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Abstract: The purpose of this paper is two-sided. First, we obtain the correct estimate of the error term in the clas-
sical prime geodesic theorem for compact symmetric space SL4. As it turns out, the corrected error term depends
on the degree of a certain polynomial appearing in the functional equation of the attached zeta function. This is
in line with the known result in the case of compact Riemann surface, or more generally, with the corresponding
result in the case of compact locally symmetric spaces of real rank one. Second, we derive a weighted form of
the theorem. In particular, we prove that the aforementioned error term can be significantly improved when the
classical approach is replaced by its higher level analogue.
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1 Introduction
In [3] and [16], the authors derived two main results:
a length spectrum for compact symmetric spaces rep-
resented as quotients of the Lie group SL4 (R), and
its application in totally quartic fields with no real
quadratic subfield.

Length spectrum (prime geodesic theorem) is
given as the sum of the explicit part 2 li (x) and the
remainder O

(
x

3
4 (log x)−1

)
.

The Selberg zeta function (the Ruelle zeta func-
tion) is usually applied in the proof of the prime
geodesic theorem (see, e.g., [20], [9], [10], [17], [15],
[4]-[7], etc.)

In fact, such functions are applied in a way analo-
gous to the way the Riemann zeta function is applied
in the proof of the prime number theorem (see, e.g.,
[1], [14], [22], etc.)

The prime geodesic theorem stated above is then
applied in order to prove an asymptotic formula for
class numbers of orders in totally complex quartic
fields with no real quadratic subfield.

More precisely, it is proved that πS (x) behaves
like e4x

8x during the process x→ +∞, where πS (x) is
defined by

∑
O∈Oc(S)
R(O)≤x

λS (O)h (O).

Here, S is a finite, non-empty set of prime num-
bers containing an even number of elements, Oc (S)
⊂ O (S) is the subset of isomorphy classes of orders
in fields in Cc (S), where Cc (S) ⊂ C (S) is the sub-

set of fields with no real quadratic subfield. Further-
more, R (O) resp. h (O) denote the regulator resp.
the class number of the order O.

For a field F ∈ C (S) and an order O ∈
OF (S), the constant λS (O) (= λS (F )) is given as∏
p∈S

fp (F ), where fp (F ) is the inertia degree of p in

F .

C (S) is the set of all totally complex quar-
tic fields F such that all primes p ∈ S are non-
decomposed in F .

Finally, O (S) is the union of all OF (S), where
F ranges over C (S), and OF (S) is the set of all iso-
morphism classes of orders in F which are maximal
at all p ∈ S.

Note that for long time it was not possible to sep-
arate the class number and the regulator in the sum-
mation (see, e.g., [8], [21]).

However, in [19], the author proved that such a
separation is actually possible.

In this paper we pay attention to the error
term O

(
x

3
4 (log x)−1

)
in the corresponding prime

geodesic therem. We prove that this error term should
actually be replaced by the error term
O
(
x1− 1

2D (log x)−1
)

, where D is the degree of the
polynomial that appears in the functional equation of
the Selberg zeta function in the case at hand.
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2 Preliminaries
The counting functions ψ0 (x) and ψj (x) that will be
used in this paper, are adopted from [13, p. 44].

Thus, j ∈ N, where EP (Γ) is the set of all con-
jugacy classes [γ] in Γ, and χ1 (Γγ) is the first higher
Euler characteristics of the symmetric space XΓγ =
Γγ \ Gγ / Kγ .

Namely, our object of research is the symmetric
space XΓ = Γ \ G / K, where G = SL4 (R), K =
SO (4), and Γ is a discrete and co-compact subgroup
of G.

More precisely, it is initially required K to be the
maximal compact subgroup of G. Therefore, K =
SO (4).

In particular, Gγ and Γγ are the centralizers of γ
in G and Γ, respectively, and Kγ = K ∩ Gγ .

P is a parabolic with Langlands decomposition P
= MAN (for M , A and N , see [13, pp. 43]).

