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Abstract: - In this paper, a new variable structure control algorithm for a class of discrete-time nonlinear 
uncertain systems is proposed. By using an estimator of uncertainties and external disturbances, the proposed 
algorithm ensures the stability of the closed loop system as well as the reference tracking. 
The controller designed using the above technique is completely insensitive to the parametric uncertainty and 
the external disturbances. Simulations are carried out on an inverted pendulum benchmark and the yielded 
results confirm the effectiveness of our proposition.  
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1 Introduction 

The variable structure theory and its applications 
have formed one of the most attractive research 
areas of the last decades. It is principally 
characterized by its robustness with respect to the 
system’s modeling uncertainties and external 
disturbances [1], [2], [3], [4]. Sliding mode control 
is a particular case of the variable structure control 
(VSC). 

The sliding mode control (SMC) has been widely 
studied over several decades in continuous and 
discrete time-systems. The continuous-time SMC is 
known by its robustness with respect to 
uncertainties and external disturbances [5], [6]. It 
consists of two steps. The first is the design of a 
sliding surface along which the process can slide to 
find its desired final value. The second is the 
synthesis of the control law in such away that any 
state outside the sliding surface is forced to reach 
the desired sliding manifold in finite time and stay 
on it. However, the main disadvantage of the 
continuous time sliding mode control is the 
chattering phenomenon which appears as a source to 
excite unmodeled high frequency dynamics of the 
process. Many approaches have been proposed to 
solve this problem such as second and high order 
sliding mode control [7], [8]. 

With the advent of digital computers and their 
widespread use in control systems, considerable 
efforts have been considered in the study of discrete 
time sliding mode control technique (DSMC) [9, 10, 
11, 12, 13]. 

The robustness property implies that the system 
state goes to a sliding surface in spite of parameter 
uncertainties and external disturbances. 

However, in the discrete sliding mode the control 
input is constant over sampling period. Hence, when 
the states reach the switching surface, the 
subsequent control would be unable to keep the 
states to be confined to the surface. This leads the 
system to undergo only quasi-sliding mode, i.e., the 
system states would approach the sliding surface but 
would generally be unable to stay on it [9]. 

The condition under which the system states 
starting from any initial state, move towards the 
sliding surface and reach it in a finite time are called 
reaching condition or reaching law. The system 
trajectory under the reaching condition is called the 
reaching mode or the reaching phase. 

In [14] Dote and Hoft are the first who have 
considered the discrete VSC problem and they have 
used  an equivalent form of the continuous reaching 
condition ( 0SS < ) to propose the following discrete  
reaching  condition: 
[ ]( 1) ( ) ( ) 0S k S k S k+ − <  
The term quasi-sliding mode was introduced by 
Miloslavjevic [15] to express the insufficiency of 
the above condition and Sarpturk, and al., [16] 
propose the following reaching condition : 

( 1) ( )S k S k+ <  
Furuta [17] used  the equivalent form of a 
Lyapunov-type of continuous reaching condition 

21
0

2
V S= <  to give the discrete version: 
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( 1) ( ) 0V k V k+ − <   with [ ]1 2
( ) ( )

2
V k S k=  

In this paper, a class of nonlinear discrete-time 
systems is considered involving both uncertainties 
and external disturbances. By employing an 
estimator of uncertainties and disturbances, the 
stability of the sliding mode is insured. 

The paper is organized as follows. Section two 
describes the considered systems. In section three, 
the discrete sliding mode control is reviewed. The 
fourth section is devoted to simulation of the 
proposed DSMC on the inverted pendulum model. 
The final section concludes the paper. 
 
 
2 Problem Formulation 

Let's consider the single input single output 
nonlinear discrete-time system: 

1( 1) ( ),   1, 2, ..., 1

( 1) ( ( )) ( ( )) ( ) ( )
i i

n

x k x k i n

x k F x k G x k u k w k
++ = = −

+ = + +





              (1)
 

The model structure given in (1) is used to cope 
with the inverted pendulum model. The functions F  
and G  are: 

( ( )) ( ( )) ( ( ))F x k f x k f x k= + ∆                                   (2)
( ( )) ( ( )) ( ( ))G x k g x k g x k= + ∆                                   (3) 

Where [ ]1 2( ) ( ), ( ), ..., ( )
T n

nx k x k x k x k= ∈ ℜ  is the 
state vector, f is a nonlinear function and g  is a 
nonlinear function different from zero. 

( ( ))f x k∆  and ( ( ))g x k∆  are the uncertainties on 
( ( ))f x k and ( ( ))g x k  respectively.  

