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Abstract: - Many probabilistic models have been developed for numerous problems in robot and computer 
vision such as for image segmentation, road extraction, and object tracking. In this paper we present a 
probabilistic model for the random pixel mapping of binary images. The model predicts the probability of 
detecting dissimilarity between dissimilar binary images as a function of the number of random mappings and 
the amount of similarity. The model shows that detecting dissimilarity can be accomplished quickly by random 
pixel mapping, without the need to process the entire image. Test results on real images are presented that show 
the accuracy of the model. 
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1 Introduction 

Image (and sub-image) matching rises frequently 
in the field of robot and computer vision under 
many topics such as, image registration [1] [2], 
template matching [3] [4], image retrieval [5] [6], 
image classification [7] [8], motion tracking [9], 
motion estimation [10], defect detection [11], …, 
etc. These methods are either feature-based methods 
[12] [13], that rely on extracting image features [1] 
[14] and then matching them, or area-based methods 
(aka intensity methods) [15] [16] [10] [11], based on 
comparing image intensity values.  

Binary images have only two intensity levels, 
and thus a limited amount of scene detail is present 
in the image. As a result, binary image matching is 
usually accomplished by calculating the correlation 
between the images [15] [4] or simply by 
subtracting the two images [16] [17]. These 
methods, as well as all methods presented in the 
literature require some type of similarity criteria to 
be evaluated over the entire images being matched. 
Hence, these methods are image-size dependent; as 
image size increases, so does processing time. With 
modern day applications demanding higher image 
resolution resulting in higher image sizes (> 50 
Mega-pixel images) in many fields such as robotics, 
industrial applications and medical surgery, 
traditional image-size based methods, such as 
correlation, can become quite slow in processing 
such huge images, even with the speed of today’s 
computers. The dependency of matching techniques 
on image size is a serious handicap to these 
techniques. 

These methods, correlation and image 
subtraction, as well as the majority –if not all–  
methods cited in the literature, perform image 
matching by scanning images line by line, top to 
bottom, processing every pixel value from one 
image with its corresponding value at the other 
image. However, if we look at how the human brain 
performs the task of matching between two pictures, 
we find that it takes a more efficient approach which 
is completely different; search for differences is 
performed by glancing at the two pictures and 
identifying regions of dissimilarity. The region 
selection process is performed in a random manner 
and once a region of dissimilarity is detected, then 
that region becomes the area of focus, where 
additional detailed comparison is performed. This 
process of random point selection is the basis upon 
which our technique is based upon. The traditional 
“top-down scan the entire image” approach is 
completely abandoned, and hence valuable time is 
conserved. We show that our approach of 
dissimilarity detection by random pixel selection 
and comparison is an approach which can detect 
dissimilarity very quickly. The proof is given by a 
probabilistic model that shows the quickness of 
detecting dissimilarity by r andom mapping. The 
model is called a Probabilistic Matching Model for 
Binary Images (PMMBI). The model predicts the 
probability of detecting dissimilarity between any 
pair of binary images as a function of the number of 
random pixel mappings and the level of similarity 
between them. By randomly mapping image pixels, 
the model reveals the following unique and 
important advantages, 
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Fig. 1. Dissimilarity detection performance 
between PMMBI based methods and Image size 
based methods; top plot: time vs. image size. 
Bottom plot: time vs. similarity. 
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1. Dissimilar images can be detected quickly 
without the need to process the entire 
matched images. Even images that are highly 
similar and near-duplicate, but not exactly 
similar, can be amazingly detected by only 
comparing a minute fraction of the total size 
of the images. 

2. Detecting dissimilarity is image size 
invariant; the size of the image has absolutely 
no effect on the dissimilarity detection 
process nor its quickness. Detecting 
dissimilarity among images of size, say 500 
gega-pixels is detected just as fast as 
detecting it among 10 kilo-pixels images. 

3. Dissimilarity detection quickness between 
two images can be used to estimate image 
similarity to a good degree without the need 
to process the entire image. Hence, with the 
aid of the model, matching can be performed 
magnitudes faster than employing traditional 
matching techniques that require comparing 
the entire images. 