We use γ0 to denote primitive elements.
If it happens that γ and γ0 appear together in the

same formula, we shall mean that γ0 is the primitive
element corresponding to γ.

It is assumed that for [γ] ∈ EP (Γ), γ is conjugate
inG to an element aγbγ ∈A−B, whereA− andB are
introduced in [13, p. 42].

Thus, aγ is a matrix in A−.
Besides this notation, we write aγ also for the top

left entry in the matrix aγ itself.
Consequently, we define the length lγ of γ to be

8 log aγ .
Finally, we define the counting function π (x) in

the same was as in [13, p. 43].
Thus, EpP (Γ) is the set of primitive classes in

EP (Γ).
The Ruelle zeta function attached to XΓ will be

denoted by RΓ,1 (s), and the corresponding Selberg
zeta function will be denoted by ZP,

∧q n̄ (s), q ∈
{0, 1, ..., 4}, where

∧∗ denotes the exterior product,
and n̄ is the complexified Lie algebra of N̄ (see, [12,
p. 22] for N̄ ).

As it is usual for this kind of research, we apply
the higher order differential operator ∆+

k f (x) (and its
properties), where k ∈ Z.

h will be an arbitrary constant.
For t > 0, let N (t) denote the number of poles

and zeros of ZP,∧q n̄ (s), q ∈ {0, 1, ..., 4} at points 1
2

+ ix, where 0 < x < t.
By Lemma 3.1.2 in [16], N (t) = O

(
tD
)
.

3 Main result
The following theorem represents the main result of
our research.

Theorem 1. Let XΓ be as above. Then,

π (x) = 2 li (x) +O
(
x1− 1

2D (log x)−1
)

as x→ +∞.

Proof. By [16, (12)], ψk (x) may be written as

4∑
q=0

(−1)q
∑
α∈Sk,q

cα (q, k) ,

where Sk,q denotes the set of poles of the corre-
sponding function, and cα (q, k) is the corresponding
residue.

As it is known, the Selberg zeta function
ZP,

∧q n̄ (s+ q
4

)
has a double zero at 1 − q

4 , while the
remaining poles and zeros of ZP,∧q n̄ (s+ q

4

)
lie in[

− q
4 , 1−

q
4

]
∪
(

1
2 −

q
4 + iR

)
.

Note that the values 0, −1,..., −k are single poles
of the corresponding function.

Also note that 0 may appear as a simple pole of
Z
′
P,

∧q n̄(s+
q
4)

ZP,
∧q n̄(s+

q
4)

, q ∈ {0, 1, ..., 4}, i.e., as a singularity of

ZP,
∧q n̄ (s+ q

4

)
, q ∈ {0, 1, ..., 4}. Finally,−1 may ap-

pear as a simple pole
Z
′
P,

∧4 n̄
(s+1)

Z
P,

∧4 n̄
(s+1) , i.e., as a singularity

of ZP,∧4 n̄ (s+ 1).
Denote by Iq the set of values j ∈ {0,−1, ...,−k}

such that j is a singularity of ZP,∧q n̄ (s+ q
4

)
.

Put I
′
q = Ik \ Iq, where Ik = {0,−1, ...,−k}.

Obviously, 0 may appear as an element of Iq, q
∈ {0, 1, ..., 4}. Moreover, −1 can appear as an ele-
ment I4. Note that {−2,−3, ...,−k} ⊆ I

′
q for q ∈

{0, 1, ..., 4}.
Now, Ik = Iq ∪ I

′
q.

If j ∈ Iq, then j is a pole of order two of the cor-
responding function.

Otherwise, if j ∈ I ′q, then j is a simple pole.
Besides the set Iq of singularities of

ZP,
∧q n̄ (s+ q

4

)
, the set of the remaining

singularities sq of ZP,∧q n̄ (s+ q
4

)
will be denoted by

Sq.
Hence, the elements of Sq are also simple poles

of the corresponding function.
Now, we calculate the residues given above.
In any neighborhood of the singularity z of

ZP,
∧q n̄ (s+ q

4

)
, we write the logarithmic derivative

Z
′
P,

∧q n̄(s+
q
4)

ZP,
∧q n̄(s+

q
4)

, as the series with oqz’s as the orders of z,

and aqi,z’s as the corresponding coefficients.
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Thus, if sq ∈ Sq, then csq (q, k) =

oqsq (sq)−1 (sq + 1)−1 ... (sq + k)−1 xs
q+k.

