫߬଴
௦భ ൅  ,௦భ൯ሺ݄ேሻߣ

଺଺ܤ
∗ ൌ ቆߤ௦మ െ

߬଴
௦మ

2
ቇ ൫݄ே ൅ ݄௣൯ 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.16 Sayyid H. Hashemi Kachapi

E-ISSN: 2224-2856 145 Volume 15, 2020



െሺߤ௦భ െ
߬଴
௦భ

2
ሻሺ݄ேሻ, 

(27f)

ଵଵܦ
∗ ൌ ଶଶܦ

∗ ൌ ሺߣ௦మ ൅ ௦మሻ൫݄ேߤ2 ൅ ݄௣൯
ଶ
 

൅ሺߣ௦భ ൅  ,௦భሻሺ݄ேሻଶߤ2

ଵଶܦ
∗ ൌ ଶଵܦ

∗ ൌ ൫߬଴
௦మ ൅ ௦మ൯൫݄ேߣ ൅ ݄௣൯

ଶ
 

൅൫߬଴
௦భ ൅  ,௦భ൯ሺ݄ேሻଶߣ

଺଺ܦ	
∗ ൌ ቆߤ௦మ െ

߬଴
௦మ

2
ቇ ൫݄ே ൅ ݄௣൯

ଶ
 

൅ሺߤ௦భ െ
߬଴
௦భ

2
ሻሺ݄ேሻଶ, 

(27g)

ଵଵேܨ
∗ ൌ 

න
߭ே

ሺ1 െ ߭ேሻ

௛ಿ

ି௛ಿ

ۉ

ۈ
ۇ

൫߬଴
௦మ െ ߬଴

௦భ൯
2

൅
൫߬଴

௦మ ൅ ߬଴
௦భ൯ݖ

2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

ଵଵ௣ܨ
∗ ൌ 

න
߭௣

൫1 െ ߭௣൯

௛ಿା௛೛

௛ಿ

ۉ

ۈ
ۇ

൫߬଴
௦మ െ ߬଴

௦భ൯
2

൅
൫߬଴

௦మ ൅ ߬଴
௦భ൯ݖ

2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

(27h)

ଵଵேܬ
∗ ൌ 

න
߭ே

ሺ1 െ ߭ேሻ

௛ಿ

ି௛ಿ

ۉ

ۈ
ۇ

ሺߩ௦భ െ ௦మሻߩ

2

െ
ሺߩ௦భ ൅ ݖ௦మሻߩ
2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

ଵଵ௣ܬ
∗ ൌ 

න
߭௣

൫1 െ ߭௣൯

௛ಿା௛೛

௛ಿ

ۉ

ۈ
ۇ

ሺߩ௦భ െ ௦మሻߩ

2

െ
ሺߩ௦భ ൅ ݖ௦మሻߩ
2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

(27i)

ଵଵேܧ	
∗ ൌ 

න
߭ே

ሺ1 െ ߭ேሻ

௛ಿ

ି௛ಿ

ۉ

ۈ
ۇ

൫߬଴
௦మ െ ߬଴

௦భ൯ݖ
2

൅
൫߬଴

௦మ ൅ ߬଴
௦భ൯ݖଶ

2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

ଵଵ௣ܧ
∗ ൌ 

න
߭௣

൫1 െ ߭௣൯

௛ಿା௛೛

௛ಿ

ۉ

ۈ
ۇ

൫߬଴
௦మ െ ߬଴

௦భ൯ݖ
2

൅
൫߬଴

௦మ ൅ ߬଴
௦భ൯ݖଶ

2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

(27j)ܩଵଵே
∗ ൌ 

න
߭ே

ሺ1 െ ߭ேሻ

ۉ

ۈ
ۇ

ሺߩ௦భ െ ݖ௦మሻߩ
2

െ
ሺߩ௦భ ൅ ଶݖ௦మሻߩ

2݄ே ൅ ݄௣ ی

ۋ
௛ಿۊ

ି௛ಿ

 ,ݖ݀

ଵଵ௣ܩ
∗ ൌ 

න
߭௣

൫1 െ ߭௣൯

௛ಿା௛೛

௛ಿ

ۉ

ۈ
ۇ

ሺߩ௦భ െ ݖ௦మሻߩ
2

െ
ሺߩ௦భ ൅ ଶݖ௦మሻߩ

2݄ே ൅ ݄௣ ی

ۋ
ۊ
 ,ݖ݀

Note that, because of geometric symmetry, the 

expressions ܤ௜௝ே and ܨଵଵே
∗  are zero, i.e. ൫ܤ௜௝ே ൌ

ଵଵேܨ
∗ ൌ 0൯

 
and also, for free vibration of 

piezoelectric nanoshell ௣ܸ is zero, as a result 

൫ ௫ܰ௣ ൌ ఏܰ௣ ൌ ௫௣ܯ ൌ ఏ௣ܯ ൌ 0൯. 
In following, the equations of motion and 
corresponding boundary conditions of the 
piezoelectric nano shell can be derived from 
Hamilton’s principle. By taking the variations of 
displacements ݑ,  integrating by parts, and ,ݓ and ݒ

equating the coefficients of ݑߜ   ،  ,to zero ݓߜ and ݒߜ
the governing equations of motion are derived as: 

(28a)ݑߜ:
߲ ௫ܰ௫

ݔ߲
൅
1
ܴ
߲ ௫ܰఏ

ߠ߲
ൌ ܫ

߲ଶݑ
ଶݐ߲

, 

(28b)ݒߜ:
߲ ௫ܰఏ

ݔ߲
൅
1
ܴ
߲ ఏܰఏ

ߠ߲
ൌ ܫ

߲ଶݒ
ଶݐ߲

, 

(28c)

:ݓߜ
߲ଶܯ௫௫

ଶݔ߲
൅
2
ܴ
߲ଶܯ௫ఏ

ߠ߲ݔ߲
൅

1
ܴଶ

߲ଶܯఏఏ

ଶߠ߲
 

െ ఏܰఏ

ܴ
൅ ௣ܭ ቆ

߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ቇ 

ൌ ܫ
߲ଶݓ
ଶݐ߲

൅ ௪ܥ
ݓ߲
ݐ߲

൅  ,ݓ௪ܭ

and boundary conditions are obtained as follows: 

(29a)ݑߜ ൌ 0 ݎ݋ ௫ܰ௫݊௫ ൅
1
ܴ ௫ܰఏ݊ఏ ൌ 0, 

(29b)ݒߜ ൌ 0 ݎ݋ ௫ܰఏ݊௫ ൅
1
ܴ ఏܰఏ݊ఏ ൌ 0, 

(29c)

ݓߜ ൌ 0 ݎ݋  

൬
௫௫ܯ߲

ݔ߲
൅
1
ܴ
௫ఏܯ߲

ߠ߲
൰݊௫ 

൅൬
1
ܴ
௫ఏܯ߲

ݔ߲
൅

1
ܴଶ

ఏఏܯ߲

ߠ߲
൰ ݊ఏ ൌ 0, 

(29d)

ݓ߲
ݔ߲

ൌ 0 ݎ݋ ௫௫݊௫ܯ ൅
1
ܴ
௫ఏ݊ఏܯ ൌ 0,

 

(29e)
ݓ߲
ߠ߲

ൌ 0 ݎ݋
1
ܴ
௫ఏ݊௫ܯ ൅

1
ܴଶ

ఏఏ݊ఏܯ ൌ 0,
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In this paper, the assumed mode method is used to 
obtain the equations of motion using Euler–
Lagrange method. After substituting Eqs. (25) into 
strain and kinetic energies Eqs. (20) and (21) and 
using following dimensionless parameters  

(30)

