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Abstract: - This paper considers the generalized form of the time-fractional Newell-Whitehead-Segel model
(TFNWSM) with regard to exact solutions via the application of Fractional Complex Transform (FCT) coupled
with He’s polynomials method of solution. This is applied to two forms of the TFNWSM viz: nonlinear and
linear forms of the time-fractional NWSM equation whose derivatives are based on Jumarie’s sense. The results
guarantee the reliability and efficiency of the proposed method with less computation time while still
maintaining high level of accuracy.
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1 Introduction o“w(xt) . o°w(xt) J.
Fractional calculus (FC) as a branch of applied ot =k P +aw(x,t)—bw’ (x.t),
mathematics deals with different possibilities of w(x,0)= f (x), ae(O,l]

how the powers of operators being it differential or

integral are defined in terms of real number or @
complex number. It generalizes the classical where a,beR ,and k, jeZ".

corresponding differential calculus of integer orders. Many researchers have considered solving (1) at
Mathematical modelling in most cases, involves a =1 via some solution techniques [15-18]. The
partial differential equations (PDEs) of nonlinear aim of this paper is to obtain the solution of the
and/or linear forms. Meanwhile, obtaining solutions time-fractional NWSE via the application of FCT
to these model-equations has been a great concern. coupled with He’s polynomial solution method [19-
Hence, the adoption and construction of semi- 24]. This coupled method involves less
analytical, numerical methods, and their modified computational time and work.

forms [1-14]. Therefore, this paper will be focusing
on an effective coupled method applied to the time-
fractional Newell-Whitehead-Segel equation of the

form: 2 Jumarie’s Fractional Derivative

Jumarie’s Fractional Derivative (JFD) [25, 26] is a
modified form of the Riemann-Liouville derivatives.
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Hence, the definition of JFD and its basic properties
as follows:

Let h(v) be a continuous real function of v (not
o“h
ov”

denoting JFD of h, of order o w.r.t. V. Then,

L O -2y (n(2)-h(0))d2

F(—a)ao

for ae (—oo,O)

opn-| | Py~ ()02

1),

for a e((;j
((h(“*m) (v))(m), ae[mm+1), m le

necessarily  differentiable), and D;h=

2
where I'(-) denotes a gamma function. As

summarized in [25], the basic properties of JFD are
as stated via P1-P5:

P1: Dk =0, a >0,
P2: Dy (kh(v))=kDh(v), a >0,

I'(1+p)

P3: DYV’ = vV B> a >0,

r(l+f-a)
pa: DY (hy (V)h, (v)) = { s () l)D(h ((\:l))),

P5: Dj‘(h(v(g))):Dvh-ng,

where Kk is a constant.

Note: P1, P2, P3, P4, and P5 are referred to as
fractional derivative of: constant function, constant
multiple function, power function, product function,
and function of function respectively. P5 can be
linked to Jumarie’s chain rule of fractional
derivative.

21 The He’s Polynomials and the
Generalized non-integer NWSE

Here, we make reference to [19, 27, 28] for details
of the He’s Polynomials method. Hence, presented
below is the structure of the He’s Polynomials
solution method on the generalized version of
NWSE in terms of integer order.

Consider (1) for « =1 where I3(-) denotes an
integral operator, then:
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(0)+ I (kw, +aw—bw’),

o

f(x), w=w(xt),w(0)=w(x,0).
®)
The series solution form can be expressed as:
=2, "W, @
n=0

which is calculated as p-—>o. Hence, by the

application of convex homotopy method, (3)
becomes:
0 kz anerXXJ]

7 =0
> P, =g(x)+lg| ", .
n=0

+az p"w, —bH,
=0

where H, , 7€{0} UN denotes He’s polynomials

for the concerned nonlinear term, w’ (x1).
So, by comparison of the p's powers in (5), we
have:

P w, =g(x)
P 1w, = 15 (kw,, , +aw, —bH,)

xx,0

p'? 1w, = 15 (kw,,, +aw, —bH, )

xx,1

¥ w, =15 (kw,, , +aw, —bH, )

XX, 2

.p“) W, = g (kw

XXIl

W, —bH_,),i>1.

pr —>ZW as

Hence, the solution: W xt

p—>o0.

2.2 The Fractional Complex Transform
In general form, the fractional differential equation
of the following form is considered:

f (w, Dw,D/w, Dj”w, Dzyw) =0,
o= (tXxY,2).

