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Abstract: In this paper we generalize our most recent results that are related to the algorithm that has been de-
veloped to automatically derive a fuzzy functional or a fuzzy multivalued dependency from a given set of fuzzy
functional and fuzzy multivalued dependencies. Fuzzy dependencies are considered as fuzzy formulas. The first
result states that a two-element fuzzy relation instance actively satisfies a fuzzy multivalued dependency if and
only if the tuples of the instance are conformant on some known set of attributes with degree of conformance
larger than some known constant, and the corresponding fuzzy formula is valid in appropriate interpretations. The
second result states that a fuzzy functional or a fuzzy multivalued dependency follows from a set of fuzzy func-
tional and fuzzy multivalued dependencies in two-element fuzzy relation instances if and only if the corresponding
fuzzy formula is a logical consequence of the corresponding set of fuzzy formulas. Our earlier research in this
direction consisted in an application of some individual fuzzy implication operator, such as Yager, Reichenbach,
Kleene-Dienes fuzzy implication operator. The main purpose of this paper is to prove that the aforementioned
results remain valid for a wider class of fuzzy implication operators, in particular for the family of f-generated
fuzzy implication operators.

Key–Words: Strictly decreasing continuous functions, f -generated implications, f -generators, fuzzy relation in-
stances, fuzzy dependencies

1 Introduction
In [6], the authors offered an algorithm that automati-
cally proves that some fuzzy functional or fuzzy mul-
tivalued dependency follows from a set of fuzzy func-
tional and fuzzy multivalued dependencies. The idea
behind the method they presented, lies in the fact that
fuzzy functional and fuzzy multivalued dependencies
are considered as fuzzy formulas. In particular, they
proved the following theorem.

Theorem A. [6, Cor. 8] Let C be a set of fuzzy func-
tional and fuzzy multivalued dependencies on some
universal set of attributes U . Suppose that c is some
fuzzy functional or fuzzy multivalued dependency on
U . Denote by C

′
resp. c

′
the set of fuzzy formulas

resp. the fuzzy formula associated to C resp. c. Then,
the following two conditions are equivalent:

(a) Any fuzzy relation instance on scheme R (U)
which satisfies all dependencies in C, satisfies
the dependency c.

(b) ir,β
(
c
′
)
> 1

2 for every ir,β such that ir,β (K) > 1
2

for all K ∈ C ′
.

Here, ir,β denotes a valuation joined to r and β, where
r is a two-element fuzzy relation instance on R (U),
and β ∈ [0, 1].

Let us explain this into more details.
R (U) = R (A1, A2, ..., An) is a scheme on do-

mains D1, D2,..., Dn. U is the set of all attributes
A1, A2,..., An on D1, D2,..., Dn, respectively, i.e., U
is the universal set of attributes. We assume that the
domain Di of Ai is a finite set for all i ∈ {1, 2, ..., n}.

Fuzzy relation instance r on R (U) is a subset of
the cross product 2D1 × 2D2 × ... × 2Dn .

Hence, if t ∈ r, t is of the form (d1, d2, ..., dn),
where di ⊆ Di for i ∈ {1, 2, ..., n}. Furthermore, we
consider di as the value of Ai on tuple t.

Let X ⊆ U and Y ⊆ U .
Fuzzy relation instance r is said to satisfy the

fuzzy functional dependency X θ−→F Y if for every
pair of tuples t1 and t2 in r,

ϕ (Y [t1, t2]) ≥ min (θ, ϕ (X [t1, t2])) .
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Fuzzy relation instance r is said to satisfy the
fuzzy multivalued dependency X → θ−→F Y if for ev-
ery pair of tuples t1 and t2 in r, there exists a tuple t3
in r such that

ϕ (X [t3, t1]) ≥ min (θ, ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1]) ≥ min (θ, ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2]) ≥ min (θ, ϕ (X [t1, t2])) ,

where Z = U \ (X ∪ Y ).
Here, θ ∈ [0, 1] denotes the linguistic strength of

the dependency (see, [17]). If θ = 1, we omit to write
it in the dependency notation.

Furthermore,

ϕ (X [t1, t2]) = min
Ai∈X

{ϕ (Ai [t1, t2])}

denotes the conformance of the attribute set X on tu-
ples t1 and t2, where

ϕ (Ai [t1, t2])

= min

{
min
x∈d1

{
max
y∈d2
{si (x, y)}

}
,

min
x∈d2

{
max
y∈d1
{si (x, y)}

}}
,

denotes the conformance of the attribute Ai on t1 and
t2.

Moreover, d1 resp. d2 denotes the value of Ai on
t1 resp. t2.

si : Di × Di → [0, 1] is a similarity relation on
Di. The following conditions determine si:

si (x, x) = 1,

si (x, y) = si (y, x) ,

si (x, z) ≥ max
q∈Di

(min (si (x, q) , si (q, z))) ,

where x, y, z ∈ Di.
In order to associate fuzzy formulas to fuzzy

functional and fuzzy multivalued dependencies, the
authors in [6] first consider attributes as fuzzy formu-
las by introducing a valuation.

If r = {t1, t2} is a two-element fuzzy relation
instance on R (A1, A2, ..., An), and β ∈ [0, 1], a

valuation joined to r and β is a mapping ir,β :
{A1, A2, ..., An} → [0, 1], such that

ir,β (Ak) >
1

2
if ϕ (Ak [t1, t2]) ≥ β,

ir,β (Ak) ≤
1

2
if ϕ (Ak [t1, t2]) < β,

k ∈ {1, 2, ..., n}.
In this way attributes become fuzzy formulas with

respect to ir,β .
Apart from it, fuzzy operators: conjunction, dis-

junction, and implication are chosen and fixed.
Requiring that ir,β (Ai ∧Aj), ir,β (Ai ∨Aj), and

ir,β (Ai ⇒ Aj) structurally agree with fixed fuzzy op-
erators,Ai∧Aj ,Ai∨Aj , andAi ⇒ Aj become fuzzy
formulas with respect to ir,β .
Consequently, (∧A∈XA)⇒ (∧B∈YB), (∧A∈XA)⇒
((∧B∈YB) ∨ (∧C∈ZC)), etc., where X , Y , Z ⊆ U ,
become fuzzy formulas with respect to ir,β as well.

Accordingly, for example, the fuzzy formula
(with respect to ir,β)

(∧A∈XA)⇒ (∧B∈YB)

is joined to fuzzy functional dependency X θ1−→F Y .
Similarly, the fuzzy formula (with respect to ir,β)

(∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC)) ,

where Z = U \ (X ∪ Y ), is joined to fuzzy multival-

ued dependency X → θ2−→F Y .
In order to illustrate what we said at the beginning

of the section, consider the following example.

Example 1. If the fuzzy functional and the fuzzy mul-
tivalued dependencies:

A1A2A4 →
θ1−→F A3A5A7A8,

A1A2A4 →
θ2−→F A5A6A8,

A1A2A4A5A8
θ3−→F A3A5A6A7

hold true, where U = {Ai | 1 ≤ i ≤ 8} is the univer-
sal set of attributes, then the fuzzy functional depen-

dencyA1A2A4
min(θ1,θ2,θ3)→ F A5A6A7 holds also true.

Proof. I (applying inference rules IR1–IR17, see next
section)

We have:
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1) A1A2A4 →
θ1−→F A3A5A7A8 (input)

2) A1A2A4 →
θ1−→F A1A2A3A4A5A7A8 (IR7,

1) augment with A1A2A4)

3) A1A2A4 →
θ2−→F A5A6A8 (input)

4) A1A2A3A4A5A7A8 →
θ2−→F A3A5A6A7A8

(IR7, 3) augment with A3A5A7A8)

5) A1A2A4
min(θ1,θ2)→→ F A6 (IR8, 2), 4))

6) A1A2A4
min(θ1,θ2)→→ F A1A2A4A6 (IR7, 5)

augment with A1A2A4)

7) A1A2A4A6 →
θ2−→F A5A6A8 (IR7, 3) aug-

ment with A6)

8) A1A2A4
min(θ1,θ2)→→ F A5A8 (IR8, 6), 7))

9) A1A2A4A5A8
θ3−→F A3A5A6A7 (input)

10) A1A2A4
min(θ1,θ2,θ3)→ F A3A6A7 (IR17, 8),

9))

Therefore, the claim holds true.