തݑ ൌ
ݑ
݄ே

, ݒ̅ ൌ
ݒ
݄ே

ഥݓ, ൌ
ݓ
݄ே

, ߦ ൌ
ݔ
ܮ
, 

തܾ ൌ
ܾ
ܮ
, ௜௝ேܣ̅ ൌ

௜௝ேܣ
ଵଵேܣ

, ത௜௝ேܤ ൌ
௜௝ேܤ

ଵଵே݄ேܣ
	, 

ഥ௜௝ேܦ ൌ
௜௝ேܦ

ଵଵே݄ேܣ
ଶ , ௜௝௣ܣ̅ ൌ

௜௝௣ܣ
ଵଵேܣ

, 

௜௝ܣ̅
∗ ൌ

௜௝ܣ
∗

ଵଵேܣ
, ത௜௝௣ܤ ൌ

௜௝௣ܤ
ଵଵே݄ேܣ

, 

ത௜௝ܤ
∗ ൌ

௜௝ܤ
∗

ଵଵே݄ேܣ
, ഥ௜௝௣ܦ ൌ

௜௝௣ܦ
ଵଵே݄ேܣ

ଶ , 

ഥ௜௝ܦ
∗ ൌ

௜௝ܦ
∗

ଵଵே݄ேܣ
ଶ 	, തଵଵேܨ

∗ ൌ
ଵଵேܨ
∗

ଵଵே݄ேܣ
, 

തଵଵ௣ܨ
∗ ൌ

ଵଵ௣ܨ
∗

ଵଵே݄ேܣ
, തଵଵேܧ

∗ ൌ
ଵଵேܧ
∗

ଵଵே݄ேܣ
ଶ , 

തଵଵ௣ܧ
∗ ൌ

ଵଵ௣ܧ
∗

ଵଵே݄ேܣ
ଶ , ଵ̅ଵேܬ

∗ ൌ
ଵଵேܬ
∗

ே݄ேߩ
ଶ , 

ଵ̅ଵ௣ܬ	
∗ ൌ

ଵଵ௣ܬ
∗

ே݄ேߩ
ଶ , ଵଵேܩ̅

∗ ൌ
ଵଵேܩ
∗

ே݄ேߩ
ଷ , 

ଵଵ௣ܩ̅
∗ ൌ

ଵଵ௣ܩ
∗

ே݄ேߩ
ଷ 	, ഥܰ௫௣

∗ ൌ ௫ܰ௣
∗

ଵଵேܣ
, ഥܰఏ௣

∗ ൌ ఏܰ௣
∗

ଵଵேܣ
, 

∗ഥ௫௣ܯ ൌ
௫௣ܯ
∗

ଵଵே݄ேܣ
ഥఏ௣ܯ,

∗ ൌ
ఏ௣ܯ
∗

ଵଵே݄ேܣ
, 

߬̅଴
௦ ൌ

߬଴
௦

ଵଵேܣ
	 ,݉଴ ൌ

ܮ
ܴ
ൌ
1
തܴ ,݉ଵ ൌ

ܮ
݄ே
, 

݉ଶ ൌ
݄ே
ܴ
ൌ ത݄

ே	, ത݄௣ ൌ
݄௣
ܴ
,݉ଷ ൌ

ܫ
ே݄ேߩ2

, 

݉ସ ൌ
݄௣
݄ே

	, ߤ ൌ
݁଴ܽ
ܮ
, ߬ ൌ ඨݐ

ଵଵேܣ
ଶܮே݄ேߩ2

ൌ Ωݐ, 

ഥ߱ ൌ
߱
Ω
, ഥ௪ܭ ൌ

ଶܮ௪ܭ

݉ଷܣଵଵே
, ഥ௣ܭ ൌ

௣ܭ
݉ଷܣଵଵே

, 

௪̅ܥ ൌ
௪ܥ
ܫ
, 

Respectively, strain and kinetic energies are 
obtained as follows: 

(31)

ߨ ൌ
1
2
න න ቊߙଵ ൬

തݑ߲
ߦ߲
൰
ଶ

൅ ଶߙ
തݑ߲
ߦ߲

ݒ߲̅
ߠ߲

ଶగ

଴

௅

଴
 

൅ߙଷݓഥ
തݑ߲
ߦ߲

൅ ସߙ ൬
ݒ߲̅
ߠ߲
൰
ଶ

൅ ഥଶݓହߙ ൅ ഥݓ଺ߙ
ݒ߲̅
ߠ߲

 

൅ߙ଻ ൬
തݑ߲
ߠ߲
൰
ଶ

൅ ଼ߙ ൬
ݒ߲̅
ߦ߲
൰
ଶ

൅ ଽߙ
ݒ߲̅
ߦ߲

തݑ߲
ߠ߲

 

൅ߙଵ଴
തݑ߲
ߦ߲

߲ଶݓഥ
ଶߦ߲

൅ ଵଵߙ
തݑ߲
ߦ߲

߲ଶݓഥ
ଶߠ߲

൅ ଵଶߙ
ݒ߲̅
ߠ߲

߲ଶݓഥ
ଶߦ߲

 

൅ߙଵଷݓഥ
߲ଶݓഥ
ଶߦ߲

൅ ଵସߙ
ݒ߲̅
ߠ߲

߲ଶݓഥ
ଶߠ߲

൅ ഥݓଵହߙ
߲ଶݓഥ
ଶߠ߲

 

൅ߙଵ଺
തݑ߲
ߠ߲

߲ଶݓഥ
ߠ߲ߦ߲

൅ ଵ଻ߙ
ݒ߲̅
ߦ߲

߲ଶݓഥ
ߠ߲ߦ߲

൅ ଵ଼ߙ ቆ
߲ଶݓഥ
ଶߦ߲

ቇ
ଶ

 

൅ߙଵଽ
߲ଶݓഥ
ଶߦ߲

߲ଶݓഥ
ଶߠ߲

൅ ଶ଴ߙ ቆ
߲ଶݓഥ
ଶߠ߲

ቇ
ଶ

൅ ଶଵߙ ቆ
߲ଶݓഥ
ߠ߲ߦ߲

ቇ
ଶ

 

൅ߙଶଶݓഥ ൅ ଶଷߙ
തݑ߲
ߦ߲

൅ ଶସߙ
ݒ߲̅
ߠ߲

൅ ଶହߙ
߲ଶݓഥ
ଶߦ߲

 

൅ߙଶ଺
߲ଶݓഥ
ଶߠ߲

൅ ଶ଻ߙ
߲ଶݓഥ
ଶߦ߲

߲ଶݓഥ
߲߬ଶ

൅ ଶ଼ߙ
߲ଶݓഥ
ଶߠ߲

߲ଶݓഥ
߲߬ଶ

 

൅ߙଶଽ
തݑ߲
ߦ߲

߲ଶݓഥ
߲߬ଶ

൅ ଷ଴ߙ
ݒ߲̅
ߠ߲

߲ଶݓഥ
߲߬ଶ

൅ ഥݓଷଵߙ
߲ଶݓഥ
߲߬ଶ

 

൅ߟଷଷܧത௭௣ଶ ݄௣ൟܴ݀ݔ݀ߠ, 

(32)ܶ ൌ
1
2
න න

ۉ

ۈ
൬ۇ

തݑ߲
߲߬
൰
ଶ

൅ ൬
ݒ߲̅
߲߬
൰
ଶ

൅ ൬
ഥݓ߲
߲߬
൰
ଶ

ی

ۋ
ଶగۊ

଴

௅

଴
ݔ݀ߠܴ݀

 

where coefficients of ߙ௞ሺ݇ ൌ 1. .31ሻ are introduced 
in Appendix 1. 
Also the visco-pasternak effects are obtained as 
follows: 

(33)௖ܹ ൌ െ
1
2
න න ቊܥ௪̅ ൬

ഥݓ߲
߲߬
൰
ଶ

ቋ
ଶగ

଴

௅

଴
 ݔ݀ߠܴ݀

(34)

௪ܹ௣

ൌ െන න

ە
ۖ
۔

ۖ
ۓ

ۉ

ۈ
ۈ
ۇ

ഥݓഥ௪ܭ

െܭഥ௣

ۉ

ۈ
ۇ

߲ଶݓഥ
ଶߦ߲

൅݉଴
ଶ ߲

ଶݓഥ
یଶߠ߲

ۋ
ۊ

ی

ۋ
ۋ
ۊ
ഥݓ

ۙ
ۖ
ۘ

ۖ
ۗ

ଶగ

଴

௅

଴
ܴ݀

 

2.2 Nonlocal Eringen shell theory 
According to Eringen [5, 6], for the piezoelectric 
cylindrical shell, the nonlocal constitutive relations 
for Eqs. (4) and (5) can be expressed 

(35)

൝
௫௫ேߪ
ఏఏேߪ
߬௫ఏே

ൡ െ ሺ݁଴ܽሻଶ׏ଶ ൝
௫௫ேߪ
ఏఏேߪ
߬௫ఏே

ൡ 

ൌ ൥
ଵଵேܥ ଵଶேܥ 0
ଶଵேܥ ଶଶேܥ 0
0 0 ଺଺ேܥ

൩ ൝
௫௫ߝ
ఏఏߝ
௫ఏߛ

ൡ,									 

or ሼߪேሽ െ ሺ݁଴ܽሻଶ׏ଶሼߪேሽ ൌ ሾܥேሿሼߝሽ,  

(36)൝
௫௫௣ߪ
ఏఏ௣ߪ
߬௫ఏ௣

ൡ െ ሺ݁଴ܽሻଶ׏ଶ ൝
௫௫௣ߪ
ఏఏ௣ߪ
߬௫ఏ௣

ൡ 
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ൌ ቎
ଵଵ௣ܥ ଵଶ௣ܥ 0
ଶଵ௣ܥ ଶଶ௣ܥ 0
0 0 ଺଺௣ܥ