The signal ( )u k ∈ ℜ  and ( )w k  are the control input 
and the external disturbance respectively. 
The system (1) can be rewritten in the form: 

1( 1) ( ),   1, 2, ..., 1

( 1) ( ( )) ( ( )) ( ) ( )
i i

n

x k x k i n

x k f x k g x k u k D k
++ = = −

+ = + +





              (4) 

Where ( )D k  is the term that includes the 
uncertainties and the external disturbance. 

( ) ( ( )) ( ( )) ( ) ( )D k f x k g x k u k w k= ∆ + ∆ +                   (5) 
 
 
3 Discrete sliding mode control 

The sliding function relative to this system is 
taken in this linear form: 

( ) ( ( ) ( ))d
TS k C x k x k= −                                           (6) 

where dx  is the desired state vector and 

[ ]1 2, , ...,T
nC c c c=  is the sliding vector, nc  is 

assumed to be 1 and ( 1, , )i i nc =  are chosen so that 
the roots of the polynomial 

1
1 2( ) ... n

nr z c c z c z −= + + +  are inside the unit circle. 
The sliding surface is: 

{ }| ( ) 0x S xσ = =                                                    (7) 
The sliding function can be rewritten as: 

1

1
( ) ( ) ( )

n

i i n
i

S k c e k e k
−

=
= +∑                                          (8) 

where ( )ie k is the state error, ( ) ( ) ( )i i
i
de k x k x k= −

and ( )i
dx k  is the ith component of ( )dx k .  

According to the sliding function (8), the sliding 
function value at time instant 1k +  can be obtained 
as: 

1

1
( 1) ( 1) ( 1)

n

i i n
i

S k c e k e k
−

=
+ = + + +∑                            (9) 

Replacing ( 1)ne k +  by its expression given above: 
1

1
( 1) ( 1) ( 1) ( 1)

n

i i n
i

n
dS k c e k x k x k

−

=
+ = + + + − +∑         (10) 

and from (4) we have: 

1

1
 ( 1) ( 1) ( ( )) ( ( )) ( )

( ) ( 1)

n

i i
i

n
d

S k c e k f x k g x k u k

D k x k

−

=
+ = + + +∑

+ − +
    (11) 

To obtain some desired performances, such as 
strong robustness, fast convergence and chattering 
elimination, we introduce a reaching law to ensure 
the convergence of the sliding function S(k) to zero. 
To ensure a quasi-sliding mode, the sliding function 
must verify the following reaching law [18]: 

( 1) (1 ) ( ) ( ( ))S k q T S k T sign S kη+ = − −                 (12) 
with 0 1 1qT φ< − = < and 0 1Tη< < , where 0T > , 

0η >  and 0q >  are the sampling period, the 
reaching rate and the approximation rate index. 
Using the equations (11) and (12), the control law 
based on SMC developed to control system (1) in 
discrete time is given by: 

1

1

1 ˆ( ) ( )
( ( ))

1
( 1) ( ( )) ( 1)

( ( ))

1
( ) ( ( ))

( ( ))

n
i i

i

u k D k
g x k

nc e k f x k x kdg x k

S k T sign S k
g x k

φ η

 −
 
 = 

  

= −

− + + − +∑

+ −

 (13) 

With ˆ ( )D k  is a compensator of perturbation that 
takes the following form: 

1ˆ ˆ( ) ( ( 1) ( 1))D k D k D k
ε

= − − − −                             (14) 
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with ε  is a small positive constant, the expression 
of ( 1)D k −  is given from the second equation of 
system (4) at time instant k-1: 

( 1) ( ) ( ( 1)) ( ( 1) ( 1)nD k x k f x k g x k u k− = − − − − −  (15) 
Replacing the control u  by its expression (12), we 
get: 

[ ]

1

1

ˆ( 1) ( ) ( ( 1)) ( 1)

( ) ( ( 1)) ( )

( 1) ( ( 1))

n

n n
i i d

i

D k x k f x k D k

c e k f x k x k

S k T sign S kφ η

 −
 
 = 

− = − − + −

+ + − −∑

− − − −

           (16) 

then ( 1)D k −  is given by: 
ˆ( 1) ( 1) ( ) ( 1)

( ( 1))

D k D k S k S k

Tsign S k

φ

η

− = − + − −

+ −
                    (17) 

Therefore the compensator is written as: 
1ˆ ( ) ( ( ) ( 1) ( ( 1))D k S k S k T sign S kφ η
ε

= − − − + −     (18) 

Theorem 1. If the control law (13), with the 
sliding function (8) and the disturbance compensator 
(18), is applied to the nonlinear uncertain system 
defined by (1), the state error converges to zero in 
finite time. 