Proof. II (applying Theorem A and resolution princi-
ple)

First, we join the fuzzy formulas:

K1 ≡ (A1 ∧A2 ∧A4)⇒
((A3 ∧A5 ∧A7 ∧A8) ∨A6) ,

K2 ≡ (A1 ∧A2 ∧A4)⇒
((A5 ∧A6 ∧A8) ∨ (A3 ∧A7)) ,

K3 ≡ (A1 ∧A2 ∧A4 ∧A5 ∧A8)⇒
(A3 ∧A5 ∧A6 ∧A7) ,

c
′ ≡ (A1 ∧A2 ∧A4)⇒ (A3 ∧A6 ∧A7)

to given set of fuzzy dependencies.
Second, we find conjunctive normal forms of the

formulas: K1, K2, K3 and ¬c′ . We obtain:

K1 ≡ (¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A6)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A5 ∨A6)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A6 ∨A7)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A6 ∨A8) ,

K2 ≡ (¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A5)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A5 ∨A7)∧
(¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A6)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A6 ∨A7)∧
(¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A8)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨A7 ∨A8) ,

K3 ≡ (¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨ ¬A5 ∨ ¬A8)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨ ¬A5 ∨A6 ∨ ¬A8)∧
(¬A1 ∨ ¬A2 ∨ ¬A4 ∨ ¬A5 ∨A7 ∨ ¬A8) ,

¬c′ ≡ A1 ∧A2 ∧A4 ∧ (¬A3 ∨ ¬A6 ∨ ¬A7) .

Third, we apply the resolution principle to con-
junctive terms that appear within conjunctive normal
forms of the formulas: K1, K2, K3 and ¬c′ . We get:

1) ¬A1 ∨ ¬A2 ∨ ¬A4 ∨A6 ∨A7 (input)

2) A1 (input)

3) ¬A2∨¬A4∨A6∨A7 (resolvent from 1) and
2))

4) A2 (input)

5) ¬A4 ∨A6 ∨A7 (resolvent from 3) and 4))

6) A4 (input)

7) A6 ∨A7 (resolvent from 5) and 6))

8) ¬A3 ∨ ¬A6 ∨ ¬A7 (input)

9) ¬A3 (resolvent from 7) and 8))

10) ¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A5 (input)

11) ¬A2 ∨ A3 ∨ ¬A4 ∨ A5 (resolvent from 2)
and 10))

12) A3 ∨¬A4 ∨A5 (resolvent from 4) and 11))

13) ¬A4 ∨A5 (resolvent from 9) and 12))

14) A5 (resolvent from 6) and 13))

15) ¬A1 ∨ ¬A2 ∨A3 ∨ ¬A4 ∨A8 (input)
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16) ¬A2 ∨ A3 ∨ ¬A4 ∨ A8 (resolvent from 2)
and 15))

17) A3 ∨¬A4 ∨A8 (resolvent from 4) and 16))

18) ¬A4 ∨A8 (resolvent from 9) and 17))

19) A8 (resolvent from 6) and 18))

20) ¬A1∨¬A2∨A3∨¬A4∨¬A5∨¬A8 (input)

21) ¬A2 ∨ A3 ∨ ¬A4 ∨ ¬A5 ∨ ¬A8 (resolvent
from 2) and 20))

22) A3 ∨¬A4 ∨¬A5 ∨¬A8 (resolvent from 4)
and 21))

23) ¬A4 ∨ ¬A5 ∨ ¬A8 (resolvent from 9) and
22))

24) ¬A5 ∨ ¬A8 (resolvent from 6) and 23))

25) ¬A8 (resolvent from 14) and 24))

Resolving 19) and 25), we obtain a refutation of ¬c′ .
In other words, the formulas: K1, K2, K3 and ¬c′

cannot be valid simultaneously. This means that the
assertion (b) of Theorem A holds true. Now, the asser-
tion (a) of Theorem A yields that the fuzzy functional

dependency A1A2A4
min(θ1,θ2,θ3)→ F A5A6A7 follows

from the given set of fuzzy dependencies.

Obviously, the steps suggested in the second
proof of Example 1 could be fully automated.

As we already noted, the authors in [6] applied
fuzzy operators: conjunction, disjunction and impli-
cation to associate fuzzy formulas to fuzzy functional
and fuzzy multivalued dependencies. In particular,
they applied minimum t-norm, maximum t-co-norm
and Kleene-Dienes fuzzy implication operator, re-
spectively.

The structure of these fuzzy logic operators is ex-
plicitly applied in the following theorems.

Theorem B. [6, Th. 2] Let r = {t1, t2} be any
two − element, fuzzy relation instance on scheme
R (A1, A2, ..., An), U be the universal set of at-
tributes A1, A2,..., An and X , Y be subsets of U .
Let Z = U \ (X ∪ Y ). Then, r satisfies the fuzzy

multivalued dependency X → θ−→F Y , θ-actively if
and only if ϕ (X [t1, t2]) ≥ θ and ir,θ (H) > 1

2 ,
where H denotes the fuzzy formula (∧A∈XA) ⇒
((∧B∈YB) ∨ (∧C∈ZC)) associated to X → θ−→F Y .

Theorem C. [6, Th. 7] Let C be a set of fuzzy func-
tional and fuzzy multivalued dependencies on some
universal set of attributes U . Suppose that c is some
fuzzy functional or fuzzy multivalued dependency on
U . Denote by C

′
resp. c

′
the set of fuzzy formulas

resp. the fuzzy formula associated to C resp. c. Then,
the following two conditions are equivalent:

(a) Any two − element, fuzzy relation instance on
schemeR (U) which satisfies all dependencies in
C, satisfies the dependency c.

(b) ir,β
(
c
′
)
> 1

2 for every ir,β such that ir,β (K) > 1
2

for all K ∈ C ′
.

Theorem C yields Theorem A in [6].
Note that the same theorem is proved in [4,

pp. 38-42] for Yager’s fuzzy implication operator,
as well as in [5, pp. 293-296] for Kleene-Dienes-
Lukasiewicz fuzzy implication operator.

Fuzzy relation instance r is said to satisfy the
fuzzy multivalued dependency X → θ−→F Y , θ - ac-
tively if r satisfies X → θ−→F Y and ϕ (A [t1, t2]) ≥ θ
for all A ∈ X and all t1, t2 ∈ r.

Clearly, r satisfies X → θ−→F Y , θ-actively if and
only if r satisfies X → θ−→F Y and ϕ (X [t1, t2]) ≥ θ
for all t1, t2 ∈ r.

The following theorem holds true (see, [6, Th. 1]).

Theorem D. Let r = {t1, t2} be any two-element,
fuzzy relation instance on scheme R (A1, A2, ..., An),
U be the universal set of attributes A1, A2,..., An
and X , Y be subsets of U . Let Z = U \ (X ∪ Y ).
Then, r satisfies the fuzzy multivalued dependency
X → θ−→F Y , θ-actively if and only if

ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥ θ or

ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ.

Notice that the proof of Theorem D does not de-
pend on the choice of fuzzy implication operator.

The authors in [6] applied the θ-active concept to
derive the main result of the paper. The main result,
i.e., Theorem 5, also yields Theorem A in [6].

Theorem B is an auxiliary result in [6].
The same theorem is proved in [4, pp. 37-38] for

Yager’s fuzzy implication operator, as well as in [5,
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p. 288] for Kleene-Dienes-Lukasiewicz fuzzy impli-
cation operator.

Yager [22], has introduced two families of fuzzy
implication operators, called the f -generated and g-
generated implications, respectively (see also, [1,
pp. 109f]). In this paper we research the concept of
f -generated implications.

