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Abstract: - In the propose of the work, we concerns the elaboration an efficient and robust control of active and
reactive power by the use the PI regulators control (FOC) a power converters directly connected to the stator
and the rotor of a Doubly Fed Induction Generator (DFIG) system incorporated in a wind turbine to improve
the performance of a speed wind turbine. In the aim to assess the performance and dynamics of the wind
system, for the different test speeds of the wind, we are interested in the modeling, development and control of
the wind system. Initially, a control strategy of the MPPT-DFIG is presented. Therefore, the aim is the study
and implementation of the new control technique for wind systems. This control technique is based on the
orientation control of the flow rotor to DFIG. Finally, the control simulation results are simulated on the
environment Matlab / Simulink. A very detailed analysis of simulation results of wind conversion chain system
is performed with the objective to evaluate and optimize the performance of the proposed system.

Key-Words: - Wind Turbine; DFIG-Generator; modeling; Rotor Control; vector control; MPPT Control;
Orientation of the flow rotorique; Matlab / Simulink.

1 Introduction several research teams. Thus, the development and
The electricity has become more and more essential the multiplication of wind turbines have led the
for humanity. Indeed, access to electricity, is the researchers  to improve the efficiency  of
guarantee of best living conditions (hygiene, health, electromecha‘mcal conversion and quality of the
education). So it is at the heart about the future of energy supplied. It is in this context that we present
our society. It is as much by a factor of construction a study on the use Of a doubly fed induction
and wealth creation. On the one hand, demographic generator (DFIG) in a wind system, because of the
evolution of the world implies a sustainable increase many advaptaggs over Oth?r types of ?leCtﬂC
in energy needs. Moreover, energy consumption, machmes, since its construction is mrpple, its low
still on the increase, is reduce fossil energy reserves cost, its security interest of operation, its robustness
(coal, oil, gas) and away from the use of polluting anc! especially its s1mp1§ and  economical
fossil energy (carbon dioxide emissions), many maintenance. Through evolution and devel.opment
countries have looked to renewable energy. There of new technology recent power electronics and
are many renewable energy resources: hydropower, 1nformatlcsz the problems ‘1nherent in t.he controls
wind power, solar thermal and photovoltaic, the and operation of the various applications of the
energy produced by the waves and marine currents, speed Vquables DFIG are resol\{ed and s1mp11fled.
geothermal and biomass [1]. These energy resources In this context, for appropriate operation of the
are virtually inexhaustible and clean. The wind variable speed DFIG, one must insert a power
power is among the renewable energies, the one that converter PWM and control by vector control
knows the fastest growing in the world. It is almost orientation of the ﬂow rotor, whose obqectlve is to
universally recognized as the most promising source regulate the electrical power extract it from the
of energy to produce clean electricity in the short machine to its reference value, we apply this control
and medium term. And it contributes to to successfully DFIG, which gave a good powerful
environmental preservation. tool for its control. The performance of this control
Currently,  Sustainable  development and Will be .conduc.ted by simulation results with
renewable energy today arouse the interest of interpretations. Figure 1 presents a general structure
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of the electrical control of the wind energy system,
which is studied in this work, constituted the wind
turbine with three swivel blade length R, the DFIG
generator and the speed multiplier:

Grid

==

Control

Multiplier

ﬁE AC ¢ AC

Inverter Rectifier

Figure 1. Overall architecture of the control system of the wind.

2 Modeling of Wind Power System
2.1 Modeling of the Turbine

The modeling of the wind turbine is
characterized by the curves of the power coefficient,
which corresponds to the relation between the
mechanical power extract from the wind and the
incident power. The expression for the power
extracted available on the rotor of the turbine, is
expressed by [2]:

PExtraited = Plncident ‘Cp (A ’ ﬂ)
1 3 (1)
Incident ~ E IOS v
With:
S: The surface swept by the blades of the turbine
(m2).