Proof. Let us consider the following positive 
definite function as a Lyapunov function candidate: 

21( ) ( ( ))
2

V k S k=                                                     (19) 

[ ][ ]

2 21( ) ( 1) ( ) (( ( 1)) ( ( )) )
2

1                        ( 1) ( ) ( 1) ( )
2

V k V k V k S k S k

S k S k S k S k

∆ = + − = + −

= + − + +
(20) 

The equation (12) gives: 
( 1) ( ) ( ) ( ( ))

1                       ( ) ( )
( )

S k S k qT S k T sign S k

S k qT T
S k

η

η

+ − = − −

= − +
             (21) 

then 
if  ( ) 0  then ( 1) - ( ) 0
if  ( ) 0  then ( 1) - ( ) 0

S k S k S k
S k S k S k

> + <
 < + >

                       (22) 

on the other hand 
( 1) ( ) (1 ) ( ) ( ( )) ( )

1                       ( ) ((2 ) )
( )

S k S k q S k T sign S k S k

S k qT T
S k

η

η

+ + = − − +

= − −
  (23) 

if  ( ) 0  then ( 1) ( ) 0
if  ( ) 0  then ( 1) ( ) 0

S k S k S k
S k S k S k

> + + >
 < + + <

                      (24)
 

 
The equations (21) and (23) lead to: 
if  ( ) 0  then ( ) 0
if  ( ) 0  then ( ) 0

S k V k
S k V k

> ∆ <
 < ∆ <

                                  (25) 

and 

[ ]
[ ]

( 1) ( ) ( ( )) 0

( 1) - ( ) ( ( )) 0

S k S k sign S k

S k S k sign S k

 + + >


+ <
                             (26) 

These inequalities assure the quasi-sliding 
motion and the convergence of the state trajectories 
on the hyperplane, which guarantees the output 
convergence. 
 
 
4 Application on an inverted 
pendulum 

The considered  process consists of a cart and a 
pendulum attached to it.   
The motion equation such process is obtained by 
applying the Euler-Lagrange equations given by: 

 
d L L

u
dt ρ ρ

∂ ∂
− =

∂ ∂

                                                     (27) 

0
d L L

dt θ θ

∂ ∂
− =

∂ ∂

                                                     (28) 

where θ  is the angle between the pendulum and 
its upright position, θ  is the first derivative of θ  
with respect to t, ρ  is the position of the cart, u  is 
the force applied to the cart and L  is the Lagrangian 
given by: 
 c pL E E= −                                                           (29) 

where cE  is the kinetic energy: 

( ) 2 2 2 21 1 1
cos

2 2 2
E M m ml J ml xc ρ θ θ θ θ= + + + +  

 
   (30) 

and pE  is the potential energy: 

 cospE m g l θ=                                                      (31) 

M is the cart mass, m is the pendulum mass, l is 
the length of the pendulum, 21

3
J ml=  is the moment 

of inertia of pendulum and g is the acceleration of 
gravity. 
Thus, the mathematical model of the inverted 
pendulum is given by: 
 ( ) 2cos sin 0M m ml ml uρ θ θ θ θ+ + − + = 

            (32) 

24
cos sin 0

3
ml ml mglθ ρ θ θ+ − =

                          (33) 

Substituting (32) into (33) gives:  
( ) ( ), ,f g uθ θ θ θ θ= +                                           (34) 

We define the state variables: 
1

2

x
x

x
θ

θ
  

= =   
   

                                                       (35) 

Then f and g are given by: 
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2
2 1 1 1

1 2 2
1

( ) ( ) ( )
,

( )

sin( ) cos( ) ( ) sin( )
( )

cos ( ) (4 / 3) ( )

t t t

t

mlx x x m M g x
f x x

ml x l m M

− +
=

− +

                                                                                     (36) 
and 

1
1 2 2

1

( )
,

( )

cos( )
( )

cos ( ) (4 / 3) ( )

t

t

x
g x x

ml x l m M

−
=

− +
           (37) 

The state model of the system described by (34-37) 
is written as: 

1 2

2 1 2 1 2

1

( , ) ( , ) 
x x
x f x x g x x u w
y x

=
 = + +
 =



                               (38)
 

where w  is the external disturbance and 1y x θ= =  
is the pendulum position used as the system output. 
The discrete model of the inverted pendulum can be 
expressed as: 