If −j ∈ Iq, then c−j (q, k) is given as the dif-

ference between oq−j
k∏
l=0
l 6=j

(−j + l)−1 x−j+k log x and

oq−j
k∏
l=0
l 6=j

(−j + l)−1×

×

− k∑
l=0
l 6=j

(−j + l)−1 + aq1,−j

x−j+k.

Finally, if −j ∈ I ′q, then c−j (q, k) is given by
Z
′
P,

∧q n̄(−j+
q
4)

ZP,
∧q n̄(−j+

q
4)

k∏
l=0
l 6=j

(−j + l)−1 x−j+k.

Put SqR = Sq ∩ R, and Sq1
2
− q

4

= Sq \ SqR.

Let z ∈ Sq1
2
− q

4

.

Since Sq1
2
− q

4

⊂ Sq, it follows that h−k∆+
k cz (q, k)

is O
(
h−k |z|−k−1 x

1
2

+k
)

.

Moreover, the definition of the operator ∆+
k

in the form of the iterated integral yields that
h−k∆+

k cz (q, k) is O
(
|z|−1 x

1
2

)
.

The sum of the elements h−k∆+
k cz (q, k) over z

∈ S 1
2
− q

4
may be written as the sum over z ∈ S 1

2
− q

4
,∣∣1

2 −
q
4

∣∣ < |z| ≤M plus the sum over z ∈ S 1
2
− q

4
, |z|

>M , whereM is a constant which will be fixed later.
Thus, it easily follows that the sum is

O
(
x

1
2MD−1

)
+ O

(
h−kx

1
2

+kMD−k−1
)

.

Now, we estimate h−k ∆+
k c1 (0, k).

By previous calculations, we know that c1 (0, k)

is given by 2 ((k + 1)!)−1 x1+k.
Thus, our assumption that h is O (x), yields that

h−k∆+
k c1 (0, k) is Px + Q for some P and Q.

It is not so hard to determine P and Q explicitly.
Namely, since ∆+

k c1 (0, k) is given by

k∑
i=0

(−1)i
(
k

i

)
2 ((k + 1)!)−1

1+k∑
j=0

(
1 + k

j

)
x1+k−j ((k − i)h)j ,

it follows that P is

2

k∑
i=0

(−1)i
1

(k − i)!i!
(k − i)k ,

i.e., P is 2.
Furthermore, Q is

2h (k + 1)−1
k∑
i=0

(−1)i
1

(k − i)!i!
(k − i)1+k ,

i.e., Q is hk. Hence, h−mD∆+
mDc1 (0,mD) can be

written as 2x + O (h).
By our previous calculations, we conclude that

the sum of h−k∆+
k cz (q, k) along q ∈ {0, 1, ..., 4} and

z ∈ Sq1
2
− q

4

is dominated by the sum O
(
x

1
2MD−1

)
+

O
(
h−kx

1
2

+kMD−k−1
)

.
Since the left sides of the estimates derived above,

are obviously summands of h−k ∆+
k ψk (x), and

ψ0 (x) is not larger than h−k ∆+
k ψk (x), it is clear

that the error terms on the right hand sides of the men-
tioned estimates, play the key role in determining the
error term of ψ0 (x). Thus, they play the key role in
determining the error term in the prime geodesic the-
orem in the case at hand.

We want to determine h and M such that

h = x
1
2MD−1 = h−mDx

1
2

+mDMD−mD−1,

where k = mD for some even m.
Put h = xα, M = xβ .
Hence,

h =xα,

x
1
2MD−1 =x

1
2

+βD−β,

h−mDx
1
2

+mDMD−mD−1

=x−αmD+ 1
2

+mD+βD−βmD−β.