቏ ൝
௫௫ߝ
ఏఏߝ
௫ఏߛ

ൡ 

െ൥
0 0 ݁ଷଵ௣
0 0 ݁ଷଶ௣
0 0 0

൩൞

ത௫௣ܧ
തఏ௣ܧ
ത௭௣ܧ

ൢ, 

	or							൛ߪ௣ൟ െ ሺ݁଴ܽሻଶ׏ଶ൛ߪ௣ൟ 

ൌ ሽߝ௣൧ሼܥൣ െ ൣ݁௣൧൛ܧത௣ൟ,
Also, the radial component of electric displacement 
 ௭௣ Eq. (9) can be presented asܦ

(37)
௭௣ܦ െ ሺ݁଴ܽሻଶ׏ଶܦ௭௣ ൌ ݁ଷଵ௣ߝ௫௫ 

൅݁ଷଶ௣ߝఏఏ ൅  ത௭௣ܧଷଷ௣ߟ

where ׏ଶൌ ∂ଶ ⁄ଶݔ∂ ൅ ∂ଶ ∂ሺܴߠሻଶ⁄  is the Laplace 
operator; ሺ݁଴ܽሻ is the scale coefficient revealing 
the size effect on the response of nanostructures. 
From Eqs. (35)-(37) and using Eqs. (25a, b) and 
ignoring of surface energy effects for 

௫ܰ௫, ఏܰఏ, ௫ܰఏ,ܯ௫௫,ܯఏఏ and ܯ௫ఏ in Eqs. (25a, b), 
we have 

(38a)௫ܰ௫ െ ሺ݁଴ܽሻଶ׏ଶ ௫ܰ௫ ൌ ௫௫଴ߝଵଵܣ  

൅ܣଵଶߝఏఏ
଴ ൅ ௫௫ߢଵଵܤ ൅ ఏఏߢଵଶܤ െ ௫ܰ௣

(38b)
ఏܰఏ െ ሺ݁଴ܽሻଶ׏ଶ ఏܰఏ ൌ ௫௫଴ߝଶଵܣ  

൅ܣଶଶߝఏఏ
଴ ൅ ௫௫ߢଶଵܤ ൅ ఏఏߢଶଶܤ െ ఏܰ௣ 

(38c)
௫ܰఏ െ ሺ݁଴ܽሻଶ׏ଶ ௫ܰఏ ൌ ௫ఏߛ଺଺ܣ

଴  

൅ܤ଺଺ߢ௫ఏ, 

(38d)
௫௫ܯ െ ሺ݁଴ܽሻଶ׏ଶܯ௫௫ ൌ ௫௫଴ߝଵଵܤ  

൅ܤଵଶߝఏఏ
଴ ൅ ௫௫ߢଵଵܦ ൅ ఏఏߢଵଶܦ െ  ,௫௣ܯ

(38e)
ఏఏܯ െ ሺ݁଴ܽሻଶ׏ଶܯఏఏ ൌ ௫௫଴ߝଶଵܤ  

൅ܤଶଶߝఏఏ
଴ ൅ ௫௫ߢଶଵܦ ൅ ఏఏߢଶଶܦ െ  ,ఏ௣ܯ

(38f)ܯ௫ఏ െ ሺ݁଴ܽሻଶ׏ଶܯ௫ఏ ൌ ௫ఏߛ଺଺ܤ
଴ ൅   ,௫ఏߢ଺଺ܦ

Note that all relations of equations (25)-(27) with 
the elimination of all surface effect parameters are 
established for the Eringen nonlocal theory. 
Substituting Eqs. (38a)-(38f) into the governing 
equations (28a-c) and (29a-e) yields 

(39a)
				:ݑߜ

߲ ௫ܰ௫

ݔ߲
൅
1
ܴ
߲ ௫ܰఏ

ߠ߲
 

ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻܫ
߲ଶݑ
ଶݐ߲

, 

(39b)
				:ݒߜ

߲ ௫ܰఏ

ݔ߲
൅
1
ܴ
߲ ఏܰఏ

ߠ߲
 

ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻܫ
߲ଶݒ
ଶݐ߲

, 

(39c)

:ݓߜ
߲ଶܯ௫௫

ଶݔ߲
൅
2
ܴ
߲ଶܯ௫ఏ

ߠ߲ݔ߲
൅

1
ܴଶ

߲ଶܯఏఏ

ଶߠ߲
 

െ ఏܰఏ

ܴ
ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻ ൈ 

ۉ

ۈ
ܫۇ

߲ଶݓ
ଶݐ߲

൅ ௪ܥ
ݓ߲
ݐ߲

൅ ݓ௪ܭ

െܭ௣ ቆ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ቇ
ی

ۋ
ۊ
, 

and boundary conditions are obtained as (29a)-
(29e). By ignoring of surface energy effects Eqs. 
(25c)-(25h) and substituting into Eqs. (39a)-(39c), 
we obtain the following equations of motion: 

(40a)

ଵଵܣ
߲ଶݑ
ଶݔ߲

൅
଺଺ܣ
ܴଶ

߲ଶݑ
ଶߠ߲

൅
ሺܣଵଶ ൅ ଺଺ሻܣ

ܴ
߲ଶݒ
ߠ߲ݔ߲

 

൅
ଵଶܣ
ܴ

ݓ߲
ݔ߲

െ ଵଵܤ
߲ଷݓ
ଷݔ߲

 

൅
ሺെܤଵଶ െ ଺଺ሻܤ2

ܴଶ
߲ଷݓ
ଶߠ߲ݔ߲

൅
߲
ݔ߲

൫െ ௫ܰ௣൯	 

ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻܫ
߲ଶݑ
ଶݐ߲

, 

(40b)

଺଺ܣ
ܴ

߲ଶݑ
ଶߠ߲

൅
ଶଵܣ
ܴ

߲ଶݑ
ߠ߲ݔ߲

൅ ଺଺ܣ
߲ଶݒ
ଶݔ߲

൅
ଶଶܣ
ܴଶ

߲ଶݒ
ଶߠ߲

 

൅
ଶଶܣ
ܴଶ

ݓ߲
ߠ߲

െ
ሺܤଶଵ ൅ ଺଺ሻܤ2

ܴ
߲ଷݓ
ߠଶ߲ݔ߲

 

െ
ଶଶܤ
ܴଷ

߲ଷݓ
ଷߠ߲

െ
1
ܴ
߲ ఏܰ௣

ߠ߲
 

ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻܫ
߲ଶݒ
ଶݐ߲

, 

(40c)

െ
ଶଵܣ
ܴ

ݑ߲
ݔ߲

൅ ଵଵܤ
߲ଷݑ
ଷݔ߲

 

൅
ሺܤଶଵ ൅ ଺଺ሻܤ2

ܴଶ
߲ଷݑ
ଶߠ߲ݔ߲

െ
ଶଶܣ
ܴଶ

ݒ߲
ߠ߲

 

൅
ሺܤଵଶ ൅ ଺଺ሻܤ2

ܴଶ
߲ଷݒ
ߠଶ߲ݔ߲

൅
ଶଶܤ
ܴଷ

߲ଷݒ
ଷߠ߲

െ
ଶଶܣ
ܴଶ

 ݓ

൅
ሺܤଵଶ ൅ ଶଵሻܤ

ܴ
߲ଶݓ
ଶݔ߲

൅
ଶଶܤ2
ܴଷ

߲ଶݓ
ଶߠ߲

 

൅ܦଵଵ
߲ସݓ
ସݔ߲

െ
ሺܦଵଶ ൅ ଶଵܦ ൅ ଺଺ሻܦ4

ܴଶ
߲ସݓ

ଶߠଶ߲ݔ߲
 

െ
ଶଶܦ
ܴସ

߲ସݓ
ସߠ߲

൅ ఏܰ௣

ܴ
െ
߲ଶܯ௫௣

ଶݔ߲
െ

1
ܴଶ

߲ଶܯఏ௣

ଶߠ߲
 

ൌ ሺ1 െ ሺ݁଴ܽሻଶ׏ଶሻ ൈ 

ۉ

ۈ
ܫۇ

߲ଶݓ
ଶݐ߲

൅ ௪ܥ
ݓ߲
ݐ߲

൅ ݓ௪ܭ

െܭ௣ ቆ
߲ଶݓ
ଶݔ߲

൅
1
ܴଶ

߲ଶݓ
ଶߠ߲

ቇ
ی

ۋ
ۊ

 