1 1 2

2 2 1 2 1 2

( 1) ) ( )

( 1) ( ) ( , ) ( , ) ( )

(x k x k T x k

x k x k T f x x T g x x u T w k

+ = +

+ = + + +



   
                                                                             (39)

 
2

2 1 1 1
2

1

,1 2
sin( ( )) cos( ( )) ( ) sin( ( ))

( )
cos ( ( )) (4 / 3) ( )

x
mlx x k x k m M g x k

f x
ml x k l m M

− +
=

− +

1
2

1

,1 2
cos( ( ))

( )
cos ( ( )) (4 / 3) ( )

x
x k

g x
ml x k l m M

−
=

− +
 

T  is the sampling rate. 
In this paper we take into consideration the 

uncertainties on the pendulum mass m∆  and on the 
cart mass M∆  and the state model of the system can 
be written as: 

1 1 2

2 2 1 2 1 2

( 1) ( ) ( )

( 1) ( ) ( , ) ( , ) ( )

x k x k T x k

x k x k TF x x TG x x u T w k

+ = +

+ = + + +





  

(40) 
1 2 1 1 2 2 1 2( , ) ( , ) ( , )F F Fx x x x x x= −  

where: 
2

2 1 1
1 1 2 2

1

( ) sin( ( )) cos( ( ))
( , )

( ) cos ( ( )) (4 / 3) ( )

m m l x x k x k
F x x

m m l x k l m M m M

+ ∆
=

+ ∆ − + + ∆ + ∆  
1

2 1 2 2
1

( ) sin( ( ))
( , )

( ) cos ( ( )) (4 / 3) ( )

m M m M g x k
F x x

m m l x k l m M m M

+ + ∆ + ∆
=

+ ∆ − + + ∆ + ∆

 
1

1 2 2
1

cos( ( ))
( , )

( ) cos ( ( )) (4 / 3) ( )

x k
x x

m m l x k l m M m M
G =

+ ∆ − + + ∆ + ∆

−

( ) 0.1sin(0.1 )w k k=
 
 

Once the model is determined we proceed to 
solve the stabilization problem by designing a 
controller to keep the pendulum in its stable 
equilibrium point in spite of disturbances.  
The parameters of the inverted pendulum for 
simulation are 0.5l m= , 0.1m Kg=  and 

29.81 / .g m s= The initial conditions of the inverted 
pendulum are set for the simulation [ ]/12 0x pi= , 

0.05η =  and the sampling rate 0.1T s= . 
By choosing the sliding function as: 

 1 2
1 1 2( ) ( ( ) ( )) ( ( ) ( ))d dS k c x k x k x k x k= − + −  

The control law is given by:  

[ ]

1 2
1 1

1 ˆ( ) ( )
( ( ))

1
( ( 1) ( )) ( ) ( ( ))

( ( ))

1
( ) ( ( ))

( ( ))

d d

u k D k
g x k

c x k x k x k f x k
g x k

S k T sign S k
g x k

φ η

= −

+ − + − − −

+ −

  

and the compensator is written as: 
1ˆ ( ) ( ( ) ( 1) ( ( 1))D k S k S k Tsign S kφ η
ε

= − − − + −  

Figure 1 gives the evolutions of the states 1( )x k  and 
1 ( )dx k  . Figure 2 provides the evolution of the state 
2 ( )x k . Figure 3 presents the evolution of the sliding 

surface. The evolution of the control is presented in 
Figure 4. 

 
Fig.1 Evoluations of states 1( )x k  and 1 ( )dx k  

 
Fig.2 Evoluation of state 2 ( )x k  
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Fig.3 Evolution of the sliding surface 

 

Fig.4 Evolution of the control signal 
 

These Figures prove that relatively satisfactory 
performances are recorded in terms of rejecting 
disturbances. We note that the control law used has 
allowed the stabilization and the traking of the 
desired trajectory. Also we grantees the 
convergence of the sliding surface in the 
neighborhood of zero. 

By using an estimator of uncertainties in the 
control law, the proposed approach gives good 
results. It proves the robustness of the control 
against uncertainties and disturbances. 
 

 

4 Conclusion 
In this work, a new discrete-time quasi-sliding 

mode control law for a non-linear uncertain system, 
based on the estimation of uncertainties and 
disturbance is developed. The application of this 
control law on an inverted pendulum has given 
satisfactory results for the stabilization and the 
trajectory tracking while overcoming the chatter 
problems of sliding mode control. The robustness 
performance of our strategy is verified both 
theoretically and by means of a simulation example. 
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