We require that

α =
1

2
+ βD − β

=− αmD +
1

2
+mD + βD − βmD − β.

We obtain, β = 1
2D . Then, α = 1

2 + βD − β = 1

− 1
2D .

Thus, h = x1− 1
2D = O (x), M = x

1
2D .

In this scenario, the expected error term is deter-
mined uniquely, i.e., it is given by O

(
x1− 1

2D

)
.
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Since h−k ∆+
k c−j (q, k) = 0 for −j ∈

{−2,−3, ...,−k}, it follows that the sum of
h−k∆+

k c−j (q, k), along q ∈ {0, 1, ..., 4} and j ∈
{2, 3, ..., k} is 0.

Now, we estimate the sum of h−k∆+
k c−1 (q, k)

over q ∈ {0, 1, ..., 4}. Obviously, we shall represent
this sum in the form

3∑
q=0

(−1)q h−k∆+
k c−1 (q, k) + h−k∆+

k c−1 (4, k) .

Since h−k ∆+
k c−1 (q, k) = 0 for q ∈ {0, 1, ..., 3},

it follows that the sum is actually h−k∆+
k c−1 (4, k).

If −1 ∈ I ′4, then h−k ∆+
k c−1 (4, k) = 0.

Suppose that −1 ∈ I4.
Now,

h−k∆+
k c−1 (4, k) = o4

−1 (−1)−1 1

x̃−1,4,k

for some x̃−1,4,k ∈ [x, x+ kh].
We conclude,

4∑
q=0

(−1)q h−k∆+
k c−1 (q, k) = O

(
x−1

)
.

Finally, we estimate the sum of the elements
h−k∆+

k c0 (q, k) over q ∈ {0, 1, ..., 4}.
If 0 ∈ I ′q, then h−k∆+

k c0 (q, k) is given by
Z
′
P,

∧q n̄(
q
4)

ZP,
∧q n̄(

q
4)

.

Suppose that 0 ∈ Iq.
Now, c0 (q, k) is the

difference between oq0
k∏
l=0
l 6=0

l−1xk log x and

oq0
k∏
l=0
l 6=0

l−1

− k∑
l=0
l 6=0

l−1 + aq1,0

xk.

Hence, h−k∆+
k c0 (q, k) is oq0 log x̃0,q,k + oq0a

q
1,0

for some x̃0,q,k ∈ [x, x+ kh].
It immediately follows that

4∑
q=0

(−1)q h−k∆+
k c0 (q, k) = O (log x) .

It remains to estimate the sum of the elements
h−k∆+

k csq (q, k), where q ∈ {0, 1, ..., 4}, and sq ∈
SqR.

Since h−k∆+
k csq (q, k) is oqsq (sq)−1 x̃s

q

sq ,q,k for
some x̃sq ,q,k ∈ [x, x+ kh], and s4 < 0 for s4 ∈ S4

R,
s3 ≤ 1

4 for s3 ∈ S3
R, s2 ≤ 1

2 for s2 ∈ S2
R, s1 ≤ 3

4 for s1

∈ S1
R, s0 ≤ 3

4 for s0 ∈ S1
R \ {1}, it follows that

4∑
q=0

(−1)q
∑
sq∈SqR

h−k∆+
k csq (q, k) = O

(
x

3
4

)
.

Now, taking k = mD, m even, h = x1− 1
2D , M =

x
1

2D , combining the estimates derived above, and hav-
ing in mind that ψ0 (x) is not larger than h−mD ∆+

mD
ψmD (x), we obtain that ψ0 (x) is not larger than 2x

+ O
(
x1− 1

2D

)
.

Similarly, 2x + O
(
x1− 1

2D

)
is not larger than

ψ0 (x).
Hence, ψ0 (x) is 2x + O

(
x1− 1

2D

)
.

As it is known, this equality yields that

π (x) = 2 li (x) +O
(
x1− 1

2D (log x)−1
)

as x→ +∞.
This completes the proof.

4 Weighted form ψ2 (x)

In this section we are interested in the second level
analogue of the result derived in the previous section.