Let f : [0, 1] → [0,+∞] be a strictly decreasing
and continuous function with f (1) = 0. The function
If : [0, 1]2→ [0, 1] defined by

If (x, y) = f−1 (xf (y)) ,

x, y ∈ [0, 1], with the understanding 0 · ∞ = 0, is
called an f -generated implication. The function f it-
self is called an f -generator (or an f -generator of If ).

Since f : [0, 1] → [0,+∞] is strictly decreasing
function, and f (1) = 0, we conclude that f (x) ∈
[0, f (0)] for all x ∈ [0, 1]. Hence, If is correctly
defined if xf (y) ∈ [0, f (0)] for all x, y ∈ [0, 1].

Since x ∈ [0, 1], and f (y) ∈ [0,+∞] for y ∈
[0, 1], we have that xf (y) ≥ 0 for x, y ∈ [0, 1].

On the other side, x ≤ 1 for x ∈ [0, 1], yields that

xf (y) ≤ f (y) ≤ f (0)

for y ∈ [0, 1].
Thus, xf (y) ∈ [0, f (0)] for all x, y ∈ [0, 1], i.e.,

If is correctly defined.
By [1, p. 112, Th. 3.1.4.], If1 = If2 if and only

if there is a constant c ∈ (0,+∞) such that f2 (x)
= cf1 (x) for all x ∈ [0, 1], where f1, f2 : [0, 1] →
[0,+∞] are any two f -generators.

We point out the following facts.
If f is an f -generator, then f (0) = +∞ or f (0)

< +∞. If f (0) < +∞, then the function f1 : [0, 1]
→ [0, 1] defined by

f1 (x) =
f (x)

f (0)
,

x ∈ [0, 1] is an f -generator. Namely, f1 is a strictly
decreasing and continuous function with f1 (1) = 0.
Since f (x) = f (0) · f1 (x) for all x ∈ [0, 1], where
f , f1 are f -generators, and f (0) ∈ (0,+∞), we con-
clude that If = If1 . In other words, if f is an f -
generator, then we may assume that either f (0) =
+∞ or f (0) = 1.

For example, if we take the f -generator f (x)
= − log x, x ∈ [0, 1], then the corresponding f -
generated implication with f (0) = +∞ is Yager’s
fuzzy implication (see, [21])

IY (x, y) = yx,

x, y ∈ [0, 1], with the understanding 00 = 1.
In concluding remarks of [4], [5] and [6], the au-

thors noted that the set of applicable fuzzy implica-
tion operators to Theorems B and C could be possi-
bly widen to include not only those covered by the
above mentioned papers. The goal of this paper is
to give a positive answer to this query, and to prove
that the aforementioned theorems remain valid for ar-
bitrary f -generated fuzzy implication operator (with
either f (0) = +∞ or f (0) = 1).

If ir,β is a valuation joined to r and β, then we
assume that

ir,β (A ∧B) = min (ir,β (A) , ir,β (B)) ,

ir,β (A ∨B) = max (ir,β (A) , ir,β (B)) ,

ir,β (A⇒ B) = f−1 (ir,β (A) f (ir,β (B)))

for A, B ∈ U .

2 Inference rules
The authors in [17] derived the following
inference rules for fuzzy functional dependencies
(shorter FFDs) and fuzzy multivalued dependencies
(shorter FMVDs):

IR1 Inclusive rule for FFDs: If X θ1−→F Y

holds, and θ1 ≥ θ2, then X θ2−→F Y holds.

IR2 Reflexive rule for FFDs: If X ⊇ Y , then
X →F Y holds.

IR3 Augmentation rule for FFDs: If X θ−→F Y

holds, then XZ θ−→F Y Z holds.

IR4 Transitivity rule for FFDs: If X θ1−→F Y

holds and Y θ2−→F Z holds, then X
min(θ1,θ2)→ F Z

holds.

IR5 Inclusive rule for FMVDs: If X → θ1−→F

Y holds, and θ1 ≥ θ2, then X → θ2−→F Y holds.

IR6 Complementation rule for FMVDs: If
X → θ−→F Y holds, then X → θ−→F U − XY
holds.
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IR7 Augmentation rule for FMVDs: If
X → θ−→F Y holds, and W ⊇ Z, then
WX → θ−→F Y Z holds.

IR8 Transitivity rule for FMVDs: IfX → θ1−→F

Y holds and Y → θ2−→F Z holds, then

X
min(θ1,θ2)→→ F Z − Y holds.

IR9 Replication rule: If X θ−→F Y holds, then
X → θ−→F Y holds.

IR10 Coalescence rule for FFDs and
FMVDs: If X → θ1−→F Y holds, Z ⊆ Y , and
for someW disjoint from Y we haveW θ2−→F Z,

then X
min(θ1,θ2)→ F Z holds.

IR11 Union rule for FFDs: If X θ1−→F Y holds

and X θ2−→F Z holds, then X
min(θ1,θ2)→ F Y Z

holds.

IR12 Pseudotransitivity rule for FFDs: If
X

θ1−→F Y holds and WY
θ2−→F Z holds, then

WX
min(θ1,θ2)→ F Z holds.

IR13 Decomposition rule for FFDs: If X θ−→F

Y holds and Z ⊆ Y , then X θ−→F Z holds.

IR14 Union rule for FMVDs: If X → θ1−→F Y

holds andX → θ2−→F Z holds, thenX
min(θ1,θ2)→→ F

Y Z holds.

IR15 Pseudotransitivity rule for FMVDs: If
X → θ1−→F Y holds and WY → θ2−→F Z holds,

then WX
min(θ1,θ2)→→ F Z −WY holds.

IR16 Decomposition rule for FMVDs: If
X → θ1−→F Y holds and X → θ2−→F Z holds,

then X
min(θ1,θ2)→→ F Y ∩ Z, X

min(θ1,θ2)→→ F Y −
Z, X

min(θ1,θ2)→→ F Z − Y hold.

IR17 Mixed pseudotransitivity rule: If
X → θ1−→F Y holds and XY θ2−→F Z holds, then

X
min(θ1,θ2)→ F Z − Y holds.

Here, U is some universal set of attributes and X , Y ,
Z, W ⊆ U . Moreover, U −XY , for example, means
U \ (X ∪ Y ).

Note that these rules are consistent (see, [17]),
i.e., they reduce to the classical ones [2] when crisp
attributes are included.

3 Proofs

Proof. (of Theorem B)
Since r = {t1, t2} and θ ∈ [0, 1] are given, a val-

uation ir,θ is determined.

(⇒) Suppose that r satisfies X → θ−→F Y , θ-
actively.

By Theorem D,

ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥ θ or

ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ.

Let ϕ (X [t1, t2]) ≥ θ and ϕ (Y [t1, t2]) ≥ θ hold
true.

Now,

min
A∈X
{ϕ (A [t1, t2])} = ϕ (X [t1, t2]) ≥ θ.

Hence, ϕ (A [t1, t2]) ≥ θ for all A ∈ X , i.e., ir,θ (A)

> 1
2 for all A ∈ X . Therefore,

ir,θ (∧A∈XA) = min {ir,θ (A) | A ∈ X} > 1

2
.

Similarly, ϕ (Y [t1, t2]) ≥ θ yields that
ir,θ (∧B∈YB) > 1

2 .
We have,

ir,θ (H)

= ir,θ ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC)))

= f−1
(
ir,θ (∧A∈XA)

f (ir,θ ((∧B∈YB) ∨ (∧C∈ZC)))
)

= f−1
(
ir,θ (∧A∈XA) ·

f (max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC)))
)
.

Put

a = ir,θ (∧A∈XA) ,

b = max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC)) .

Hence,

ir,θ (H) = f−1 (af (b)) .
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Since ir,θ (∧A∈XA) > 1
2 , it follows that a > 1

2 .
Similarly, ir,θ (∧B∈YB) > 1

2 , yields that b > 1
2 .

If b = 1, then f (b) = 0. Therefore,

f−1 (af (b)) = f−1 (0) = 1.