Fig. 1 shows a comparison of the dissimilarity 
detection performance between PMMBI based 
methods and image-size based methods. Image-size 
based methods refer to traditional methods with the 
“top-down scan the entire image” approach. The top 
graph shows a plot of detection time vs. image size. 
The plot reveals that detection time increases 
linearly as a function of image size for image-size 
based methods, whereas detection time for PMMBI 
based methods is constant and does not depend on 
image size. The bottom graph shows a plot of 
detection time vs. image similarity. Detection time 
is constant for image-size based methods and does 
not increase with similarity, whereas detection time 
for PMMBI based methods increases as the amount 
of similarity between the images increases. 
However, detection time is very small for low 
similarity and does not become significant except at 
very high similarity. But even when images have 
high similarity, the detection time for PMMBI based 
methods is still smaller than that for image-size 
based methods.  

This paper is organized as follows: section 2 
points out related literature, while section 3 reviews 
related work necessary for the understanding of the 
model presented. Section 4 presents the main theme 
of this paper and presents the development of the 
probability PMMBI model. We discuss the model 
and show how it can be used to detect dissimilarity 
quickly without the need to process the entire 
image, but rather by mappings a few randomly 

selected pixels. Section 5 presents results of 
detecting dissimilarity between images by random 
mapping that show the accuracy of the model. 
Section 6 presents our conclusion and where our 
future research is headed. 

 
2 Related Literature  

Image correlation [15] is a w ell established 
method for image matching and has been applied to 
many tasks [9] [10] [11] [18]. Current research on 
image correlation has focused on improving 
correlation calculations using a wide variety of 
techniques; such as using Fourier coefficients [19], 
pre-computed tables [4], updating computations at 
each window location [20], constructing basis 
functions [9], using Haar-like binary features [21], 
as well as numerous other techniques [22] [23] [24] 
[10] [25] [26] [27].  

Image subtraction, usually computed as the sum 
of the absolute difference between two images [16] 
is also a common and popular approach for 
matching. It is the primary operation used for 
motion detection. Numerous techniques have also 
been developed to reduce the computations of the 
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matching problem [18] [28] [29]. Hardware 
implementations have also been proposed to speed 
up calculations [30] [31] [32] [33].  

Mutual information is a third popular approach 
for matching that has seen growing interest over the 
last 20 years. It has been a very popular approach in 
the medical field as a  solution to the image 
registration problem [1] [34] [35] [36].  

Other area-based methods have also been 
developed based on a variety of principles; 
minimizing image intensity co-occurrences [37], 
using modified Hausdorff distances and local-
dissimilarity maps [38], mathematical morphology 
[39], as well as other innovative similarity distances 
[40]. However, all of these methods are image size 
dependent and require that the entire images be 
processed for matching. 
 
3 Related Work 

In this section, we present a su mmary of some 
earlier developed concepts that are necessary for the 
understanding of the work presented in this paper. 
We present: 1) the definition of similarity between 
binary images, and how images are categorized 
based on it; 2) the γ similarity distance that is used 
in our work as an index for image similarity; 3) how 
dissimilarity detection is measured.  

 
3.1 Similar and Dissimilar Binary Images  

The closeness between two binary images is 
based on a pixel-to-pixel comparison between the 
binary images. Image closeness is categorized as 
either similar or dissimilar images [41] as follows: 

• Similar Images (S): For images to be 
similar, the two images must be the same. 
They are of two types; either exact or 
inverse: 

o Exact Images (E): The two images 
are exactly the same; they have the 
same intensity values at all 
corresponding pixels.   

o Inverse Images (I): The two images 
are the inverse of each other, as 
they have the compliment intensity 
values at all corresponding pixels. 

• Dissimilar Images (R): The two images are 
different and this can only be true if they are 
not similar; i.e. neither exact nor inverse. 
Dissimilar images are of two types: 

o Distinct-dissimilar Images (D): The 
two images are ideally different (as 
measured by γ −see below). 

o Quasi-dissimilar Images (Q): The 
two images have concurrences 
between them at some pixels, but 
not all pixels. These images are also 
referred to as Quasi-similar images. 

This categorization of binary images is the basis 
on which the probabilistic model discussed in this 
paper is based upon. 

 
3.2 The Gamma Binary Similarity Distance 

The Gamma binary similarity measure (γ) 
measures the amount of similarity and concurrence 
between two binary images [42] [43]. Formally 
stated: given two images u and v, γ is defined as, 

 
γ(u,v) = |1 – 2Po((Z = u⊕v) = z)|,   z ∈{0,1}      (1) 

where ⊕ is the exclusive-or operation and Po() 
denotes the probability mass function of the image 
intensities (i,e. the normal image histogram). As a 
result, 0 ≤ γ ≤ 1, and hence values of γ correspond 
to, 

• γ = 0 for distinct-dissimilar images 
• 0 < γ < 1 for quasi-dissimilar images 
• γ = 1 for similar images 

In practice, image pairs with γ < 0.01 are assumed to 
be γ ≈ 0, and thus are considered to be distinct-
dissimilar image pairs. Furthermore, image pairs 
with γ > 0.99 a re termed as near-duplicate images, 
while images with γ > 0.999 are termed as n ear-
similar images. 
 