Then, the Fractional Complex Transform [24] is
defined as follows:

(6)
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at”
T="-—"—, 0,1{,
Fira) @<
bx”
= 011 '
F(1+4) pe(0]]
) ()
Y=—2 _ ie(01],
r(1+4)
dz”
=, 0,1},
raeyy 70
with a, b, ¢, and d as unknown constants.
From P3,
DV’ :Mvﬂ’“, B>a>0,
r(l+g-a)
. aT _ a ata _ a ara
'llT‘Q{ra+aJ‘ra+aflt‘a'
(8)

Obviously in a similar manner, using properties P1-
P5, and the FCT in (7), the following are easily
obtained:

a B
0T _. ooy "X _

DIT = -4 ——~ 53 M
t ot” X ox”? )
A 4
piv =Y _¢ prz=2%
oy or”
Hence
a a 1 a ap
Df p(t,x,y,z) =Dy p(T(t))=D;p-DfT aﬁ,
op
D’ p(t,x,y,z) =D’ p(X =D!p-D/X =b——,
’p(t.x,y,2)=D{p(X(x))=Dyp-D; X
0
D/ p(t,xy,2)=D;p(Y(y))=Dip DjY_ca—s,
D/ p(t.,x,y,z2)=D;p(Z(z))=D;p-D;Z =d 62p
(10)
Thus, for p=p(t,X,y,z), we have:
“ op s p A op op
Dy a—, D] b , D c—,D/p=d—.
P= oT P= P= oY’ P oz
(11)

3 Applications and Test Cases
Here, the proposed method is applied to both linear
and nonlinear NWSE as follows:

Case la: Consider the following linear NWSE [16,
17]:
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w —w,, +3w =0,
(12)
w(x,0)=
with an exact solution:
w(x,t)=e>". (13)
Procedure:
By FCT,
T= at , Which according to section 3
I(l+a)
. oW
gives Dw= T =w, for a=1. So, (12
becomes:
W, —w,, +3w=0,
(14)
w(x,0)=

Therefore, using the outlined procedures in section
2.1, we obtained the following:

p©@:w, =e¥,
p(l): _IT( xx,0 3W0)
=Te*
p(Z) CW, = Ig (Wxx,l _3W1)
T2e2X y
T2
p(3) Wy = Ig (Wxxz 3W2)
T3e2X y
!
p(4) W4 - Ig (Wxx,3 3W3)
T4e2x y
T4
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p™w, =1

Thus, the analytical solution of (14) according to
He’s polynomial with reference to (1) where k =1,

T
0

m!

(Wxx,m-l - 3Wm—l)
mL2x

T"e

,meN

a=-3, b=0,and g(x)=e* gives:

w(x,T)=

— e2><+T )

2

3

6

4
1+T +—+—+T—

24

Whence, the exact solution of (12) is:

W(X,t) — e2x+T

=exp(2x)exp

_ ezx+[l‘(;ja)]

Note: When o =1, we have w(x,t)=e

corresponds to the exact solution of the classical
NWSE of integer order

E-ISSN: 2224-2856

I'(1+a)

[16, 17]. The exact and
approximate solutions of case la are graphically

presented in Fig. 1 and Fig. 1 respectively.
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Fig. 1: Exact Solution w.r.t. Case la
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Fig. 2 Approximate Solution w.r.t. Case la
Case 1b: Consider the following linear NWSE [18]:
a J—
. W, =W, — 2w,
which ) (17)
w(x,0)=e",
with an exact solution:
w(xt)=e"". (18)
Procedure w.r.t case 1b:
By FCT,
at” . . .
T =———, which according to section 3
I(l+a)
gives Dfw=—=w, for a=1. Hence, (17)
becomes:
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W, =w, —2w=0,

(19)
w(x,0)=¢", p™ w, =17 (W, py —2W,, )
m T Me?* ’
p©:w, =e?, =(-1) ] ,meN
L . . .
pt w =17 (Wxx,O —2W0) There1fore, the ar)alytl.cal solution of (19) according
, to He’s polynomial is:
= —Tex TZ T3 T4
- . W(X,T)={1-T+———+—+- |
P iw, = 15 (W, —2w,) 21 31 4l (20)
Tze)( H = eX7T .
= 21 Whence, the exact solution of (17) is:
% w, =17 (W, —2w,) w(X,t)=exp(x)exp| ————
I(l+a)
T3eX y (21)
el ta
3! _ ex[rmaJ
p“ 1w, = 1] (W, , —2w;) .
4 0T 8 Note: When a =1, we have w(x,t)=e*" which
_T4(:‘X ’ corresponds to the exact solution of the classical
Y NWSE of integer order [16]. The exact and the
approximate solutions of Case 1b are graphically
5) . presented in Fig. 3 and Fig. 4 respectively.
p( ) cWg = Ig (Wxx,4 _2W4)
B _TSeX y
~ 5l
6
p( ) We = Ig (Wxx,s 2W5)
B Tﬁex y
6!
7 “‘-o’i’-c 55 Eiggszz‘;
P e =15 (W 20 S
e p - <
=— 0 REEREERIRRAREE 0
71 t OO, :,3’ x
8 4 4
p( ) Wy = Ig (Wxx,7 2W7)
T8 , Fig. 3: Exact Solution w.r.t. Case 1b
8!
9
p() Wg:lg(wxxs 2W8)
Tgex y
"ol
0) .
p(l ) Wy = Ig (Wxx,g _2W9)
Tloex y
10!
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Fig 4. Approximate Solution w.r.t. Case 1b

Case 2: Consider the following nonlinear (NL)
NWSE

WY =W, + 2w — 3w, 22
w(x,0)=n,
with the exact solution at o =1:
2t
w(xt)=——2 (23)
2—-3n+3ne

Procedure w.r.t Case2:

By the FCT,

at
1+«

T= C , Which according to section 3

gives Dfw= gﬂT =w, for a=1. Hence, (22)
becomes:
W, =W, +2wW—3w?,
w(x,0)=17.