And by introducing the dimensionless parameters 
(30), Eqs. (40a)-(40c) can be expressed in the 
dimensionless form as 
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(41a) 
ଵߚ
߲ଶݑത
ଶߦ߲

൅ ଶߚ
߲ଶݑത
ଶߠ߲

൅ ଷߚ
߲ଶ̅ݒ
ߠ߲ߦ߲

൅ ସߚ
ഥݓ߲
ߦ߲

 

൅ߚହ
߲ଷݓഥ
ଷߦ߲

൅ ଺ߚ
߲ଷݓഥ
ଶߠ߲ߦ߲

ൌ ሺ1 െ ഥଶሻ׏ଶߤ
߲ଶݑത
߲߬ଶ

, 

(41b) 

଻ߚ
߲ଶݑത
ଶߠ߲

൅ ଼ߚ
߲ଶݑത
ߠ߲ߦ߲

൅ ଽߚ
߲ଶ̅ݒ
ଶߦ߲

൅ ଵ଴ߚ
߲ଶ̅ݒ
ଶߠ߲

 

൅ߚଵଵ
ഥݓ߲
ߠ߲

൅ ଵଶߚ
߲ଷݓഥ
ߠଶ߲ߦ߲

൅ ଵଷߚ
߲ଷݓഥ
ଷߠ߲

 

ൌ ሺ1 െ ഥଶሻ׏ଶߤ
߲ଶ̅ݒ
߲߬ଶ

, 

(41c) 

ଵସߚ
തݑ߲
ߦ߲

൅ ଵହߚ
߲ଷݑത
ଷߦ߲

൅ ଵ଺ߚ
߲ଷݑത
ଶߠ߲ߦ߲

൅ ଵ଻ߚ
ݒ߲̅
ߠ߲

 

൅ߚଵ଼
߲ଷ̅ݒ
ߠଶ߲ߦ߲

൅ ଵଽߚ
߲ଷ̅ݒ
ଷߠ߲

൅ ഥݓଶ଴ߚ  

൅ߚଶଵ
߲ଶݓഥ
ଶߦ߲

൅ ଶଶߚ
߲ଶݓഥ
ଶߠ߲

൅ ଶଷߚ
߲ସݓഥ
ସߦ߲

 

൅ߚଶସ
߲ସݓഥ

ଶߠଶ߲ߦ߲
൅ ଶହߚ

߲ସݓഥ
ସߠ߲

൅  ଶ଺ߚ

ൌ ሺ1 െ ഥଶሻ׏ଶߤ ൈ 

ۉ

ۈ
ۇ
߲ଶݓഥ
߲߬ଶ

൅ ௪̅ܥ
ഥݓ߲
߲߬

൅ ഥݓഥ௪ܭ

െܭഥ௣ ቆ
߲ଶݓഥ
ଶߦ߲

൅ ݉଴
ଶ ߲

ଶݓഥ
ଶߠ߲

ቇ
ی

ۋ
ۊ

 

where ׏ഥଶൌ ߲ଶ ⁄ଶߦ߲ ൅ ݉଴
ଶ ߲ଶ ⁄ଶߠ߲  and also 

coefficients of ߚ௞ሺ݇ ൌ 1. .26ሻ are introduced in 
Appendix 2. Then, using Eqs. (25a, b) and ignoring 
of surface energy effects for ௫ܰ௫, ఏܰఏ, ௫ܰఏ, ܯ௫௫, 
 ௫ఏ and substitution into boundaryܯ and	ఏఏ,ܯ
conditions Eqs. (29a)-(29e) and dimensionless 
parameters (30), the boundary conditions can be 
expressed in the dimensionless form as 

(42a) 

തݑߜ ൌ 0,

ۉ

ۈ
ۇ

ଵߚ̅
തݑ߲
ߦ߲

൅ ଶߚ̅
ݒ߲̅
ߠ߲

൅ ഥݓଷߚ̅

൅̅ߚସ
߲ଶݓഥ
ଶߦ߲

൅ ହߚ̅
߲ଶݓഥ
ଶߠ߲

൅ ଺ߚ̅
ی

ۋ
ۊ
଴|ݔ
ଵ݊௫ 

൅ቆ̅ߚ଻
തݑ߲
ߠ߲

൅ ଼ߚ̅
ݒ߲̅
ߦ߲

൅ ଽߚ̅
߲ଶݓഥ
ߠ߲ߦ߲

ቇ ଴|ߠ
ଶగ ൌ 0, 

(42b)

ݒ̅ߜ ൌ 0,

ۉ

ۈ
ۇ
ଵ଴ߚ̅

തݑ߲
ߠ߲

൅ ଵଵߚ̅
ݒ߲̅
ߦ߲

൅̅ߚଵଶ
߲ଶݓഥ
ߠ߲ߦ߲ ی

ۋ
ۊ
଴|ݔ
ଵ݊௫ 

൅

ۉ

ۈ
ۇ

ଵଷߚ̅
തݑ߲
ߦ߲

൅ ଵସߚ̅
ݒ߲̅
ߠ߲

൅ ഥݓଵହߚ̅

൅̅ߚଵ଺
߲ଶݓഥ
ଶߦ߲

൅ ଵ଻ߚ̅
߲ଶݓഥ
ଶߠ߲

൅ ଵ଼ߚ̅
ی

ۋ
ۊ
଴|ߠ

ଶగ ൌ 0, 

(42c)

ഥݓߜ ൌ 0,

ۉ

ۈ
ۈ
ۈ
ۇ
ଵଽߚ̅

߲ଶݑത
ଶߦ߲

൅ ଶ଴ߚ̅
߲ଶݑത
ଶߠ߲

൅ ଶଵߚ̅
߲ଶ̅ݒ
ߠ߲ߦ߲

൅̅ߚଶଶ
ഥݓ߲
ߦ߲

൅ ଶଷߚ̅
߲ଷݓഥ
ଷߦ߲

൅̅ߚଶସ
߲ଷݓഥ
ଶߠ߲ߦ߲ ی

ۋ
ۋ
ۋ
ۊ

଴|ݔ
ଵ݊௫ 

൅

ۉ

ۈ
ۈ
ۈ
ۇ
ଶହߚ̅

߲ଶݑത
ߠ߲ߦ߲

൅ ଶ଺ߚ̅
߲ଶ̅ݒ
ଶߦ߲

൅ ଶ଻ߚ̅
߲ଶ̅ݒ
ଶߠ߲

൅̅ߚଶ଼
ഥݓ߲
ߠ߲

൅ ଶଽߚ̅
߲ଷݓഥ
ଷߠ߲

൅̅ߚଷ଴
߲ଷݓഥ
ߠଶ߲ߦ߲ ی

ۋ
ۋ
ۋ
ۊ

଴|ߠ
ଶగ ൌ 0, 

(42d)

ഥݓ߲
ߦ߲

ൌ 0, 

ۉ

ۈ
ۇ

ଷଵߚ̅
തݑ߲
ߦ߲

൅ ଷଶߚ̅
ݒ߲̅
ߠ߲

൅ ഥݓଷଷߚ̅

൅̅ߚଷସ
߲ଶݓഥ
ଶߦ߲

൅ ଷହߚ̅
߲ଶݓഥ
ଶߠ߲

൅ ଷ଺ߚ̅
ی

ۋ
ۊ
଴|ݔ
ଵ 

൅ቆ̅ߚଷ଻
തݑ߲
ߠ߲

൅ ଷ଼ߚ̅
ݒ߲̅
ߦ߲

൅ ଷଽߚ̅
߲ଶݓഥ
ߠ߲ߦ߲

ቇߠ|଴
ଶగ ൌ 0,

(42e)

ഥݓ߲
ߠ߲

ൌ 0,  

ቆ̅ߚସ଴
തݑ߲
ߠ߲

൅ ସଵߚ̅
ݒ߲̅
ߦ߲

൅ ସଶߚ̅
߲ଶݓഥ
ߠ߲ߦ߲

ቇ ଴|ݔ
ଵ݊௫ 

൅

ۉ

ۈ
ۇ

ସଷߚ̅
തݑ߲
ߦ߲

൅ ସସߚ̅
ݒ߲̅
ߠ߲

൅ ഥݓସହߚ̅

൅̅ߚସ଺
߲ଶݓഥ
ଶߦ߲

൅ ସ଻ߚ̅
߲ଶݓഥ
ଶߠ߲

൅ ସ଼ߚ̅
ی

ۋ
ۊ
଴|ߠ

ଶగ ൌ 0,
 

where coefficients of ̅ߚ௞ሺ݇ ൌ 1. .48ሻ are introduced 
in Appendix 3. 
 