3.3 Measuring Mapping Performance 
The Mapping Detection Number (MDN) is defined 
as the number of mappings required to detect a pair 
of images as being dissimilar. Furthermore, MDNDC 
notation is used to denote MDN at a specific 
detection confidence (DC) value. For example, 
MDN0.90 = 5 implies that 5 mappings are sufficient 
to detect dissimilarity with 90% confidence. 
 
4 The Probabilistic Matching Model 
for Binary Images 
A variety of probabilistic models have been 
developed for numerous problems related to robot 
and computer vision; image segmentation [44], road 
extraction [45], vehicle detection [46], object 
tracking [47], image registration [48], image fusion 
[49], image comparison [50], image categorization 
[51], image retrieval [52], image tagging [53], and 
many more. In [41], a probabilistic model that 
predicts the probability of detecting dissimilarity 
between distinct-dissimilar binary images, called the 
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Probabilistic Matching Model (PMM) was 
presented. It showed that detecting dissimilarity 
between distinct-dissimilar binary images can be 
performed quickly by randomly selecting a few 
corresponding pixels between the matched images 
and comparing their values. More importantly, it 
showed that there is no need to compare entire 
images to detect dissimilarity. The model states that 
the probability of detecting dissimilarity, Pr(), 
between any pair of binary distinct-dissimilar 
images by the pth random mapping is given by the 
following formula, 

1

2
11),Pr()Pr(

−







−==

p

pDp ,    p = 2, 3, …  (2) 

It can be seen that Pr(p) approaches unity quickly 
after only a few mappings (p), e.g., Pr(5) = 0.938, 
Pr(8) = 0.992.  

In this section, we introduce the Probabilistic 
Matching Model for Binary Images (PMMBI), 
which is a generalization of PMM that is applicable 
to any pair of binary images, not just distinct-
dissimilar image pairs. Similar to PMM, PMMBI 
shows that selecting a few pixels randomly and 
mapping them between two images is sufficient to 
detect dissimilarity between them as long as the 
images are not near similar. In the latter case, more 
points need to be selected. The development of 
PMMBI is presented next. 

4.1 Binary Pixel Mapping  
Let u and v be two binary images, such that u ∈ u 
and v ∈ v. Binary Pixel mapping (P1) between two 
images refers to how a pixel value in the first image 
maps to the corresponding pixel value in the second 
image [54], 

P1 = {u→v | ∀u,v ∈{0,1}}   (3) 
The ‘→’ symbol is used to denote pixel mapping. 
Hence, u→v implies pixel value u in the first image 
maps to pixel value v in the second image. Since 
pixel values are either 0 or 1 for binary images, 
there are four possible pixel mappings between any 
pair of binary images, 

P1 = {0→0, 0→1, 1→0, 1→1}  (4) 
Labels A − D are used as shorthand for these four 
mappings, respectively. Thus,  

P1 = {A, B, C, D}   (5) 
Let s and d denote the set consisting of similar and 
different mapping values, respectively. Hence, 

s = {A, D}   (6) 
d = {B, C}   (7) 

4.2 Binary Image Mapping  
Assume that pixel locations are randomly selected 
and their intensity values are mapped. Let k be the 
probability of event d occurring at any given 
mapping; as a result the probability of s occurring is 
(1 − k). On the first mapping two possible states are 
possible; d or s, as shown in Fig. 2; the probability 
of occurrence of d is k and the probability of s 
occurring is (1 − k). On the second mapping, four 
cases are possible: dd, ds, sd and ss; their 
probabilities are k2, k(1 − k), k(1 − k) and (1 − k)2, 
respectively. On the third mapping there are 8 cases 
as shown in the figure. It can be seen that the 
probability distribution of d is a binomial 
distribution [55],  

xpx kk
x
p

kpxX −−







== )1(),,(φ ,   x = 0,1… p 

  (8) 
where X is a random variable denoting the number 
of times d occurs on t he pth mapping and ϕ is the 
probability of d occurring x times on t he pth 
mapping. We refer to cases when both events occur 
(e.g. ds, sddddds) as mixed events. Since we are 
interested in the probability of occurrence of 
dissimilar images, then, 