Therefore, using the outlined procedures in section
2.1, we obtained the following:

(24)

p(O) Wo =11,

xx,0
= (—3772 + 277)T

P 1w, = 17 (W, + 20 —3(2wow, )

=(9%° -9* +25)T?

pw = 1] (W +2w, —3(W0)2)
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p®w, =1] (W +2W, —3(2w,W, +wyw, ) )
= (—27774 +36n° —14n° +%77JT3 1

+ 20, —3(2wWW, + 2w, W,

xx,3

p“ 1w, =17 (w

= (81775 —1351* +751° - 151 +§an4 ’

T 2W0W4
W =1y | W, +2w, -3
' +2W, W, + W, W,

—243n° + 486n° - 351" ’
= T®
+1087° —%772 +i77

Therefore, the analytical solution of (24) according
to He’s polynomial is:

n+(2n-3n")T +(27 97" +97°)T?
+(%77 ~14n° +36n° - 27774JT3

2
Zn-150> + 751°
377 7 7 T4

—135* +817°
—n——n"+108

+| 15 g 5 g g T+
—351n* +486n° — 243,°

(25)
Hence, the solution of (22) is:

|

n +(277—3772)T +(277 -9’ +9773)T2
+[%77 ~14n* +36n° - 2777“]T3
= +(§n —15n% + 75° 135" +81775JT4

4 62 2 3 4
—n——n*+108r°-35
+ 15'7 5 g 7 o TS

+4861° — 243n°

+ ...

(26)
Note: In Table 1 and Table 2, the exact solution
(Soln), approximate (Appr.) solution and relative
absolute error (Rel. Abs. Error) are considered for
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a =1. For Table 1, »=0.01 through 0.11 at t=1
is used while 0.01<7<0.10 and 0<t<1 are used

for Table 2. Figure 2 shows the exact and FCT-HP
solutions for Case 2.

Table 1: Solutions of Case 2 NL at t =1

Exact Soln Appr. Soln Rel. Abs. Error
0.067428494 0.06754959 0.00179274
0.124011608 0.12571705 0.01356573
0.172171175 0.17569407 0.02005131
0.213657904 0.21856245 0.02244003
0.249768793 0.25530047 0.02166734
0.281485162 0.28678908 0.01849415
0.309563187 0.3138179 0.01355792
0.334594967 0.33709110 0.00740492
0.357050732 0.35723301 0.00051024
0.377308671 0.37479367 0.00671037
0.395676392 0.39025411 0.01389424

Table 2: Solutions of Case 2 NL at te[0,1]

n t Exact Soln | Appr. Soln | Rel. Abs Err
0.01 | 0.0 | 0.010000000 | 0.0100000 | 1.7347E-16
0.02 | 0.2 | 0.029402665 | 0.0294027 | 1.8769E-06
0.03 | 0.3 | 0.052713413 | 0.0527153 | 3.486E-05
0.04 | 0.4 | 0.082924030 | 0.0829416 | 0.00021159
0.05 | 0.5 | 0.120398234 | 0.1204862 | 0.00073028
0.06 | 0.6 | 0.164795898 | 0.1650817 | 0.00173143
0.07 | 0.7 | 0.214918881 | 0.2155659 | 0.0030016
0.08 | 0.8 | 0.268754950 | 0.2697255 | 0.00359832
0.09 | 0.9 | 0.323760179 | 0.3242452 | 0.00149576
0.10 | 1.0 | 0.377308671 | 0.3747937 | 0.00671037

exact solution appros solution |
0.9+ /
0.8+ _."f
0.7
F0.61
.§0.5—
Ef
0.3
0.2
0.1 _
¢ O fime variable b=
Figure 2: Exact and FCT-HP solutions for case 2
E-ISSN: 2224-2856

272

O. Edeki, O. P. Ogundile, B. Osoba,
A.

S.
G. A. Adeyemi, F. O. Egara, S. A. Ejoh

4 Concluding Remarks

Fractional Complex Transform (FCT) coupled with
He’s polynomials method was successfully applied
for the time-fractional Newell-Whitehead-Segel
model (TFNWSM) with regard to exact and
approximate solutions. The associated derivatives
were defined in terms of Jumarie’s sense. Based on
the solved linear and nonlinear problems, reliability
and efficiency of the proposed solution method are
assured by the obtained results as less computational
time is involved. In addition, high basic knowledge
of fractional calculus is not necessarily required.
The method is therefore, recommended for space-
fractional derivatives of higher-ordered problems
arising from other areas of pure and applied
sciences. This can also be benchmarked with the
Restarted Adomian decomposition Method and
other approaches.
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