We conclude, ir,θ (H) > 1
2 .

Suppose that b < 1. Now, f (b) > 0.
If f−1 (af (b)) ≤ 1

2 , then af (b) ≥ f
(
1
2

)
, i.e.,

a ≥
f
(
1
2

)
f (b)

.

Since b > 1
2 , it follows that f (b) < f

(
1
2

)
, i.e.,

f
(
1
2

)
f (b)

> 1.

Consequently,

a ≥
f
(
1
2

)
f (b)

> 1.

This is not possible, however. Therefore, f−1 (af (b))
> 1

2 , i.e., ir,θ (H) > 1
2 .

Now, suppose that ϕ (X [t1, t2]) ≥ θ and
ϕ (Z [t1, t2]) ≥ θ hold true. Reasoning as in the pre-
vious case, we conclude that ir,θ (∧A∈XA) > 1

2 and
ir,θ (∧C∈ZC) > 1

2 . Therefore, a > 1
2 and b > 1

2 .
Now, reasoning in exactly the same way as in the

previous case, we obtain that ir,θ (H) > 1
2 .

(⇐) Suppose that ϕ (X [t1, t2])≥ θ and ir,θ (H)> 1
2

hold true.
We have,

ir,θ (H) = f−1 (af (b)) >
1

2
,

where

a = ir,θ (∧A∈XA) ,

b = max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC)) .

Since ϕ (X [t1, t2]) ≥ θ, we have that a > 1
2 .

We shall prove that b > 1
2 . Namely, b > 1

2 implies
that ir,θ (∧B∈YB) > 1

2 or ir,θ (∧C∈ZC) > 1
2 .

If ir,θ (∧B∈YB) > 1
2 , for example, then

min {ir,θ (B) | B ∈ Y } = ir,θ (∧B∈YB) >
1

2

yields that ir,θ (B) > 1
2 for all B ∈ Y , i.e.,

ϕ (B [t1, t2]) ≥ θ for all B ∈ Y . Hence,

ϕ (Y [t1, t2]) = min
B∈Y
{ϕ (B [t1, t2])} ≥ θ.

Similarly, if ir,θ (∧C∈ZC)> 1
2 , then ϕ (Z [t1, t2])

≥ θ.
If f−1 (af (b)) = 1, then af (b) = 0. Since a >

1
2 , we conclude that f (b) = 0, i.e., b = 1. Hence, b >
1
2 .

Suppose that f−1 (af (b)) < 1. Then, af (b) >
f (1) = 0. Since a > 1

2 , we obtain that f (b) > 0.
Furthermore, since f−1 (af (b)) > 1

2 , it follows that
af (b) < f

(
1
2

)
, i.e.,

a <
f
(
1
2

)
f (b)

.

Assume that b ≤ 1
2 .

If b = 1
2 , then

f
(
1
2

)
f (b)

= 1.

Since,

a <
f
(
1
2

)
f (b)

,

it follows that a < 1. This is not necessarily true, how-
ever. Namely, the case a = 1 may occur as well.

Suppose that b < 1
2 . Now, f (b) > f

(
1
2

)
, i.e.,

f
(
1
2

)
f (b)

< 1.

Therefore,

a <
f
(
1
2

)
f (b)

is not necessarily satisfied since a > 1
2 may happen to

be larger than

f
(
1
2

)
f (b)

.
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We conclude,

a <
f
(
1
2

)
f (b)

holds true for a > 1
2 only if b > 1

2 . Namely, if b > 1
2 ,

then f (b) < f
(
1
2

)
, i.e.,

f
(
1
2

)
f (b)

> 1.

Consequently,

a <
f
(
1
2

)
f (b)

holds true for every a > 1
2 .

Thus, b > 1
2 . Now, bearing in mind what we said

earlier, we have that ϕ (Y [t1, t2])≥ θ or ϕ (Z [t1, t2])
≥ θ. Hence,

ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥ θ or

ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ.

By Theorem D, r satisfies X → θ−→F Y , θ-actively.
This completes the proof.

Proof. (of Theorem C)
We write X θ1−→F Y resp. X → θ1−→F Y instead

of c if c is a fuzzy functional resp. fuzzy multivalued
dependency. Consequently, we write

(∧A∈XA)⇒ (∧B∈YB)

resp.

(∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD))

instead of c
′
, where Z = U \ (X ∪ Y ).

We choose the set {a, b} to be the domain of each
of the attributes in U .

Fix some θ
′′ ∈

[
0, θ

′
)

, where θ
′

is the minimum
of the strengths of all dependencies that appear in C ∪
{c}. We may assume that θ

′
< 1. Otherwise, if θ

′
= 1,

the claim of the theorem reduces to the non-interesting
case where each c1 ∈ C ∪ {c} has the strength 1.

Let s (a, b) = θ
′′
.

(a)⇒ (b) Assume that (b) does not hold.

Then, there exists some ir,β such that ir,β (K) >
1
2 for all K ∈ C ′

and ir,β
(
c
′
)
≤ 1

2 .
Note that ir,β is joined to some two-element,

fuzzy relation instance r = {t1, t2} on R (U) and
some β ∈ [0, 1].

Denote, Z
′
=
{
A ∈ U | ir,β (A) > 1

2

}
.

Suppose that Z
′
= ∅.

Then, ir,β (A) ≤ 1
2 for all A ∈ U .

Since ir,β
(
c
′
)
≤ 1

2 , we have that

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.

ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD))) ≤ 1

2
,

i.e.,

f−1 (ir,β (∧A∈XA) f (ir,β (∧B∈YB))) ≤ 1

2

resp.

f−1
(
ir,β (∧A∈XA) ·

f (ir,β ((∧B∈YB) ∨ (∧D∈ZD)))
)
≤ 1

2
,

i.e.,

f−1 (ir,β (∧A∈XA) f (ir,β (∧B∈YB))) ≤ 1

2

resp.

f−1
(
ir,β (∧A∈XA) ·

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))
)
≤ 1

2
,

i.e.,

ir,β (∧A∈XA) f (ir,β (∧B∈YB)) ≥ f
(

1

2

)
resp.

ir,β (∧A∈XA) ·

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≥ f
(

1

2

)
.
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If

f (ir,β (∧B∈YB)) = 0

resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) = 0

then,

ir,β (∧B∈YB) = 1

resp.

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) = 1,

i.e.,

ir,β (∧B∈YB) = 1

resp.

ir,β (∧B∈YB) = 1 or ir,β (∧D∈ZD) = 1.

Hence, in any case, there is A ∈ U such that ir,β (A)

= 1 > 1
2 . This is a contradiction. We conclude,

f (ir,β (∧B∈YB)) > 0

resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) > 0.

Thus,

ir,β (∧A∈XA) ≥
f
(
1
2

)
f (ir,β (∧B∈YB))

(1)

resp.

ir,β (∧A∈XA)

≥
f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

.
(2)

Since ir,β (A) ≤ 1
2 for all A ∈ U , we obtain that

ir,β (∧B∈YB) = min {ir,β (B) | B ∈ Y } ≤ 1

2

resp.

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) ≤ 1

2
,

i.e.,

f (ir,β (∧B∈YB)) ≥ f
(

1

2

)
resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≥ f
(

1

2

)
,

i.e.,

1 ≥
f
(
1
2

)
f (ir,β (∧B∈YB))

resp.

1 ≥
f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

.

Having in mind these inequalities, we conclude that
(1) resp. (2) holds true only if ir,β (∧A∈XA) = 1.
Therefore, ir,β (∧A∈XA) = 1 yields that there exists
A ∈ U such that ir,β (A) = 1 > 1

2 . This is a contra-
diction.

Consequently, Z
′ 6= ∅.

Suppose that Z
′
= U .

Now, ir,β (A) > 1
2 for all A ∈ U .

Since ir,β
(
c
′
)
≤ 1

2 , we have that

ir,β (∧A∈XA) f (ir,β (∧B∈YB)) ≥ f
(

1

2

)
resp.

ir,β (∧A∈XA) ·

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≥ f
(

1

2

)
.