2.3 Solution procedure 
In the assumed mode method, displacement 

and shear deformation are written in terms of 
generalized coordinate and mode function as 
follows [38]: 

(43a)

,ݔሺݑ ,ߠ ሻݐ ൌ 

෍ ෍ቈ
௠,௝,௖ሺ߬ሻݑ cosሺ݆ߠሻ
൅ݑ௠,௝,௦ሺ߬ሻ sinሺ݆ߠሻ

቉ ߯௠௝ሺߦሻ
ே

௝ୀଵ

ெభ

௠ୀଵ

 

൅ ෍ ሻߦ௠,଴ሺ߬ሻ߯௠଴ሺݑ

ெమ

௠ୀଵ

ൌ 

෍ ሻߦ௜ሺ߬ሻ߯௜ሺݑ

ெమାெభൈே

௜ୀଵ

 ሻߠ௜ሺߴ
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(43b)

,ݔሺݒ ,ߠ ሻݐ ൌ 

෍ ෍ቈ
௠,௝,௖ሺ߬ሻݒ sinሺ݆ߠሻ
൅ݒ௠,௝,௦ሺ߬ሻ cosሺ݆ߠሻ

቉ ߶௠௝ሺߦሻ
ே

௝ୀଵ

ெభ

௠ୀଵ

 

൅ ෍ ሻߦ௠,଴ሺ߬ሻ߶௠଴ሺݒ

ெమ

௠ୀଵ

ൌ 

෍ ሻߠ௥ሺߙሻߦ௥ሺ߬ሻ߶௥ሺݒ

ெమାெభൈே

௥ୀଵ
 

(43c)

,ݔሺݓ ,ߠ ሻݐ ൌ 

෍ ෍ቈ
௠,௝,௖ሺ߬ሻݓ cosሺ݆ߠሻ
൅ݓ௠,௝,௦ሺ߬ሻ sinሺ݆ߠሻ

቉ ሻߦ௠௝ሺߚ
ே

௝ୀଵ

ெభ

௠ୀଵ

 

൅ ෍ ሻߦ௠଴ሺߚ௠,଴ሺ߬ሻݓ

ெమ

௠ୀଵ

ൌ 

෍ ሻߠሻ߰௦ሺߦ௦ሺߚ௦ሺ߬ሻݓ

ெమାெభൈே

௦ୀଵ

where ߯௜ሺߦሻ, ߶௥ሺߦሻ and ߚ௦ሺߦሻ are modal functions 
which satisfy the required geometric boundary 
conditions. ݑ௜ሺ߬ሻ, ݒ௥ሺ߬ሻ and ݓ௦ሺ߬ሻ are generalized 
coordinates. In the present work, the Euler 
Bernoulli bending mode shapes are used to solve 
the classical theory of shell as ߚ௦ሺߦሻ and also the 
mode shape of the rod is used for ߯௜ሺߦሻ and ߶௥ሺߦሻ 
modal functions which satisfy the required 
geometric boundary conditions in all shell theories 
for these two directions. 
Substituting Eqs. (43) into Eqs. (31)-(34) and using 
Euler–Lagrange method the following reduced-
order model of the system is obtained. 

(44a)
ሾሺܯሻ௨௅

௨ ሿሼݑതሷ ሽ ൅ ሾሺܯሻ௨௅
௪ ሿሼݓഥሷ ሽ ൅ ሾሺܭሻ௨௅

௨ ሿሼݑതሽ 
൅ሾሺܭሻ௨௅

௩ ሿሼ̅ݒሽ ൅ ሾሺܭሻ௨௅
௪ ሿሼݓഥሽ ൌ  ,ത௨௣௅ܨ

(44b)
ሾሺܯሻ௩௅

௩ ሿሼ̅ݒሷ ሽ ൅ ሾሺܯሻ௩௅
௪ ሿሼݓഥሷ ሽ ൅ ሾሺܭሻ௩௅

௨ ሿሼݑതሽ 
൅ሾሺܭሻ௩௅

௩ ሿሼ̅ݒሽ ൅ ሾሺܭሻ௩௅
௪ ሿሼݓഥሽ ൌ ,ത௩௣௅ܨ

(44c)
ሾሺܯሻ௪௅

௪ ሿሼݓഥሷ ሽ ൅ ሾሺܥሻ௪௅
௪ ሿሼݓഥሶ ሽ ൅ ሾሺܭሻ௪௅

௨ ሿሼݑതሽ 
൅ሾሺܭሻ௪௅

௩ ሿሼ̅ݒሽ ൅ ሾሺܭሻ௪௅
௪ ሿሼݓഥሽ ൌ ,ത௪௣௅ܨ

where ൣሺܯሻ௤௅
௥ ൧ ,	ሾሺܥሻ௪௪ሿ and ൣሺܭሻ௤௥ ൧ are mass, 

damping and stiffness matrices, respectively, in 
directions of ݒ ,ݑ and ݎ) ݓ, ݍ ൌ ,ݑ ,ݒ  ,ሻ . Alsoݓ
 ത௪௣௅ are applied loads byܨ ത௩௣௅ andܨ ,ത௨௣௅ܨ

piezoelectric voltage and surface stress. For free 
vibration of piezoelectric nanoshell ܨത are zero, and 
as a result ሺܨത௨௣௅ ൌ ത௩௣௅ܨ ൌ ത௪௣௅ܨ ൌ 0ሻ. All 

coefficients of mass and stiffness matrixes Eqs. 
44(a)-(c) are presented in Appendix 4. Also for 

Hamilton principle, substituting Eqs. (43) into Eqs. 
(41)-(42) results in the following reduced-order 
model of the system: 

(45a) 

ሾሺܯሻ௨ு
௨ ൅ ሺܯ௕௖ሻ௨ு

௨ ሿሼݑതሷ ሽ 
൅ሾሺܭሻ௨ு

௨ ൅ ሺܭ௕௖ሻ௨ு
௨ ሿሼݑതሽ 

൅ሾሺܭሻ௨ு
௩ ൅ ሺܭ௕௖ሻ௨ு

௩ ሿሼ̅ݒሽ 
൅ሾሺܭሻ௨ு

௪ ൅ ሺܭ௕௖ሻ௨ு
௪ ሿሼݓഥሽ ൅ ത௨௣ுܨ ൌ 0, 

(45b) 

ሾሺܯሻ௩ு
௩ ሿሼ̅ݒሷ ሽ ൅ ሾሺܭሻ௩ு

௨ ൅ ሺܭ௕௖ሻ௩ு
௨ ሿሼݑതሽ 

൅ሾሺܭሻ௩ு
௩ ൅ ሺܭ௕௖ሻ௩ு

௩ ሿሼ̅ݒሽ ൅ ሾሺܭሻ௩ு
௪ ሿሼݓഥሽ 

൅ܨത௩௣ு ൌ 0,

(45c)

ሾሺܯሻ௪ு
௪ ሿሼݓഥሷ ሽ ൅ ሾሺܥሻ௪ு

௪ ሿሼݓഥሶ ሽ 
൅ሾሺܭሻ௪ு

௨ ൅ ሺܭ௕௖ሻ௪ு
௨ ሿሼݑതሽ 

൅ሾሺܭሻ௪ு
௩ ൅ ሺܭ௕௖ሻ௪ு

௩ ሿሼ̅ݒሽ 
൅ሾሺܭሻ௪ு

௪ ൅ ሺܭ௕௖ሻ௪ு
௪ ሿሼݓഥሽ ൅ ത௪௣ுܨ ൌ 0,

where ൣሺܯሻ௤ு
௥ ൧ ,	ሾሺܥሻ௪ு

௪ ሿ and ൣሺܭሻ௤ு
௥ ൧ are mass, 

damping and stiffness matrices, respectively, in 
directions of ݒ ,ݑ and ݎ) ݓ, ݍ ൌ ,ݑ ,ݒ  ,ሻ. Alsoݓ
 ത௪௣ு are applied loads byܨ ത௩௣ு andܨ ,ത௨௣ுܨ

piezoelectric voltage and surface stress and for free 
vibration of piezoelectric nanoshell ܨത are zero, as a 
result ሺܨത௨௣ ൌ ത௩௣ܨ ൌ ത௪௣ܨ ൌ 0ሻ. All coefficients of 

mass and stiffness matrixes Eqs. 45(a)-(c) are 
presented in Appendix 5. 
Natural frequencies and mode shapes can be 
obtained from solving following eigenvalue 
equation: 