∑
−

=

−−



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


=

<<=
1

1
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p

kppXpk
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represents the probability of occurrence of mixed 
events. This can be rewritten as, 

( )),,(φ)),,0(φ1),Pr( kppXkpXpk =+=−=

 
  (10) 

which simplifies to,  

( )pp kkpk +−−= )1(1),Pr(   (11) 

4.3 The Probability of Occurrence of 
Detecting Dissimilar Binary Images  
Let κ(0)(u,v) be the probability that the intensity 
values of two images are the same at any point, 

0)))(((),()0( =⊕=≡ vuzvu pκ    (12) 
where p(z) is the probability mass function of the 
resulting image z = u ⊕ v. Similarly, define κ(1)(u,v) 
as the probability that the intensity of two images 
have the compliment value at any point, 

1)))(((),()1( =⊕=≡ vuzvu pκ   (13) 
Then, let κ be the image concurrence between two 
images defined as, 

κ  = max(κ(0), κ(1))  (14) 
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Fig. 2. Binary Image Mapping results up to 3 
mappings. 

 
 

i.e., κ is the probability that the intensity values of 
two images at any point are in agreement or 
disagreement, whichever is larger. The relation 
between γ and κ is gi ven by [43],

 
( )1),γ(

2
1),( += vuvuκ               (15) 

But by definition, it can be seen that, 
κ  = k                           (16) 

Substituting this relation in (15) and rearranging the 
equation produces, 

  k = (γ + 1) / 2  
  

 (17) 

Finally, substituting this relation back into (11) and 
simplifying produces, 
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2
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where 0 ≤ γ ≤ 1, p = 2, 3, … . It is important to note 
that p is a discrete variable and γ is a continuous 
variable. This equation predicts the probability of 
detecting dissimilarity between any pair of binary 
images as a function of the number of mappings 
mapped thus far (p) and the amount of similarity (γ) 
between the images. This equation also implies that 
the probability of detecting dissimilarity is not a 
function of image size; dissimilarity detection is 
performed at the same speed (i.e. number of 
mappings) whether the image is in hundreds of 

gigabytes or in a few kilobytes. Since the 
probability of detecting dissimilarity function, Pr(), 
is a m easure of the confidence in detecting 
dissimilarity, it is also referred to as the Detection 
Confidence (DC). 

We see that for distinct-dissimilar images (D),    
γ = 0 and thus (18) degenerates to, 

p

ppD 





−===

2
121),0γPr(),Pr(

 
  (20) 

which agrees with the expression of PMM  
appearing in (2). At the other extreme, for similar 
images (S) which have γ = 1, (18) degenerates to, 

0),1γPr(),Pr( === ppS
         

  (21) 

i.e., when images are similar, then there is no 
possibility of detecting dissimilarity between them, 
regardless of the number of mappings performed; 
there is no dissimilarity to be detected! 

Several curves of Pr(γ,p) versus p for different 
values of γ are shown in Fig. 3. From the figure, 
• All curves of Pr(γ,p) start from a value of zero 

at p = 1 (no possibility of detecting 
dissimilarity on the 1st mapping) and 
approach unity for large p; as more mappings 
are performed, dissimilarity is surely to be 
detected (provided that γ < 1).  

• As γ increases (images become more similar), 
the curves take longer to reach unity and 
hence more pixel mappings are required to 
detect dissimilarity. 

• Also noticeable is that all curves quickly 
reach high probability values, indicating 
quick dissimilarity detection by using only a 
few mappings, e.g.  Pr(0.4,7) > 0.9. Even 
when images have good similarity, a few 
more mappings are required; e.g. Pr(0.8,22) > 
0.9. 

 Fig. 4 shows curves of Pr(γ,p) versus γ at 
different iso-p (constant p) curves. For any iso-p 
curve, DC decreases with increasing γ. As the value 
of p increases, the DC value also increases at any 
constant value of γ. This is an informative plot; e.g. 
it shows that detecting dissimilarity on the 2nd 
mapping is possible for all γ < 1; in particular the 
possibility is 50% for distinct-dissimilar images and 
decreases as γ increases. It is surprising to observe 
that even for near-duplicate image pairs (γ ≥ 0.99), 
such as those shown for the Leena images of Fig. 5, 
that the possibility of “getting lucky” and detecting 
dissimilarity on the 2nd mapping –even though 
minute (Pr(0.99,2) = 0.1)– nevertheless still exists, 
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regardless of image size! Note that according to 
PMMBI, 200 mappings are required –on average– to 
detect dissimilarity for images with this level of 
similarity. 