If

f (ir,β (∧B∈YB)) = 0

resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) = 0

then, 0 ≥ f
(
1
2

)
. This is impossible, however.

Namely, 1
2 < 1 yields that f

(
1
2

)
> f (1) = 0. Hence,

f (ir,β (∧B∈YB)) > 0
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resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) > 0.

Therefore, (1) resp. (2) holds true.
Since ir,β (A) > 1

2 for all A ∈ U , we have that

ir,β (∧B∈YB) = min {ir,β (B) | B ∈ Y } > 1

2

resp.

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) >
1

2
,

i.e.,

f (ir,β (∧B∈YB)) < f

(
1

2

)
resp.

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) < f

(
1

2

)
,

i.e.,

f
(
1
2

)
f (ir,β (∧B∈YB))

> 1

resp.

f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

> 1.

Therefore, by (1) resp. (2), ir,β (∧A∈XA) > 1. This
is a contradiction.

We conclude, Z
′ 6= U .

Let r
′

=
{
t
′
, t

′′
}

be the two element, fuzzy rela-
tion instance on R (U), given by table 1.

Table 1:
attributes of Z

′
other attributes

t
′

a, a, ... , a a, a, ... , a
t
′′

a, a, ... , a b, b, ... , b

We shall prove that r
′

satisfies all dependencies
from the set C, and violates the dependency c.

Let K θ2−→F L be any fuzzy functional depen-
dency from the set C. We have,

f−1 (ir,β (∧A∈KA) f (ir,β (∧B∈LB)))

= ir,β ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

i.e.,

ir,β (∧A∈KA) f (ir,β (∧B∈LB)) < f

(
1

2

)
.

If f (ir,β (∧B∈LB)) = 0, then ir,β (∧B∈LB) = 1, i.e.,

min {ir,β (B) | B ∈ L} = 1.

Hence, ir,β (B) = 1 for all B ∈ L, i.e., B ∈ Z ′
for all

B ∈ L, i.e., L ⊆ Z ′
.

We obtain, ϕ
(
L
[
t
′
, t

′′
])

= 1. Consequently,

ϕ
(
L
[
t
′
, t

′′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.
(3)

This means that r
′

satisfies the dependency K θ2−→F

L.
Suppose that f (ir,β (∧B∈LB)) > 0. Now,

ir,β (∧A∈KA) <
f
(
1
2

)
f (ir,β (∧B∈LB))

. (4)

If ir,β (∧A∈KA) ≤ 1
2 , then

min {ir,β (A) | A ∈ K} ≤ 1

2
.

Now, there exists A ∈ K such that ir,β (A) ≤ 1
2 . This

means that A /∈ Z
′
, i.e., that ϕ

(
A
[
t
′
, t

′′
])

= θ
′′
.

Consequently, ϕ
(
K
[
t
′
, t

′′
])

= θ
′′
.

Since s (a, b) = θ
′′
, we have that ϕ

(
Q
[
t
′
, t

′′
])

≥ θ
′′

for any attribute set Q ⊆ U . In particular,
ϕ
(
L
[
t
′
, t

′′
])
≥ θ′′ .

We conclude,

ϕ
(
L
[
t
′
, t

′′
])
≥ θ′′ = min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

In other words, r
′

satisfies K θ2−→F L.
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Let ir,β (∧A∈KA) > 1
2 . Since (4) holds true, this

inequality yields that

f
(
1
2

)
f (ir,β (∧B∈LB))

> 1.

Hence,

f

(
1

2

)
> f (ir,β (∧B∈LB)) ,

i.e.,

1

2
< ir,β (∧B∈LB) ,

i.e.,

1

2
< min {ir,β (B) | B ∈ L} .

Now, ir,β (B) > 1
2 for all B ∈ L, i.e., B ∈ Z ′

for all
B ∈ L, i.e., L ⊆ Z ′

.
Hence, ϕ

(
L
[
t
′
, t

′′
])

= 1.

Consequently, (3) holds true. This means that r
′

satisfies the dependency K θ2−→F L.

LetK→ θ2−→F L be any fuzzy multivalued depen-
dency from the set C.

We have,

f−1
(
ir,β (∧A∈KA) ·

f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))
)

= f−1
(
ir,β (∧A∈KA) ·

f (ir,β ((∧B∈LB) ∨ (∧D∈MD)))
)

= ir,β ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧D∈MD)))

>
1

2
,

i.e.,

ir,β (∧A∈KA) ·
f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

< f

(
1

2

)
,

where M = U \ (K ∪ L).
Suppose that ir,β (∧A∈KA) ≤ 1

2 .

Reasoning as in the case of fuzzy functional de-
pendencyK θ2−→F L, we conclude that ϕ

(
K
[
t
′
, t

′′
])

= θ
′′
.

Now, there is t
′′′ ∈ r′ , t′′′ = t

′
such that

ϕ
(
K
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′′
, t

′′
])
≥ θ′′ ≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

This means that r
′

satisfies K → θ2−→F L.
Let ir,β (∧A∈KA) > 1

2 . Now,

min {ir,β (A) | A ∈ K} > 1

2
.

Hence, ir,β (A) > 1
2 for all A ∈ K, i.e., A ∈ Z ′

for
all A ∈ K, i.e., K ⊆ Z ′

.
Therefore, ϕ

(
K
[
t
′
, t

′′
])

= 1.
Assume that

f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) = 0.

Hence,

max (ir,β (∧B∈LB) , ir,β (∧D∈MD)) = 1,

i.e., ir,β (∧B∈LB) = 1 or ir,β (∧D∈MD) = 1, i.e.,

min {ir,β (B) | B ∈ L} = 1

or

min {ir,β (D) | D ∈M} = 1,

i.e., ir,β (B) = 1 for all B ∈ L or ir,β (D) = 1 for all
D ∈ M , i.e., B ∈ Z ′

for all B ∈ L or D ∈ Z ′
for all

D ∈M , i.e., L ⊆ Z ′
or M ⊆ Z ′

.
In other words, ϕ

(
L
[
t
′
, t

′′
])

= 1 or

ϕ
(
M
[
t
′
, t

′′
])

= 1.

Suppose that ϕ
(
L
[
t
′
, t

′′
])

= 1.

Now, there exists t
′′′ ∈ r′ , t′′′ = t

′′
such that
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ϕ
(
K
[
t
′′′
, t

′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′′
, t

′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′′
, t

′′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

(5)

This means that r
′

satisfies K → θ2−→F L.
Suppose that ϕ

(
M
[
t
′
, t

′′
])

= 1

Now, there is t
′′′ ∈ r′ , t′′′ = t

′
such that (5) holds

true. Therefore, r
′

satisfies K → θ2−→F L.
Assume that,

f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) > 0.

Now,

ir,β (∧A∈KA)

<
f
(
1
2

)
f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

.

Since, ir,β (∧A∈KA) > 1
2 , the previous inequality

yields that

f
(
1
2

)
f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

> 1,

i.e.,

f

(
1

2

)
> f (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) ,

i.e.,

1

2
< max (ir,β (∧B∈LB) , ir,β (∧D∈MD)) .

Hence, ir,β (∧B∈LB) > 1
2 or ir,β (∧D∈MD) > 1

2 .
Reasoning as earlier, we obtain that

ϕ
(
L
[
t
′
, t

′′
])

= 1 or ϕ
(
M
[
t
′
, t

′′
])

= 1.

If ϕ
(
L
[
t
′
, t

′′
])

= 1, then there is t
′′′ ∈ r′ , t′′′ =

t
′′

such that (5) holds true.

If ϕ
(
M
[
t
′
, t

′′
])

= 1, then there is t
′′′ ∈ r′ , t′′′

= t
′

such that (5) holds true.
We conclude, r

′
satisfies the dependency

K → θ2−→F L.
It remains to prove that r

′
violates the dependency

X
θ1−→F Y resp. X → θ1−→F Y .
Let

f−1 (ir,β (∧A∈XA) f (ir,β (∧B∈YB)))

= ir,β ((∧A∈XA)⇒ (∧B∈YB))

= ir,β

(
c
′
)
≤ 1

2
.