P : The density of air (o =1.225 kg/m3).
V : Wind speed (m/s).
C;(/],,B) : Power coefficient.
Hence the power coefficient, ¢ L(A,B), to a

limit known as Betz limit. This limit is the
maximum extractable power for a given wind speed

C,"(A,)=0.593 [15]. For the DFIG, the

power coefficient is possible to model with a single
equation that depends on the speed ratio € and the

orientation angle a of the blades as follows [2]:
1

C,(AB)=c¢ .[cz.j‘ -¢.f-c, ).e_CSA +cgA
With:

)
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c, = 0.5872

¢, =116 1 1 _0.035  (3)
¢; =04 AT A+0.08.8 1+p°

c, =5 1= Q,.R

c, =21 v

¢, = 0.0085

From equation (2), it displays the power
coefficient curves as a function of A for different 8
values [23]:
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Figure 2. Curves of the Cp power coefficient as a function of A and B.

From Figure 2, we obtain a maximum power
coefficient C;‘“X()l, P =0479, for a speed ratio
A=12 and B=0 , by and B

respectively to their optimal values; the wind system
will provide optimal electrical power. The power
and mechanical torque of the turbine is noted [8]:

1
Pmec :7p~S.Cp(A,ﬂ).V3

setting A

opt

4)
Pl?’lf(‘ — 1
mec = Q[ _?pS'C[)(A’ﬁ)'Vs_[
With
Q, : The turbine rotation speed.
Cmec : Torque on the slow axis (turbine side).

According to equations (1), (2), (3) and (4), we
model the turbine as follows:

)
. b lambda
: 9

P|beta

cp(lambda,beta)
Vent X

p u(l)3 >
[Beta] wind_speed"3 —r

Figure 3. Modeling of the wind turbine.

2.2 Multiplier modeling

The multiplier is the connection between the wind
turbine and DFIG. It is adapted the speed of the
turbine to that of the generator as well mechanical
torque on the shaft of the generator by the following
equations [3]:
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€

Q,=—Q,
G 5
1
Caer = EC 8
With:

Q,: generator speed (speed shaft in rad/s).

G: multiplication ratio.

Q);: blade rotation speed (output shaft in rad/s).
C,: mechanical torque on the axis of the
generator (Nm).

Caer: mechanical turbine torque (N - m).

The next block diagram represents the modeling of
the multiplier for wind:

16 «Gmega 1]
[C_aer]>——— pl1/G [C_gl

Figure 4. Modeling of wind multiplier.

2.3 Shaft Modeling

The fundamental equation of the dynamics that
characterize the mechanical behavior of the turbine
and generator from the total mechanical torque
(Cmec) applied to the rotor is given by the
following formula:

dQ

J mée_ — Cmé(
dt '
Cmé(' = Car - Cem - Cvis (6)
Cvis = f Q méc
With:
Q,,. :Mechanical speed the DFIG.
Car : Aerodynamic torque on the fast axis of the
turbine.
Cem : Electromagnetic torque.
f : friction coefficient.

In operation the electromagnetic torque
generator Cmec has a negative sign. The next
block diagram represents the modeling of the
shaft for wind [10]:

e > — b ]

[C_em]

Figure 5. Modeling of the turbine shaft.
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3 Extraction of Maximum Power by

the Method MPPT

The MPPT (Maximum Power Point Tracking) is a
principle for tracking the maximum power point of
an electric generator for a variant source. The MPPT
has been created to have the best possible
connection between the source and the nonlinear
grid to extract the maximum power.

In order to capture the maximum power of the
incident wind, must permanently adjust the rotation
speed of the turbine to the wind. The wind speed is
difficult to measure, we assume that the wind speed
is constant over the study period, the rotation speed
of the turbine is assumed to be constant with respect
to the high inertia of the latter. If we neglect the
friction coefficient of the mechanical shaft, we can
write the following equation [4]:

Cg=Cem (7)
With, Cg is the torque exerted on the shaft after the
multiplier.

Then, the reference of the electromagnetic torque
of the turbine is obtained from the following
equation:

C
C —_— aer
em _ ref G
1 3 (®)
c., = c _....pV
aer 2Q ) p—max p
- RQ,
Anpt
Hence the electromagnetic torque reference is:
1 2
Cem_ref - 2] G3 Cp—max lOiTzf2 )

opt
The following block diagram shows the
extraction modeling of the maximum power
from the equation (9):

(Ro*S *Cp_max)/2

Figure 6. Maximum power extraction model by startigé MPPT.