(46)ൣሾܭሿ െ ߱௠௡ଶ ሾܯሿ൧ሼݑ௠௡ ௠௡ሽ்ݓ		௠௡ݒ ൌ 0, 
 

3 Numerical results and Discussions 
In this section, at first, convergence study of 

a piezoelectric cylindrical nano-shell with arbitrary 
boundary conditions is investigated for Gurtin–
Murdoch surface/interface theory and Eringen 
nonlocal theory. Then the surface energy effects 
using the Gurtin–Murdoch surface/interface theory 
on the free vibration analysis of a piezoelectric 
cylindrical nano-shell with arbitrary boundary 
conditions is investigated and at the end, the natural 
frequency analysis of a simply supported 
piezoelectric cylindrical nano-shell is presented 
using the Eringen nonlocal theory. In order to 
simplify the presentation, CC, SS, CS and CF 
represent clamped edges, simply supported edges, 
clamped-simply supported edges and clamped-free 
edges, respectively and also for simplification of 
surface effect is represented SE. The non-
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homogeneous nano-shell considered in the 
following examples is composed of stainless steel 
and nickel and the nonhomogeneous distribution of 
properties in the thickness direction is varied 
according to the volume fraction power-law 
function. The material properties for nanoshell 
(stainless steel and nickel) and also the 
piezoelectric layer (PZT-4 material) are shown in 
Table 1 and Table 2, respectively [42].  

 
Table 1 Properties of stainless steel and nickel [42] 

Stainless steel Nichel 

ࢇࡼࡳሺ࡮ࡱ ߭஻ ߩ஻ሺ݇݃	݉ି ܽܲܩሺ்ܧ ሺ்݇݃ߩ ்߭ ݉ି

૛૙ૡ 0.381 8166 205 0.31 8900 

 
Table 2 Properties of PZT-4 [42] 

ࡼࡳሺ࢖ࡱ ⁄࡯ሺ࢖૜૚ࢋ ࢖࣏ ⁄࡯ሺ࢖૜૛ࢋ ሺ૚૙ି૚૚࢖૜૜ࣁ ࢓ࢍ࢑ሺ࢖࣋

ૢ૞ 0.3 െ5.2 െ5.2 560 7500 

Also, the material property of surface effects and 
geometrical parameters used in all following results 
are shown in Table 3. 
 

Table 3 The material property of surface effects 
and geometrical parameters 

ࡸ ሻ࢓ሺࡾ ⁄ࡾ ࡺࢎ	   ⁄ࡾ ࢖ࢎ	  ⁄ࡾ ⁄ࡺ૚ሺ࢙ࣅ   ⁄ࡺ૚ሺ࢙ࣆ

૚ ൈ ૚૙ି 10 0.05 0.03 4.448 2.774

૙࣎
 ૚࢙

ሺࡺ ⁄࢓ ሻ 

⁄௦భሺ݇݃ߩ ௣ܸሺܸሻ ߣ௦మሺܰ ݉⁄ ⁄௦మሺܰߤ ߬଴
௦మሺܰ⁄

૙. ૟ 3.17 ൈ 11 ൈ 10ି 4.448 2.774 0.6 

࢖૜૚ࢋ	
࢙ ሺ࡯ 	݁ଷଶ௣

௦ ሺߩ⁄ܥ௦మሺ݇݃⁄ .௪ሺܰܥ	 ܵ ⁄௪ሺܰܭ	 )௣ܭ

ܰ) 

െ૜ ൈ ૚ െ3 ൈ 105.61 ൈ 13
ൈ 10ି଻ 

1
ൈ 10ଶ଴

1
ൈ 10ିଶ

 
Of course, the geometrical parameters can be 
varying according to the type of problem. In this 
paper, the results are presented in dimensionless 
form and thus the results are not limited to a 
particular type of matter. The data presented in the 
form of sample data to approximate the numbers 
used in the actual range. 
 

3.1 Convergence and comparison studies 
The method proposed in this paper is validated by 
comparing the present numerical results with 
previously published in the literature. If we neglect 

the piezoelectric, visco-Pasternak and surface 
effects, the present model can be reduced to the 
macroscopic cylindrical shell model. The 

dimensionless natural frequencies ቀ߱௡ ൌ

Ωܴඥሺ1 െ ߭ଶሻߩ ⁄ܧ ቁ of present work are compared 

with macroscopic cylindrical shell which 
previously given by Loy et al. [26] that is shown in 
Table 4 for the three classical boundary conditions. 
The parameters used in this example are: ݉ ൌ 1, 
ܮ ܴ⁄ ൌ 20, 	݄ே ܴ⁄ ൌ 0.01, and ߭ ൌ 0.3. It can be 
observed from Table 4 that the present results agree 
very well with the reference solutions, which 
indicates that the method presented in this paper is 
suitable and of high accuracy for free vibration 
analysis of cylindrical shells with classical 
boundary conditions. The slight differences in the 
results may be attributed to the different shell 
theories and solution approaches adopted in the 
literature and in this paper. 
 

Table 4 Comparison of dimensionless natural 
frequencies for SS, SC and CC boundary 

conditions for a homogeneous cylindrical shells 

࢔ SS CS CC 

 Prese
nt 

Loy 
et al. 
(1997
) 

Prese
nt 

Loy 
et al. 
(1997
) 

Prese
nt 

Loy 
et al. 
(1997
) 

1 0.016
101 

0.016
101 

0.023
299 

0.023
974 

0.034
074 

0.032
885 

2 0.005
225 

0.009
382 

0.010
963 

0.011
225 

0.014
202 

0.013
932 

3 0.021
753 

0.022
105 

0.018
553 

0.022
310 

0.018
713 

0.022
672 

4 0.034
303 

0.042
095 

0.036
300 

0.042
139 

0.041
386 

0.042
208 

 
Also, in all wave numbers shown, the natural 
frequency of the CC is greater, and the natural 
frequency of the SS is lower than the rest. The only 
significant difference is related to the state of SS in 
modes ݊ ൌ 2 and ݊ ൌ 4. By removing the equation 
from the dimensionless state and by referring to the 
analytical solution given by Rao SS [45], the 
solution obtained by the present paper, compared to 
reference Loy et al. [26], is much closer to the 
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solution presented in reference Rao SS [45], as a 
result the lower frequency found in this paper is 
correct. As an example of the Rao SS [45], the 
natural frequencies of transverse vibration of a 
circular cylindrical shell simply supported at ݔ ൌ 0 
and ݔ ൌ ݈ for the following data: ܧ ൌ 30 ൈ
10଺	݅ݏ݌, ߭ ൌ 0.3, ߩ ൌ 7.324 ൈ 10ିଵ1b െ
secଶ inସ⁄ , ܴ ൌ 10	݅݊, ݈ ൌ 40	݅݊ and ݄ ൌ 0.1	݅݊ for 
the ሺ݉, ݊ሻ ൌ ሺ1,2ሻ, ሺ1,3ሻ and ሺ3,2ሻ are 2,375.8223, 
1,321.9526 and 10,086.031, respectively and for 
present work with the same data as given reference 
Rao SS [45] and for the ሺ݉, ݊ሻ ൌ ሺ1,2ሻ, ሺ1,3ሻ and 
ሺ3,2ሻ are 2,394.635 , 1,343.182 and 10,211.415, 
respectively. The slight differences in the results 
may be attributed to the different shell theories and 
solution approaches adopted in the literature and in 
this paper. 

Table 5 show a complete convergence of the 
natural frequency parameter,	߱௡, for SS, CS, CC 
and CF piezoelectric nanoshell for ܰ ൌ 2,4,6 
considering with the Gurtin–Murdoch 
surface/interface theory and the material and 
geometrical parameters of Tables (1-3). It is 
observed that for all boundary conditions as the 
number of polynomial terms,	ܰ, is increased, the 
value of the frequency parameter, ߱௡, converges 
rapidly. With considering of the two succesasing 
values of ܰ, it is shows that as ܰ increases, the 
percentage difference between the successive 
frequency approximations decreases. Thus the error 
as shown above is less 1 per cent, which is well 
within the limits of engineering tolerance. The 
minimum frequency in this case is associated with 
the circumferential wave number ݊ ൌ 2. This 
assertion is valid for the entire range of shell 
parameters and for all type of boundary conditions. 
 