Now,

f

(
1

2

)
≤ ir,β (∧A∈XA) f (ir,β (∧B∈YB)) .

Assume that f (ir,β (∧B∈YB)) 6= 0, +∞.
We obtain,

f
(
1
2

)
f (ir,β (∧B∈YB))

≤ ir,β (∧A∈XA) .

If we assume that ir,β (∧A∈XA) ≤ 1
2 , then the

previous inequality yields that

f
(
1
2

)
f (ir,β (∧B∈YB))

= 0,

i.e., that f
(
1
2

)
= 0. Since 1

2 6= 1, this is not possible.
Hence, ir,β (∧A∈XA) > 1

2 .
As we already seen, this implies that

ϕ
(
X
[
t
′
, t

′′
])

= 1.
Moreover,

f
(
1
2

)
f (ir,β (∧B∈YB))

≤ ir,β (∧A∈XA)

yields that

f
(
1
2

)
f (ir,β (∧B∈YB))

≤ 1

2
< 1.

We obtain,

f

(
1

2

)
< f (ir,β (∧B∈YB)) ,
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i.e.,

1

2
> ir,β (∧B∈YB) .

As earlier, we conclude that there exists B ∈ Y such
that ir,β (B) < 1

2 , i.e., that B /∈ Z ′
.

Therefore, ϕ
(
B
[
t
′
, t

′′
])

= θ
′′
, and then

ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′
.

We have,

ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′
< θ

′ ≤ θ1

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This means that r
′

violates X θ1−→F Y .
Let

f−1
(
ir,β (∧A∈XA) ·

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))
)

= ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD)))

= ir,β

(
c
′
)
≤ 1

2
.

Now,

f

(
1

2

)
≤ ir,β (∧A∈XA) ·

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) .

Suppose that,

f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) 6= 0,+∞.

We have,

f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ ir,β (∧A∈XA) .

If we assume that ir,β (∧A∈XA) ≤ 1
2 , then, rea-

soning in the same way as in the case of fuzzy func-
tional dependency X θ1−→F Y , we obtain that f

(
1
2

)
=

0, i.e., 1
2 = 1. This is a contradiction.

Hence, ir,β (∧A∈XA) > 1
2 .

As before, this inequality yields that
ϕ
(
X
[
t
′
, t

′′
])

= 1.
Moreover,

f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ ir,β (∧A∈XA)

yields that

f
(
1
2

)
f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ 1

2
< 1,

i.e.,

f

(
1

2

)
< f (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ,

i.e.,

1

2
> max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) .

This means that ir,β (∧B∈YB)< 1
2 and ir,β (∧D∈ZD)

< 1
2 .

Hence, ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
Z
[
t
′
, t

′′
])

=

θ
′′
.

If t
′′′ ∈ r′ and t

′′′
= t

′
, we have

ϕ
(
X
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′′
, t

′′
])

= θ
′′
< θ

′ ≤ θ1

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

Similarly, if t
′′′ ∈ r′ and t

′′′
= t

′′
, we obtain

ϕ
(
X
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′′
, t

′
])

= θ
′′
< θ

′ ≤ θ1
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= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′′
, t

′′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

Consequently, r
′

does not satisfy the dependency
X → θ1−→F Y .

(b)⇒ (a) Assume that (a) does not hold.
Then, there exists some two-element fuzzy rela-

tion instance r
′

=
{
t
′
, t

′′
}

on R (U) such that r
′

sat-
isfies all dependencies from the setC, and violates the
dependency c.

Thus, r
′

violates X θ1−→F Y resp. X → θ1−→F Y .
Let Z

′
=
{
A ∈ U | ϕ

(
A
[
t
′
, t

′′
])

= 1
}

.

Suppose that Z
′
= ∅.

Then, ϕ
(
A
[
t
′
, t

′′
])

= θ
′′

for every A ∈ U .

Hence, ϕ
(
Q
[
t
′
, t

′′
])

= θ
′′

for every Q ⊆ U .

If r
′

violates X θ1−→F Y , then, we have

ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

We obtain,

θ
′′
< min

(
θ1, θ

′′
)

= θ
′′
.

This is a contradiction.
Suppose that r

′
violates X → θ1−→F Y .

Then, the conditions

ϕ
(
X
[
t
′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
])) (6)

are not all satisfied at the same time.
The first and the second condition in (6) are al-

ways satisfied. Hence, it must be

θ
′′

= ϕ
(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)

= θ
′′
.

This is a contradiction.
We conclude, Z

′ 6= ∅.
Now, suppose that Z

′
= U .

Then, ϕ
(
A
[
t
′
, t

′′
])

= 1 for all A ∈ U .

Hence, ϕ
(
Q
[
t
′
, t

′′
])

= 1 for all Q ⊆ U .

If r
′

violates X θ1−→F Y , we obtain

1 = ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min (θ1, 1) = θ1.

This is a contradiction.
If r

′
violates X → θ1−→F Y , then the conditions

given by (6) are not all satisfied at the same time.
Since the first and the second conditions in (6)

always hold true, we conclude that

1 = ϕ
(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min (θ1, 1) = θ1.

This is a contradiction.
Hence, Z

′ 6= U .
We join ir′ ,1 to r

′
and 1 ∈ [0, 1].

We have,

ir′ ,1 (A) ∈
(

1

2
, 1

]
if ϕ

(
A
[
t
′
, t

′′
])

= 1,

ir′ ,1 (A) ∈
[
0,

1

2

]
if ϕ

(
A
[
t
′
, t

′′
])

< 1.

In other words,

ir′ ,1 (A) ∈
(

1

2
, 1

]
if A ∈ Z ′

,

ir′ ,1 (A) ∈
[
0,

1

2

]
if A ∈ U\Z ′

.

We shall prove that ir′ ,1 (K) > 1
2 for all K ∈ C ′

and ir′ ,1
(
c
′
)
≤ 1

2 .

First, let K ∈ C ′
be of the form

(∧A∈KA)⇒ (∧B∈LB) .

This implication corresponds to some fuzzy func-
tional dependency K θ2−→F L from the set C.

Since r
′

satisfies K θ2−→F L, we have that

ϕ
(
L
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

. (7)
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Suppose that

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) ≤ 1

2
.

Now,

1

2
≥ f−1

(
ir′ ,1 (∧A∈KA) f

(
ir′ ,1 (∧B∈LB)

))
,

i.e.,

f

(
1

2

)
≤ ir′ ,1 (∧A∈KA) f

(
ir′ ,1 (∧B∈LB)

)
.

Assume that,

f
(
ir′ ,1 (∧B∈LB)

)
6= 0,+∞.

We obtain,

f
(
1
2

)
f
(
ir′ ,1 (∧B∈LB)

) ≤ ir′ ,1 (∧A∈KA) .

As earlier, the assumption ir′ ,1 (∧A∈KA) ≤ 1
2

yields the contradiction f
(
1
2

)
= 0.

Hence, ir′ ,1 (∧A∈KA) > 1
2 .

Therefore, ir′ ,1 (A) > 1
2 for all A ∈ K, i.e.,

ϕ
(
A
[
t
′
, t

′′
])

= 1 for allA ∈ K, i.e., ϕ
(
K
[
t
′
, t

′′
])

= 1.
Moreover, the inequality

f
(
1
2

)
f
(
ir′ ,1 (∧B∈LB)

) ≤ ir′ ,1 (∧A∈KA) .

yields that

f
(
1
2

)
f
(
ir′ ,1 (∧B∈LB)

) ≤ 1

2
< 1.

Now,

f

(
1

2

)
< f

(
ir′ ,1 (∧B∈LB)

)
,

i.e.,

1

2
> ir′ ,1 (∧B∈LB) .