Suppose that z ∈ Sq1
2
− q

4

.

We may apply the definition of the operator ∆+
k−2

to conclude that h−k+2∆+
k−2cz (q, k) is dominated by

the bound O
(
h−k+2 |z|−k−1 x

1
2

+k
)

.
Besides this estimate, we are also able to apply

the property that the operator ∆+
k−2 has the integral

representation, to conclude that h−k+2∆+
k−2cz (q, k)

is bounded by O
(
|z|−3 x

5
2

)
.

Note that these two estimates depend on assump-
tion that h is bounded by O (h).

Having in mind these two estimates, we may es-
timate the sum of the elements h−k+2∆+

k−2cz (q, k),
where z runs over Sq1

2
− q

4

.

First, we distinguish between two cases: z ∈
Sq1

2
− q

4

,
∣∣1

2 −
q
4

∣∣ < |z| ≤ M , and z ∈ Sq1
2
− q

4

, |z| >
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M , where M is some constant (note that this con-
stant does not have to be bounded by O (x) and will
be fixed in the sequel).

It immediately follows that the sum of
the elements h−k+2∆+

k−2cz (q, k) over z ∈
Sq1

2
− q

4

is bounded by the sum O
(
x

5
2MD−3

)
+

O
(
h−k+2x

1
2

+kMD−k−1
)

.
In order to determine the error term which will

dominate in this form of the prime geodesic theorem,
we calculate h−k+2∆+

k−2c1 (0, k).
It is equal to 1

3 x̃
3, for some x ≤ x̃ ≤ x +

(k − 2)h.
Writing, x̃ = x + ε for some 0 ≤ ε ≤ (k − 2)h,

we easily obtain that 1
3 x̃

3 is equal to 1
3x

3 + O
(
x2h
)

+ O
(
xh2
)

+ O
(
h3
)
.

Note that the assumption that h is bounded
by O (x) will lead us to conclusion that
h−k+2∆+

k−2c1 (0, k) is estimated by 1
3x

3 + O
(
x2h
)

(h will be determined explicitly in the sequel).
By our previous calculations we know that

the sum h−k+2∆+
k−2cz (q, k) along g ∈ {0, 1, ..., 4}

and z ∈ Sq1
2
− q

4

is equal to O
(
x

5
2MD−3

)
+

O
(
h−k+2x

1
2

+kMD−k−1
)

.
Now, we determine h and M explicitly,

by comparing O
(
x2h
)
, O
(
h3
)

and O
(
xh2
)

by

O
(
x

5
2MD−3

)
, O
(
h−k+2x

1
2

+kMD−k−1
)

.
In the first case, we obtain (by temporarily putting

h and M to be some xα and xβ), that

2 + α =
5

2
+ β (D − 3)

=α (−k + 3) +
1

2
+ k + β (D − k − 1) .

Hence, α = 1
2 + 1

2
D−3
D−2 , β = 1

2
1

D−2 .

Thus, h = x
1
2

+ 1
2
D−3
D−2 = O (x) (since D − 3 ≤ D

− 2), M = x
1
2

1
D−2 .

The largest error term is obviously O
(
x2h
)

(since O
(
h3
)

and O
(
xh2
)

are contained in it), so the

error term in this case is O
(
x

5
2

+ 1
2
D−3
D−2

)
.

If we compare O
(
h3
)

by O
(
x

5
2MD−3

)
,

O
(
h−k+2x

1
2

+kMD−k−1
)

, we obtain that

3α =
5

2
+ β (D − 3)

=α (−k + 2) +
1

2
+ k + β (D − k − 1) .

Hence, α = 5
6 + 1

6
D−3
D and β = 1

2D .

Thus, h = x
5
6

+ 1
6
D−3
D (= O (x), since D − 3 ≤

3D) and M = x
1

2D .
The error term O

(
x2h
)

dominates once again,

and is equal O
(
x

17
6

+ 1
6
D−3
D

)
.