Table 5 Convergence of dimensionless undamped 
natural frequencies ߱௡ ൌ Ωഥ௡ܴ/ܮ of the SS, SC, 

CC and CF piezoelectric cylindrical shells 

 SS CS 

ܰ ࢔
ൌ 2 

ܰ
ൌ 4 

ܰ
ൌ 6 

ܰ
ൌ 2 

ܰ
ൌ 4 

ܰ
ൌ 6

0 0.059
839 

0.059
839 

0.059
839 

0.059
839 

0.059
839 

0.059
839 

1 0.021
835 

0.021
835 

0.021
835 

0.029
098 

0.024
138 

0.022
793 

2 0.025
465 

0.025
465 

0.025
465 

0.027
229 

0.026
294 

0.025
910 

3 0.059
553 

0.059
553 

0.059
554 

0.059
553 

0.059
442 

0.059
408 

 CC CF 

࢔ ܰ
ൌ 2

ܰ
ൌ 4

ܰ
ൌ 6 

ܰ
ൌ 2 

ܰ
ൌ 4

ܰ
ൌ 6

0 0.059
839 

0.059
839 

0.059
839 

0.029
919 

0.029
919 

0.029
919 

1 0.047
385 

0.027
307 

0.024
021 

0.012
998 

0.008
620 

0.007
387 

2 0.061
296 

0.028
399 

0.026
886 

0.026
962 

0.024
242 

0.024
108 

3 0.085
927 

0.059
707 

0.059
517 

0.060
695 

0.059
190 

0.059
171 

  
As can be seen from Table 5, in all wave numbers 
shown, the natural frequency of the CC is greater, 
and the natural frequency of the CF is lower than 
the rest. Also, a convergence and accuracy study of 
the natural frequency ߱௡ of the SS piezoelectric 
nanoshells for Eringen nonlocal theory with the 
material and geometrical parameters of Tables (1-
3) is presented in Table 6 with varying total 
numbers of nodes ܰ and for various circumferential 
wave numbers ݊. 
 
Table 6 Convergence of dimensionless undamped 
natural frequencies ߱௡ ൌ Ωഥ௡ܴ/ܮ of the Eringen 
nonlocal theory for SS piezoelectric cylindrical 

shells 

ࣆ  ൌ ૙ ࣆ ൌ ૙. ૙૛ 

࢔ ܰ ൌ 1 ܰ ൌ 2 ܰ ൌ 1 ܰ ൌ 2 

1 0.567012 0.543459 0.554995 0.531641

2 1.064967 1.060514 0.987180 0.982913

3 1.577035 1.575583 1.350387 1.349085

4 2.093065 2.092441 1.632448 1.631933

ߤ  ൌ ߤ 0.05 ൌ 0.1 

࢔ ܰ ൌ 1 ܰ ൌ 2 ܰ ൌ 1 ܰ ൌ 2 

1 0.502426 0.480069 0.391778 0.372328

2 0.748597 0.744961 0.471781 0.469163

3 0.871548 0.870564 0.496306 0.495676

4 0.933748 0.933389 0.506176 0.505961
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Note that the nonlocal parameter ߤ ൌ 0 
corresponds to the piezoelectric cylindrical 
nanoshell without the nonlocal effect. As can be 
seen from Table 5, the dimensionless natural 
frequency of SS piezoelectric nanoshells decreases 
with increase of nonlocal parameter ߤ. The reason 
is that a higher nonlocal parameter ߤ leads to a 
decrease in the nanoshell stiffness, and cause to 
lower natural frequencies of nanoshell, showing the 
softening effect observed by others (see Ke [46]). 
Also, for all nonlocal parameter ߤ, the natural 
frequencies decrease with increase of the node 
number ܰ and increase with increase of the 
circumferential wave number ݊. As a result, the 
convergence mode number for both cases of the 
paper results (Table 5-6), i.e., Gurtin–Murdoch 
surface/interface and Eringen nonlocal theories is 
݊ ൌ 2 and ൌ 2 . Some other studies in Applied 
Mechanics can be checked in [43] and [44]. 
 
3.2. Parametric study 
The convergence and comparison study of the 
present work was verified in the previous 
subsection. In this subsection, we will study the 
effect of important parameters of cylindrical 
piezoelectric nanoshell on vibration behavior of 
this system.  
In this subsection, first, the surface energy effects 
using the Gurtin–Murdoch surface/interface theory 
on the free vibration analysis of a piezoelectric 
cylindrical nanoshell with arbitrary boundary 
conditions is investigated and then, the natural 
frequency analysis of a simply supported (SS) 
piezoelectric cylindrical nanoshell is presented 
using the Eringen nonlocal theory. 
Figure 2 (a, b) illustrates the effect of 
dimensionless stiffness coefficient of Winkler 
foundation 	ܭഥ௪ on dimensionless undamped natural 
frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) of the piezoelectric 
nano-shell. It can be seen that for all boundary 
conditions with and without surface energy effects, 
with the increase of the nanoshell stiffness 
coefficient, the fundamental frequency increases. 
As can be seen from Figure 2 (a, b), the natural 
frequency of the CC is greater, and the natural 
frequency of the CF is lower than the rest. It is 
quite clear that considering the effects of the 

surface energy will lead to a significant decrease in 
the natural frequency of the nanoshell. 

(a)  

(b)  
Fig. 2. The effect of dimensionless stiffness 

coefficient of Winkler foundation ܭഥ௪ on 
dimensionless natural frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) 

for (a) with surface effect (b) without surface 
effect 
 

Furthermore, mode shapes associated to the natural 
frequencies of cylindrical piezoelectric nano-shell 
are illustrated in Figure 3 (a-h) for different 
dimensionless stiffness coefficient of Winkler 
foundation 	ܭഥ௪  and for mode number (݉ ൌ 3, ݊ ൌ
4). 
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(a) SS, 	ܭഥ௪ ൌ 1 

 
 

 
(b) SS, 	ܭഥ௪ ൌ 3 

 
(c) CS, 	ܭഥ௪ ൌ 1 

 
(d) CS, 	ܭഥ௪ ൌ 3 

 
(e) CC, 	ܭഥ௪ ൌ 1   

  

 
(f) CC, 	ܭഥ௪ ൌ 3 

  

 
(g) CF, 	ܭഥ௪ ൌ 1   

 
(h) CF, 	ܭഥ௪ ൌ 3 
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Fig. 3. Some selected mode shapes for different 
dimensionless stiffness coefficient of Winkler 

foundation 	ܭഥ௪  
  

The effect of dimensionless shear layer of 
Pasternak foundation 	ܭഥ௣ on dimensionless natural 

frequencies of the piezoelectric nano-shell are 
depicted in Figure 4. It can be seen that for all 
boundary conditions with and without surface 
energy effects, with the increase of the nanoshell 
shear layer coefficient, the fundamental frequency 
increases. 

  

(a) 

  
(b) 

Fig. 4. The effect of dimensionless shear layer of 
Pasternak foundation 	ܭഥ௣ on dimensionless natural 

frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) for (a) with surface 
effect (b) without surface effect 

 
As can be seen from Figure 4 (a, b), the natural 
frequency of the CC is greater and with boundary 

conditions SS and CS, there is little difference, and 
also the natural frequency of the CF is lower than 
the rest. It is quite clear that considering the effects 
of the surface energy will lead to a significant 
decrease in the natural frequency of the nanoshell. 
The dimensionless undamped natural frequency of 
the piezoelectric nanoshell versus length-to-small 
radius ratio (ܮ ܴ⁄ ) is illustrated in Figure 5 (a, b).  