On the basis of the previous equations and models,
the global schema we can give to all the dynamic
model of the wind turbine (Fig 7):
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Figure 7. Synoptic diagram of global model the wind turbine with maximum power extratction.

4 Modeling of the DFIG

For a better representation of the behavior of a
doubly fed induction generator, it is necessary to use
a specific model and simple. The two-phase models
(d, q) given by the Park transformation is used [9].

4.1 Electrical Equations of DFIG

The equations of the stator voltages Vs (d, q) and
the rotor Vr (d, q), the dynamic model are expressed
by DFIG [5]:

Vo =R,I,6 + dg;“’ - W, .¢Sq
V, =R, + d:%+ w.$, (10)
V,=R., + dgt"’ w8,
V, =R.I, + dg%+ w.$,
1 M
b ton T Ay
Li= b G b
1 M
o = TL,'%" - ﬁ-%q

4.2 Magnetic Equations
The following magnetic equations are taken from
electrical equations (11):
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$q =LAy +M .1,
¢, =L.I, +M .1, (12)
¢, =L .1,+M_ .I,
¢, =L.1, +M_ .1,

4.3 Mechanical Equations
The electromagnetic torque of the DFIG is:

Co =P @0, -9.,9.4) (13)

With:

¢s(d,q), p+(d,q) : Stator and rotor two-phase flow in
the reference of PARK.

Ii(d,q), I,(d,q) : Stator currents and rotor in the
reference of PARK.

R,, R, : Stator and rotor resistances.

L, L, : Inductors cyclic stator and rotor.

M: Cyclic mutual inductance.

p : Number of machine pole pairs.

wy: Pulsations of the stator electrical quantities.

w,: Pulsations of the rotor electrical quantities.

5 Vector Control of DFIG by

Orientation Flow Rotor

In this work we have proposed a vector control law
for DFIG based on the orientation flow rotor. In this
respect, it demonstrates the relations between the
stator and rotor variables. These relations will allow
the rotor to act on signals to control the exchange of
active and reactive power between the rotor of the
machine and the grid [11].

In this control, the flow rotor ¢, is oriented in
the direction axis d. Thus, we can write [12]:
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¢rd =¢r;¢rq =O (14)

The expression of the flow rotor and the stator then
becomes:

L

L
y = -——L ol
¢sd M” ¢rd Msr K rd
L.L
6, =Ll o, (15)
¢rd = Mxr‘IM
¢rq = 0

The expression of the electromagnetic torque then
becomes [16]:

C,=P@,9,)=-L.L.ol, I, (16

From the previous equation, we can derive the
equations linking the rotor and stator voltages:

RR
QLLo
y=-BLRL, MOd, 9 Eya Ry
l MI‘ Mf dt MI‘ MI‘ W" I
GRI
5 iRi (17)
‘{t] :_W—Irq_iai%_@. l’ lgdrd&‘{q
Mr Mr dt M?' W"
RR
QLo
‘{d:%(R'l&-'-RL- Ld+Llsg%_ 07) Irq_ R ‘{q+ ;d)
LM, M a M, WM,
WM R Liod, LLo
v, =P g T T ) 55
W M, M, d M,

The vector control the DFIG allows us to express
the expressions of active and reactive power as
followings:

R‘ = Vrd 'Ird + qu 'Irq
Qr = qu 'Ird - Vrd 'Irq

We replace the Vrd and Vrq tensions in Pr and Qr
are obtained:

2 2

{Pr = RrIrd + errq + a)r¢rd1rd (19)

Qr = a)r¢rd 1 rd
The power Pr is proportional to the current Irq if the
flow is kept constant. We can then write:
P, - P, =KI,
Q. =KI ,
The variables references values are defined to
control. Thus we have the rotor currents reference.