Note that 5
2 + 1

2
D−3
D−2 ≤

17
6 + 1

6
D−3
D since 0 ≤ 6.

Thus, for now, the optimal error term is
O
(
x

5
2

+ 1
2
D−3
D−2

)
.

Finally, we compare O
(
xh2
)

by O
(
x

5
2MD−3

)
,

O
(
h−k+2x

1
2

+kMD−k−1
)

.
It follows that

1 + 2α =
5

2
+ β (D − 3)

=α (−k + 2) +
1

2
+ k + β (D − k − 1) .

We obtain that α = 3
4 + 1

4
D−3
D−1 and β = 1

2(D−1) .

Consequently, h = x
3
4

+ 1
4
D−3
D−1 = O (x) (since

1
4
D−3
D−1 ≤

1
4 if and only if−3≤−1), andM = x

1
2(D−1) .

Also, the largest error term in this case is
O
(
x2h
)
. It is equal to O

(
x

11
4

+ 1
4
D−3
D−1

)
.

Since 5
2 + 1

2
D−3
D−2 ≤

11
4 + 1

4
D−3
D−1 if and only if

D2 − 4D + 5 ≥ 0, and the last inequality holds true,
we conclude that the optimal error term in all of three
discussed cases is O

(
x

5
2

+ 1
2
D−3
D−2

)
, and is achieved for

h = x
1
2

+ 1
2
D−3
D−2 , M = x

1
2

1
D−2 .

Now, we consider the sum of the elements
h−k+2∆+

k−2csq (q, k) for q ∈ {0, 1, ..., 4} and sq ∈
SqR, 0 < sq ≤ 3

4 .
By the singularity pattern of the Ruelle zeta func-

tion in this setting, we know that the last sum is
actually the sum of the same elements over q ∈
{0, 1, ..., 3} and sq ∈ SqR, 0 < sq ≤ 3

4 .
Now, the properties of the operator ∆+

k−2, yield
that the sum is

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1 (sq + 1)−1×

× (sq + 2)−1 xs
q+2 +O

(
x

7
4h
)
.
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Note that h−k+2∆+
k−2c−j (q, k) = 0 for −j ∈

{−3,−4, ...,−k}.
Hence, the sum of h−k+2∆+

k−2c−j (q, k) over q ∈
{0, 1, ..., 4} and −j ∈ {−3,−4, ...,−k} is 0.

Since h−k+2∆+
k−2c−2 (q, k) is 1

2

Z
′
P,

∧q n̄(−2+ q
4)

ZP,
∧q n̄(−2+ q

4)
, it

follows that the sum of h−k+2∆+
k−2c−2 (q, k) along q

∈ {0, 1, ..., 4} is

1

2

4∑
q=0

(−1)q
Z
′

P,
∧q n̄ (−2 + q

4

)
ZP,

∧q n̄ (−2 + q
4

) .
Note that the sum of the elements

h−k+2∆+
k−2c−1 (q, k) over q ∈ {0, 1, ..., 4} is

3∑
q=0

(−1)q h−k+2∆+
k−2c−1 (q, k)

+ h−k+2∆+
k−2c−1 (4, k) .

Since −1 ∈ I ′q for q ∈ {0, 1, ..., 3}, it follows that
the sum of h−k+2∆+

k−2c−1 (q, k) over q ∈ {0, 1, ..., 3}
is O (x).

Next, we determine h−k+2∆+
k−2c−1 (4, k).

It is clear that we have two possibilities: −1 ∈ I ′4
or −1 ∈ I4.

Suppose that −1 ∈ I ′4.
Reasoning as in the previous case, we obtain that

h−k+2∆+
k−2c−1 (4, k) is O (x).

Now, suppose that −1 ∈ I4.
c−1 (4, k) is the difference between

o4
−1

k∏
l=0
l 6=1

(−1 + l)−1 xk−1 log x and

o4
−1

k∏
l=0
l 6=1

(−1 + l)−1×

×

− k∑
l=0
l 6=1

(−1 + l)−1 + a4
1,−1

xk−1.