 

 
(a)  

(b)  
Fig. 5. The effect of length-to-small radius ratio 

ܮ ܴ⁄  on dimensionless undamped natural 
frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) for (a) with surface 

effect (b) without surface effect 
 

As it is seen, for all boundary conditions with and 
without surface energy effects, with the increase of 
the length-to-small radius ratio ܮ ܴ⁄ , the 
fundamental frequency decreases. In addition, the 
length-to-small radius ratio of cylindrical shell has 
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an important effect on natural frequency. The 
reason is that a higher ܮ ܴ⁄  ratio lead to a decrease 
in the nanoshell stiffness, and cause to lower 
natural frequencies of nanoshells and the 
vibrational behavior of the shell with the larger 
ܮ ܴ⁄  ratio is less sensitive to variations of boundary 
conditions. As can be seen from Figure 5 (a, b), the 
natural frequency of the CC is greater and with 
boundary conditions SS and CS, there is little 
difference, and also the natural frequency of the CF 
is lower than the rest. It is quite clear that 
considering the effects of the surface energy will 
lead to a significant decrease in the natural 
frequency of the nanoshell. 
Figure 6 (a, b) illustrates the effect of thickness 
shell to small radius ratio ݄ே ܴ⁄  on dimensionless 
undamped natural frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) of 
the piezoelectric nano-shell. It can be seen that for 
all boundary conditions with and without surface 
energy effects, with the increase of the nanoshell 
stiffness coefficient the fundamental frequency 
increases. 

 

(a)  

(b)  
Fig. 6. The effect of different ݄ே ܴ⁄  ratio on 
dimensionless undamped natural frequencies 
(߱௡ ൌ Ωഥ௡ܴ/ܮ) for (a) with surface effect (b) 

without surface effect 
 

As can be seen from Figure 2 (a, b), the natural 
frequency of the CC is greater and with boundary 
conditions SS and CS, there is little difference, and 
also the natural frequency of the CF is lower than 
the rest. Similar to other previous figures, it is quite 
clear that considering the effects of the surface 
energy will lead to a significant decrease in the 
natural frequency of the nanoshell. 
Also the dimensionless undamped natural 
frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) of the piezoelectric 
nano-shell versus thickness piezo to small radius 
ratio (݄௣ ܴ⁄ ) with and without surface effects are 

presented in Figure 7 (a, b). As shown in Figure 7, 
for all boundary conditions the behavior of the 
cases with and without surface effects is almost the 
opposite. It can be shown that for all boundary 
conditions without surface effects, the fundamental 
frequency decrease with the increase of the ݄௣ ܴ⁄  

ratio and vice versa, with surface effects, the 
fundamental frequency increases with the increase 
of the ݄௣ ܴ⁄  ratio. The reason is that in case of with 

surface effects a higher ݄௣ ܴ⁄  ratio leads to an 

increase in the nanoshell stiffness, and cause to 
higher natural frequencies of nanoshells. Similar to 
other previous results, the natural frequency of the 
CC is greater and with boundary conditions SS and 
CS, there is little difference, and also the natural 
frequency of the CF is lower than the rest and also 
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the considering the effects of the surface energy 
will lead to a significant decrease in the natural 
frequency of the nanoshell. 

 
 

 
(a)  

  
(b)  

Fig. 7. The effect of ݄௣ ܴ⁄  ratio on dimensionless 

undamped natural frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) 
for (a) with surface effect (b) without surface 

effect 
 

Figure 8 discusses the effect of the length-to-small 
radius ratio (ܮ ܴ⁄ ) on the dimensionless undamped 
natural frequency ߱௡ of simple supported (SS) 
piezoelectric nanoshells for different values of 
nonlocal parameter ߤ using Eringen nonlocal 
theory.   

Fig. 8. The effect of length-to-small radius ratio 
ܮ ܴ⁄  on dimensionless undamped natural 

frequencies (߱௡ ൌ Ωഥ௡ܴ/ܮ) with different values of 
nonlocal parameter ߤ and SS boundary condition 

 
For simple supported (SS) piezoelectric nanoshells, 
the dimensionless natural frequency decreases with 
the increase of the ratio (ܮ ܴ⁄ ). As shown in Figure 
8, the natural frequency decreases with increase of 
nonlocal parameter ߤ. The reason is that a higher 
nonlocal parameter ߤ leads to a decrease in the 
nanoshell stiffness, and cause to lower natural 
frequencies of nanoshell.  
And finally, the effect of the small radius ratio 
݄ே ܴ⁄  on dimensionless natural frequencies 
(߱௡ ൌ Ωഥ௡ܴ/ܮ) of the simple supported (SS) 
piezoelectric nanoshell for different values of 
nonlocal parameter ߤ are shown in Figure 9 using 
Eringen nonlocal theory. As shown in Figure 9, the 
dimensionless natural frequency increase with the 
increase of the ratio ݄ே ܴ⁄ . Also, the natural 
frequency decreases with increase of nonlocal 
parameter ߤ. The reason is that a higher nonlocal 
parameter ߤ leads to a decrease in the nanoshell 
stiffness, and cause to lower natural frequencies of 
nanoshell. 
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Fig. 9. Dimensionless undamped natural frequency 
(߱௡ ൌ Ωഥ௡ܴ/ܮ ) of the piezoelectric nano-shell 
versus (݄ே ܴ⁄ ) ratio for different value of the 

dimensionless nonlocal parameter ߤ 
 

4. Conclusion 
Vibration analysis of piezoelectric cylindrical 
nanoshell subjected to visco-Pasternak medium 
with arbitrary boundary conditions is investigated 
by accounting for the simultaneous effects of the 
surface elasticity and the different material scale 
parameter. To this end, Eringen nonlocal theory 
and Gurtin–Murdoch surface/interface theory and 
Donnell's theory are used. The governing equations 
and boundary conditions are derived using 
Hamilton’s principle and also, assumed mode 
method combined with Euler–Lagrange method is 
used for discretizing equations of motion. The 
viscoelastic nanoshell medium is modeled as visco-
Pasternak. A variety of new vibration results 
including natural frequencies with and without 
nonlocal and surface energy effects for 
piezoelectric cylindrical nano-shell with non-
classical restraints as well as different material 
parameters are presented, which may serve as 
benchmark solution for future researches. The 
convergence, accuracy and reliability of the current 
formulation are validated by comparisons with 
existing experimental and numerical results 
published in the literature, with excellent 
agreements achieved. Also, the effects of 
nonlocality, surface energy, nanoshell radius, 
circumferential wavenumber, nanoshell damping 
coefficient, and foundation damping are accurately 

studied on frequencies and mode shapes of 
piezoelectric cylindrical nanoshell.  
Some conclusions are obtained from this study: 
 With comparing the previously published in the 

literature, the present results agree very well 
with the reference solutions, which indicates 
that the methods are suitable and of high 
accuracy for free vibration analysis of 
cylindrical nanoshell. 

 For all boundary conditions for as the number 
of polynomial terms,	ܰ, is increased, the value 
of the frequency parameter, ߱௡, converges 
rapidly and also the convergence mode number 
for both cases of the paper results, i.e., Gurtin–
Murdoch surface/interface and Eringen 
nonlocal theories is ݊ ൌ 2 and ݉ ൌ 2 . 

 With the increase of the dimensionless stiffness 
coefficient of Winkler foundation 	ܭഥ௪, for all 
boundary conditions with and without surface 
energy effects, the fundamental frequency 
increases. 

 For all boundary conditions with and without 
surface energy effects, with the increase of the 
dimensionless shear layer of Pasternak 
foundation 	ܭഥ௣, the fundamental frequency 

increases.  
 With the increase of the ܮ ܴ⁄  ratio, the 

fundamental frequency for all boundary 
conditions with and without surface effects 
decreases. 

 For all boundary conditions with and without 
surface energy effects, with the increase of the 
nanoshell stiffness coefficient ݄ே ܴ⁄  the 
fundamental frequency increases. 

 For all boundary conditions, with considering 
of ratio (݄௣ ܴ⁄ ), the behavior of the cases with 

and without surface effects is almost the 
opposite. In case of without surface affects, the 
fundamental frequency decrease with the 
increase of the ݄௣ ܴ⁄  ratio and vice versa, with 

surface effects, the fundamental frequency 
increases with the increase of the ݄௣ ܴ⁄  ratio. 

 In all mention results, the natural frequency of 
the CC is greater and with boundary conditions 
SS and CS, there is little difference, and also 
the natural frequency of the CF is lower than 
the rest. 
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 For all boundary conditions, the dimensionless 
natural frequency decreases with the increase 
of the ratio (ܮ ܴ⁄ ) and the nonlocal parameter 
 .ߤ

 For all boundary conditions, the dimensionless 
natural frequency increase with the increase of 
the ratio ݄ே ܴ⁄  and also because of a higher 
nonlocal parameter ߤ leads to a decrease in the 
nanoshell stiffness, the natural frequency 
decreases with increase of nonlocal parameter 
  .ߤ
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