(18)

(20)

. _ P,
Iy = 1)
1w = o .
K

6 Current Control
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The current control ensures voltage regulation of the
DC bus and control power factor of the grid side.
The objective of the control is to maintain the
voltage of DC bus constant while absorbing a
current to be sinusoidal as possible, with the
possibility of the grid side the power factor
adjustment. The grid side converter is controlled
such that the active power and reactive power grid
side are written as follows [6]:
p=2y e
2 21

0 = - 3v o

2 m q
With, U, : is the amplitude of the phase voltage.
Applying the mesh law, we obtain the tension of the
filter is written in matrix form in the "abc" plan.

‘/1 Il Il dnl
V,|=R |1, |+L, o L, |+|d, |V, (22
‘/3 13 13 dn3
This gives the differential equation of continuous
DC bus:
v, _ 1
7;& :C_[(Zdnl +dn2 )Il +(dnl +2dn2 )12] (23)
dc
With:
dv, _ I
dt “ ot {13:_11_12

3 - - —
Idc = z dnm Im dn3 - dnl an
m=1

The representation status of an inverter in the plan
'abc' is non-linear (variable in time). We use the
PARK transformation plan “dq” to facilitate
implantation and extraction of harmonics [13]:

V ‘/1 d dnl I I 1
ol v [ |<lre] a. 1 <lne]
q V ngq d q I
3 n3 3

[P(H)] : Matrix Park
By applying the Park transformation to equation

(22) and (23) we find the following relation
dl

Crlz‘

VeE R, ¢ LS d, V- Lol
t
al (24)
V,=R,I,+1L, dt” +d, V, +L wl,
v, 1
dtd - Cd(. [dmlld +dnq1q

The variables references values are defined to
control. These are the reference voltages for the
inverter.

V=V, -U, ~e,
V=V, -U,~¢,
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With:
- d,
Ud _Rr1d+Lr e, :_Lrwlq
et
dl e, =L wl,
U, =R, +L, "t ‘

The general structure of the flow rotor orientation in
a wind system is detailed in the figure below:
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Figure 8. General structure of the orientation control the flow rotor applied to a wind system.

7 Simulation and Test Performance &

Matlab/Simulink/. The model consists:

the wind

turbine, the doubly fed induction generator (DFIG),

Discussion two power converters that connect the rotor to the
. . rid:
The following figure presents the global model of &
the wind system is simulated in the
Omega_s — i E——
beta »|beta Tm - & >
Wind speed (m / s) »|Wind speed (m / s) Vabe fdar LI R TIds
‘Wind Turbine Tas
Vabe Tdq_s —<_ [ldg sl | :dr
ar
P_ref > P_ref »|Vdr La_rt
= - Vdq_s —<"_ [Vdaq s1] o
Vdr —¢ ry
Q_ref > Q_rer o
> Var Te —w<__ el Tm
P_Grid > P_Grid P_ref
DFIG Q_r¢
Q_Gria »|Q_Grid VarlI P_re}
Control . > Vdr Ia_Grid —<__ [Ia_Grid] 3;:
[[Td_Grid] —>—»|1d_Grid R
vdr
[q_GridI =>—»rq_Gria »|Var Ib_Grid|—#<—_ [1h_Grid] Var
L Vd_Grid 3 .
T p— - \—-> Vd_Grid Ic_Grid[(—»<__ [lc_Grid] Displays
[IVdel ==—|Vac ~
v Vq_Grid »|Vq_Grid Vde—p<____[Vdel |
[l —=—wr T — "

Laws of controls

Figure 9. Simulation general diagram of the orientation control the flow rotor on Matlab / Simulink.

7.1 Response to Fixed S

E-ISSN: 2224-2856

peed

The study made for a constant wind speed of
V=11m/s. as shown in the following figure:
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Figure 10. Wind Constant profile

The following figures show the wind system
performance at constant speed.

Turbine speed

Turbine torque

1
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Figure 11. Turbine speed
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Figure 12. (a)Turbine torque, (b) electromechanical torque.
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Figure 13. (a) Power coefficient, (b) Power turbine.
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Figure 14. Characteristics of the turbine: (b) lambda, (a) Phis
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Figure 15. (a) The Power Active, (b) Power Reactive of MADA
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Figure 16. (a) Stator voltage and current in the plan “abc” (b) Zoom
stator voltage in the plan "abc", (c) Zoom stator current in the plan
"abc".