Therefore, in this case, h−k+2∆+
k−2c−1 (4, k) is

O (x log x).
Consequently, the sum of the elements

h−k+2∆+
k−2c−1 (q, k) along q ∈ {0, 1, ..., 4} is

O (x log x).
Now, we consider the sum of

h−k+2∆+
k−2c0 (q, k) along q ∈ {0, 1, ..., 4}.

As in the previous case, it can happen that either
0 ∈ I ′q or 0 ∈ Iq.

If 0 ∈ I ′q, then, the fact that h = O (x) immedi-
ately yields that h−k+2∆+

k−2c0 (q, k) is O
(
x2
)
.

Suppose that 0 ∈ Iq.
As we noted in the previous section, c0 (q, k) is

the difference between oq0 (k!)−1 xk log x and

oq0 (k!)−1

(
−

k∑
l=1

1
l + aq1,0

)
xk.

Hence, in this case, h−k+2∆+
k−2c0 (q, k) is

O
(
x2 log x

)
.

In other words, the sum of h−k+2∆+
k−2c0 (q, k)

along q ∈ {0, 1, ..., 4} is O
(
x2 log x

)
.

Finally, one easily finds that the sum of the ele-
ments h−k+2∆+

k−2csq (q, k) over q ∈ {0, 1, ..., 4} and
sq ∈ SqR, −1 < sq < 0 is O

(
x2
)
.

Combining the estimates derived above, and
taking into account that ψ2 (x) is not larger than
h−k+2∆+

k−2ψk (x), we conclude that ψ2 (x) is not
larger than

1

3
x3 +

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1×

× (sq + 1)−1 (sq + 2)−1 xs
q+2+

O
(
x2h
)

+O
(
x

5
2MD−3

)
+

O
(
h−k+2x

1
2

+kMD−k−1
)

+O
(
x2 log x

)
.

Putting h = x
1
2

+ 1
2
D−3
D−2 , M = x

1
2

1
D−2 , we obtain

that ψ2 (x) is not larger than

1

3
x3 +

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1×

× (sq + 1)−1 (sq + 2)−1 xs
q+2+

O
(
x

5
2

+ 1
2
D−3
D−2

)
.

Reasoning in an analogous way, we also conclude
that the last sum is not larger than ψ2 (x).

Thus, we have proved the following theorem.

Theorem 2. Let XΓ be as above. Then, ψ2(x)
x2 is

1

3
x+O

(
x

1
2

+ 1
2
D−3
D−2

)
as x→ +∞.
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5 Remarks
The author in [16, p. 64], derived that

∆

(
2

(2D + 1)!
x2D+1

)
= ax+ b

for some a, b ∈ R.
Then, it was not so hard to calculate a and b ex-

plicitly.
While it was done for the a, the b was consid-

ered as a constant, and hence as a non-important term
in further calculations. This approach let to the con-
clusion that the error term O

(
x

3
4

)
could be achieved

via remaining two error terms O
(
KD−1x

1
2

)
and

O
(
K−D−1x2D+ 1

2d−2D
)

.
Recently [13], we have shown that this is really

possible. Actually, we have deduced that O
(
x

3
4

)
can

be achieved if we take K = x
1

4(D−1) and d = x
4D−5
4D−4 .

However, as it can be seen from the proof of our
main result in this paper, the b (Q in our case) must
be taken into account in calculations since it does not
represent an arbitrary constant. More precisely, it rep-
resents the error term O (h).

Thus, the error terms O (h), O
(
x

1
2MD−1

)
and

O
(
h−mDx

1
2

+mDMD−mD−1
)

are responsible for

achieving our O
(
x1− 1

2D

)
.

Regarding the corresponding results in [16], [3]
and [13], it is enough to replace 3

4 by 1 − 1
2D in the

final form of the prime geodesic theorem.
Also, note that some important ideas that the au-

thor applied in this research are adopted from [2], [5],
[11], [18] and [23].
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[11] Dž. Gušić, Prime geodesic theorem for com-
pact Riemann surfaces, Int. J. Circ. Syst. Sign.
Proc. 13, 2019, pp. 747–753.
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