This means that there is B ∈ L such that ir′ ,1 (B) <

1
2 , i.e., ϕ

(
B
[
t
′
, t

′′
])

< 1, i.e., ϕ
(
B
[
t
′
, t

′′
])

= θ
′′
.

Consequently, ϕ
(
L
[
t
′
, t

′′
])

= θ
′′
.

Now, by (7),

θ
′′

= ϕ
(
L
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

= min (θ2, 1) = θ2.

This is a contradiction.
We condlude,

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
.

Second, let K ∈ C ′
be of the form

(∧A∈KA)⇒ ((∧B∈LB) ∨ (∧D∈MD)) ,

where M = U \ (K ∪ L).
Note that K corresponds to some fuzzy multival-

ued dependency K → θ2−→F L from the set C.
Since r

′
satisfiesK→ θ2−→F L, we know that there

exists t
′′′ ∈ r′ such that

ϕ
(
K
[
t
′′′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

Suppose that,

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧D∈MD))) ≤ 1

2
.

Now,

1

2
≥f−1

(
ir′ ,1 (∧A∈KA) ·

f
(

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

)))
,

i.e.,

f

(
1

2

)
≤ir′ ,1 (∧A∈KA) ·

f
(

max
(
ir′ ,1 (∧B∈LB) ,

ir′ ,1 (∧D∈MD)
))
.
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Assume that,

f
(

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
6= 0,+∞.

We have,

f
(
1
2

)
f
(

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
≤ ir′ ,1 (∧A∈KA) .

If ir′ ,1 (∧A∈KA) ≤ 1
2 , then f

(
1
2

)
= 0, i.e., 1

2 =
1.

This is a contradiction.
Hence, ir′ ,1 (∧A∈KA) > 1

2 .
Therefore, ir′ ,1 (A) > 1

2 for all A ∈ K, i.e.,

ϕ
(
A
[
t
′
, t

′′
])

= 1 for allA ∈ K, i.e., ϕ
(
K
[
t
′
, t

′′
])

= 1.
Moreover, the inequality

f
(
1
2

)
f
(

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
≤ ir′ ,1 (∧A∈KA) .

yields that

f
(
1
2

)
f
(

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
≤ 1

2
< 1.

Hence,

f

(
1

2

)
< f

(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
,

i.e.,

1

2
> max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

)
.

We conclude, ir′ ,1 (∧B∈LB) < 1
2 and ir′ ,1 (∧D∈MD)

< 1
2 .

This means that there exist B ∈ L and D ∈ M
such that ir′ ,1 (B) < 1

2 and ir′ ,1 (D) < 1
2 , i.e.,

ϕ
(
B
[
t
′
, t

′′
])

< 1 and ϕ
(
D
[
t
′
, t

′′
])

< 1,

i.e.,

ϕ
(
B
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
D
[
t
′
, t

′′
])

= θ
′′
,

i.e.,

ϕ
(
L
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
M
[
t
′
, t

′′
])

= θ
′′
.

Now the third condition of the conditions

ϕ
(
K
[
t
′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

is not satisfied.
Similarly, the second condition of the conditions

ϕ
(
K
[
t
′′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′
, t

′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

is not satisfied.
This means that r

′
does not satisfy the depen-

dency K → θ2−→F L.
Hence, a contradiction.
We conclude,

ir′ ,1 ((∧A∈KA)⇒ ((∧B∈LB) ∨ (∧D∈MD))) >
1

2
.

It remains to prove that ir′ ,1
(
c
′
)
≤ 1

2 .

Let r
′

violates X θ1−→F Y .
We have,

ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

. (8)

Suppose that,
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f−1
(
ir′ ,1 (∧A∈XA) f

(
ir′ ,1 (∧B∈YB)

))
= ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB))

= ir′ ,1

(
c
′
)
>

1

2
.

Now,

f

(
1

2

)
> ir′ ,1 (∧A∈XA) f

(
ir′ ,1 (∧B∈YB)

)
.

If f
(
ir′ ,1 (∧B∈YB)

)
= 0, then ir′ ,1 (∧B∈YB) =

1.
Hence, ir′ ,1 (B) = 1 for all B ∈ Y , i.e.,

ϕ
(
B
[
t
′
, t

′′
])

= 1 for all B ∈ Y , i.e., ϕ
(
Y
[
t
′
, t

′′
])

= 1.
This contradicts (8).
We conclude, f

(
ir′ ,1 (∧B∈YB)

)
> 0, i.e.,

ir′ ,1 (∧B∈YB) < 1.

Suppose that f
(
ir′ ,1 (∧B∈YB)

)
6= 0, +∞.

If ir′ ,1 (∧B∈YB) > 1
2 , then ir′ ,1 (B) > 1

2 for all

B ∈ Y , i.e., ϕ
(
B
[
t
′
, t

′′
])

= 1 for all B ∈ Y , i.e.,

ϕ
(
Y
[
t
′
, t

′′
])

= 1.
This contradicts (8).
Therefore, ir′ ,1 (∧B∈YB) ≤ 1

2 .

Now, f
(
ir′ ,1 (∧B∈YB)

)
≥ f

(
1
2

)
, i.e.,

(
1
2

)
f
(
ir′ ,1 (∧B∈YB)

) ≤ 1.

Since,

ir′ ,1 (∧A∈XA) <

(
1
2

)
f
(
ir′ ,1 (∧B∈YB)

) ,
and f

(
ir′ ,1 (∧B∈YB)

)
6= +∞, we obtain that

ir′ ,1 (∧A∈XA) = 0.
Hence, there is A ∈ X such that ir′ ,1 (A) = 0,

i.e., ϕ
(
A
[
t
′
, t

′′
])
< 1, i.e., ϕ

(
A
[
t
′
, t

′′
])

= θ
′′
, i.e.,

ϕ
(
X
[
t
′
, t

′′
])

= θ
′′
.

Similarly, ir′ ,1 (∧B∈YB) ≤ 1
2 yields that

ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′
.

Now, by (8)

θ
′′

= ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)

= θ
′′
.

This is a contradiction.
Consequently,

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB))

= ir′ ,1

(
c
′
)
≤ 1

2
.

Let r
′

violates X → θ1−→F Y .
Now, the third condition in (6) is not satisfied, i.e.,

the following inequality holds true.

ϕ
(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

. (9)

Similarly, the second condition of the conditions

ϕ
(
X
[
t
′′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

is not satisfied, i.e., the following inequality holds
true.

ϕ
(
Y
[
t
′′
, t

′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

. (10)

Suppose that,

f−1
(
ir′ ,1 (∧A∈XA) ·

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)))
= ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD)))

= ir′ ,1

(
c
′
)
>

1

2
.

Now,

f

(
1

2

)
> ir′ ,1 (∧A∈XA) ·

f
(

max
(
ir′ ,1 (∧B∈YB) ,

ir′ ,1 (∧D∈ZD)
))
.
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If

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
= 0

then

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
= 1,

i.e., ir′ ,1 (∧B∈YB) = 1 or ir′ ,1 (∧D∈ZD) = 1.
If ir′ ,1 (∧B∈YB) = 1, then reasoning as before,

we obtain that ϕ
(
Y
[
t
′
, t

′′
])

= 1.
This contradicts (10).
If ir′ ,1 (∧D∈ZD) = 1, then ϕ

(
Z
[
t
′
, t

′′
])

= 1.
This contradicts (9).
Therefore,

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
> 0,

i.e.,

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
< 1.

Suppose that,

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
6= +∞.

If

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
>

1

2

then ir′ ,1 (∧B∈YB) > 1
2 or ir′ ,1 (∧D∈ZD) > 1

2 .

In the first case, we have that ϕ
(
Y
[
t
′
, t

′′
])

= 1.
This contradicts (10).
In the second case, we have that ϕ

(
Z
[
t
′
, t

′′
])

=

1.
This contradicts (9).
Therefore,

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
≤ 1

2
.

Now,

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
≥ f

(
1

2

)
,

i.e.,

f
(
1
2

)
f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)) ≤ 1.