It is observed that the grid currents are sinusoidal
and in phase with the mains voltages, confirming
that the inverter perfectly compensates the harmonic
currents and the reactive power consumption on the
one hand by the load and secondly the reactive
power consumed by the DFIG. We also note that the
frequency of the rotor currents is different from the
frequency of the grid current. The DC bus voltage is
perfectly maintained at its reference value to 1200V,
as the rotor speed is regulated at 529.5 rad / s.

7.2 Response to a ramp

The wind system is supposed to functioning at its
optimal point such as, at a wind speed V= 6 m/s, the
optimal specific speed Aopt=12, the maximum
power coefficient Cp = 0.497 and the wind extracts
maximum performance by the MPPT method. At
time t = 0.5 s the wind changes speed as a ramp to
another value V = 10 m / s for a simulation time as
shown in the following figure:

11
10

],
:

1500

1000 2000

Time (ms)

Figure 17. Evolution of the wind speed.

Following Figures present the results obtained for
this application of the wind.
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Figure 19. (a) Turbine torque, (b) Electromechanical Power
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Figure 20. (a) Power coefficient, (b) Pwer turbine.
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Figure 21. Characteristics of the turbine :(a) lambda, (b) Phis.
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In the case of this wind model, note that the wind

vector control in terms of decoupling and the good
results achieved by regulating the classical PI
corrector which adequately ensured the wind MPPT

0 500 1000 1500 2000 system.

6000 system practically functions the same manner

previous, the active and reactive stator powers

E fluctuate and oscillating around their values in the

g 4000y case of the model. This phenomenon is due to the

% electronic switch at the rotor converter. From these

-% 2000 1h - e - simulations, One can notice the robustness of the
g

(b) 7.3 Response to variable speed

Figure 22. (a) Active Power, (b) Reactive Power of MADA
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Figure 24. Profile of wind speed.
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Figure 23. (a) Stator voltage and current in the plan “abc” (b) Zoom
stator voltage in the plan "abc", (c) Zoom stator current in the plan
"abc".
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Figure 25. (a) Power of the turbine, (b) Electromagnetic torque.
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Figure 26. Characteristics of the turbine :(a) lambda, (b) phis.

The following two figures show the wave form of
the active and reactive power, stator and rotor.
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Figure 27. (a) The Power Active, (b) Power Reactive of MADA .

The following figure shows the wave forms of the
voltages and stator currents.
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Figure 28. (a) Stator voltage and current in the plan “abc” (b) Zoom
stator voltage in the plan "abc", (c) Zoom stator current in the plan
"abc".
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One can notice that the stator voltage is equal to that
of the grid, while the currents obtained are
sinusoidal, which implies a clean energy without
harmonics supplied or drawn by the DFIG. The
current and stator voltage are in phase opposition,
this means that the stator active power is supplied
from the generator to the grid.

8 Conclusion

The object of this work consists to control, analysis,
development, modeling and simulation of a wind
system operating at different wind speeds.

The application of the orientation control of the
rotor flow as the direct axis "d" gives a simple
stabilization of the wind system.

Indeed, it not only allows us to simplify the model
of the machine but also to decouple torque control
and the flow. From numerical simulation, it was
found that effectively the rotor flow orientation
technique to decouple the flow, the powers so that
the direct component of the rotor current control
reactive power and the quadrature component
control the active power. This allows us to obtain
high dynamic performance similar to that of the
MCC. In this respect, this work can be continued
and completed by the implementation of this
command in a FPGA card.

Annex:

TABLE L PARAMETERS OF WIND POWER SYSTEM

Parameters of the turbine

Diameter of blade R=35.25m

Gain multiplier G=16

Inertia of the turbine J=0.3125 Kg.m2

Coefficient of viscosity | =0.00673 m.s-1

Parameters of the DFIG
Stator resistance Rs=0.455
Rotor resistance Rr=0.62
Stator inductance Ls=0.084H
Rotor inductance Lr=0.081H
Mutual inductance Msr=0.078H
Number of poles pP=2
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