Since,

ir′ ,1 (∧A∈XA)

<
f
(
1
2

)
f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
and

f
(

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
6= +∞,

we conclude that ir′ ,1 (∧A∈XA) = 0.
Hence, reasoning as earlier, we obtain that

ϕ
(
X
[
t
′
, t

′′
])

= θ
′′
.

Similarly,

max
(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
≤ 1

2

yields that ir′ ,1 (∧B∈YB) ≤ 1
2 and ir′ ,1 (∧D∈ZD) ≤

1
2 .

Hence, ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
Z
[
t
′
, t

′′
])

=

θ
′′
.

Now,

θ
′′

= ϕ
(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)

= θ
′′

contradicts (9), and

θ
′′

= ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)

= θ
′′

contradicts (10).
Consequently,

ir′ ,1 ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD)))

= ir′ ,1

(
c
′
)
≤ 1

2
.

This completes the proof.
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4 Applications of continuous maps in
fuzzy relations and concluding re-
marks

In [22], Yager applied continuous maps to introduce
f -generated and g-generated implications (see also,
[20]). From his work, it appears that the motivation to
define these two families stems from a desire to study
and exploit the role of fuzzy implications (and hence
continuous maps) in approximate reasoning. Yager’s
fuzzy implications are obtained from continuous maps
that are either strictly decreasing or increasing with
the unit interval [0, 1] as their domain and [0,+∞] as
their codomain. Analogously, one can try to obtain
fuzzy implications from such maps whose codomain
is also [0, 1]. One such attempt was made by Balasub-
ramaniam [9], [10], where a new class of fuzzy impli-
cations, called h−implications has been proposed.

Continuous maps have been extensively used in
the theory of fuzzy transforms (firstly proposed by
Perfilieva [11]). The fuzzy transform is a method that
can be applied to a continuous function on a bounded
domain or to a discrete function on a finite domain.
In particular, the domain [a, b] (which is an interval
of real numbers with nods a = x0 = x1 < ... < xn
= xn+1 = b, n ≥ 2) is supposed to be partitioned by
fuzzy sets A1, A2,..., An identified with their mem-
bership functions A1 (x), A2 (x),..., An (x) : [a, b]→
[0, 1]. More precisely, A1, A2,..., An form a parti-
tion of [a, b], i.e., A1 (x), A2 (x),..., An (x) are ba-
sic functions, if for k ∈ {1, 2, ..., n}: (1) Ak (xk)
= 1, (2) Ak (x) = 0 for x /∈ (xk−1, xk+1), (3) Ak
is continuous, (4) Ak is strictly increasing (decreas-
ing) on [xk−1, xk] ([xk, xk+1]) for k ∈ {2, 3, ..., n}
(k ∈ {1, 2, ..., n− 1}), (5)

n∑
k=1

Ak (x) = 1 for all

x ∈ [a, b]. The F-transform Fn [f ] of a function
f ∈ C [a, b] with respect to basic functions A1 (x),
A2 (x),..., An (x) is the n-tuple [F1, F2, ..., Fn] ∈ Rn,
where

Fk =

b∫
a
f (x)Ak (x) dx

b∫
a
Ak (x) dx

,

k ∈ {1, 2, ..., n}. The elements F1, F2,..., Fn ∈ R are
called the components of the F-transform Fn [f ]. The
F-transform Fn [f ] (with respect to A1 (x), A2 (x),...,
An (x)) is a linear map, i.e.,

Fn [αf + βg] = αFn [f ] + βFn [g]

for α, β ∈ R and f , g ∈ C [a, b]. On the basis of
knowledge of the components, one defines the func-
tion

fF,n (x) =

n∑
i=1

FiAi (x) ,

x ∈ [a, b]. This function is called the inverse F-
transform of f with respect to A1 (x), A2 (x),...,
An (x). It approximates f with arbitrary precision in
the sense that for every ε > 0, there exists an integer
n (ε), and a fuzzy partition A1, A2,..., An(ε) of [a, b]
such that for x ∈ [a, b]

∣∣f (x)− fF,n(ε) (x)
∣∣ < ε.

The theory of F-transform is successfully applied
in signal and image processing (see, e.g., [7]). In [7],
the authors applied the coding-decoding method of
image processing based on an application of the di-
rect and inverse fuzzy transform, An image is consid-
ered as a fuzzy relation which is divided into blocks.
Each block is compressed by discrete fuzzy transform
(of a function in two variables), and successively de-
compressed by inverse fuzzy transform. The decom-
pressed blocks are recomposed for the reconstruction
of the image, whose quality is evaluated by calculat-
ing the peak signal to noise ratio (with respect to the
original image).

F-transforms are applied in compression [8].
There, the authors compress certain areas (neighbour-
hoods of edges). The method is based on similarity
between various blocks and the compression of only
one representative.

Further application of F-transform is in denoising
[13]. A particular interest is paid to the problem of
removing noise, i.e., to a method based on nonlinear
signal processing.

F-transforms are successfully applied in numer-
ical solutions of partial differential equations (see,
e.g., [19]). In [19], three types of partial differential
equations (with physical background) are considered:
heat equation, wave equation and Poisson’s equation.
These equations (on a domain D = X × X) have the
same form

L
(
∂2u

∂x2
,
∂2u

∂y2
,
∂u

∂x
,
∂u

∂y

)
= q (x, y) ,

where L is a linear form. Continuous functions within
differential equations are replaced by their discrete
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representations. The obtained systems of algebraic
equations are solvable by existing numerical methods.
Finally, the numerical solutions are transformed back
into continuous ones.

In [14], F-transform is applied in data analysis.
The method is used for detection and characterization
of dependencies between attributes.

In [18] however, F-transform is applied within
neural networks.

The concepts of fuzzy rough sets, and fuzzy
topologies are associated with fuzzy transform in [12].
In [12] it is shown that the fuzzy transform can be rep-
resented as a fuzzy approximation operator (studied
in the operator-oriented view of fuzzy rough set the-
ory). Moreover, it is shown that the use of fuzzy rough
sets results reduces efforts in proving fuzzy transform
theoretic results. As noted in [12], the fact that the
concept of fuzzy topology can be naturally associ-
ated with the theory of fuzzy rough sets, yields that
there is a possibility of establishing a connection be-
tween the theory of fuzzy topology and the theory of
F-transform.

Galois connection (within category theory) plays
an important role in establishing relationships be-
tween various spatial structures. In [15], the authors
proved that there are several Galois connections be-
tween the category of Alexandroff L-fuzzy topologi-
cal spaces and the category of reflexive L-fuzzy rela-
tions.

In [3], the authors derived various properties of
C-metric spaces: convergence properties, a canoni-
cal decomposition, a C-fixed point theorem, where C-
metric on X is a real map on X × X which satisfies
only two metric axioms: symmetry and triangular in-
equality (this means that C-metric is an approximate
metric, i.e., a real map on X ×X which satisfies only
a part of the metric axioms).

The results derived in this paper, i.e., Theorems B
and C, generalize the corresponding results obtained
in [4] for Yager fuzzy implication operator, as well
as the results obtained in [5] for Reichenbach fuzzy
implication operator (see also, [6] for Kleene-Dienes
fuzzy implication approach).

Namely, if we take the f -generator f (x) = −
log x, x ∈ [0, 1] (with f (0) = +∞), then the corre-
sponding f -generated implication is the Yager fuzzy
implication [21].

Moreover, if we take the f -generator f (x) = 1−
x, x ∈ [0, 1] (with f (0) = 1), then the correspond-
ing f -generated implication is the Reichenbach fuzzy
implication (or Kleene-Dienes-Lukasiewicz fuzzy im-
plication) [16].

The author is convinced that Theorems B and C
could be verified for the family of g-generated impli-
cations (see, [1]).

For the family of h-generated implications see [9]
and [10].

For detailed study on fuzzy implications we refer
to [1].

For detailed study on fuzzy functional and fuzzy
multivalued dependencies that we apply in this paper,
we refer to [17] (see also [2] when crisp attributes are
included).
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