Fig. 6 shows curves of p versus γ for several DC 
values. For any iso-DC curve, p increases with 
increasing γ; the rate becomes larger at higher γ 
values. Higher DC values require more mappings at 
a given value of γ than lower DC values. 
 

 
Fig. 3. Pr(γ, p) versus p for several iso-γ curves. 

 

 
Fig. 4. Pr(γ, p) versus γ for several iso-p curves. 

 

 
Fig. 5. p versus γ for several iso-DC curves. 

 
 

 
 
Fig. 6. Highly similar near-duplicate binary images 
of Leena (γ = 0.99). The difference image is also 
shown. 
 

4.4 The Probability Mass Function PD 
Pr() is a cumulative distribution function in p of 

the probability mass function, PD(p,γ), of the 
number of mappings required to detect dissimilarity. 
The by definition [55], PD(p,γ) is obtained from: 

 PD(p,γ) = Pr(p,γ) – Pr(p – 1,γ)    (22) 

Substituting (18) in this equation,  
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Then simplifying, this becomes, 

( )( )

( )( )pp
p

pp
p

D pP

γ1)γ1(
2
1

γ1)γ1(
2
1)γ,( 11

1

−++





−

−++





= −−

−

 (24) 

for p = 2, 3, … ∞ and 0 ≤ γ < 1. Expanding the 
terms and rearranging similar terms, 
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Collecting terms and completing the squares, 
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Rearranging and cancelling equivalent terms results 
in, 
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p = 2, 3, … ∞ and 0 ≤ γ < 1 (27) 
Finally this can be written as, 
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p
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p = 2, 3, … ∞ and 0 ≤ γ < 1   (28) 
PD is a bivariate probability density function in the 
variables p and γ; once again p is a discrete variable 
with values p = 2, 3, …, ∞, and γ is a continuous 
variable in the range [0,1]. Fig. 7 shows plots of 
PD(p,γ) as a function of p for values of γ = 0.0, 0.25, 
0.5, 0.75 and 0.9.  

For distinct-dissimilar images (D), γ = 0 and 
thus, 

1
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 (29) 

It can be seen that most of the weight of PD(D, p) 
is at the low values of p concentrated in the first few 
terms. For example, the first four terms 
encompasses more than 93% of the total probability 
mass function of PD(D, p):  
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As γ increases, the weight of the PD(D, p) terms 
becomes more evenly distributed, as shown in the 
plots as γ progresses from 0.0 to 0.9. 

4.5 PD is a Probability Density Function 
PD as given by (28) is a probability density function 
satisfying, 
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which we prove as follows; substituting (28) into 
(31) yields, 
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Let u1 = ½(1 + γ) and u2 = ½(1 – γ), then the 
summation terms are of the form Σup. Since by 
definition 0 ≤ γ < 1, and hence |u1| < 1 and |u2| < 1 
for all γ, then (A2) can be employed. As a result, the 
first summation term in (32) reduces to, 
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Fig. 7. PD(γ,p) as a function of p for different values 
of γ; from top to bottom γ = 0.0, 0.25, 0.5,  0.75 
and 0.9.  
 
 
 
Similarly, using (A2) for the second summation 
term in (32) produces, 
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Substituting these two results back in (32) and 
simplifying, 
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Manipulating the algebra we finally obtain the 
desired result, 
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� 

4.6 The Expected Value and Variance of p  
In this section we derive the formula for the 
expected value of p, which has significant meaning 
as it represents the average number of mappings 
required to detect dissimilarity. The formula for the 
variance of p is also derived. 

1. The expected value of PD 
By definition of the expected value [55], the 
expected value of this distribution is then given by,  
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Simplifying,  
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The summation terms have the form Σpxp. Using 
(A7), the first summation term in (39) reduces to, 
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Similarly, using (A7) for the second summation 
term in (39) produces, 
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Substituting these two results back in (39) and 
simplifying produces,  
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This can be simplified to,  
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Further simplification,  
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Multiplying through and simplifying,  
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which finally simplifies to,  

1
γ1

4)]γ([ 2 −−
=pE

 

0 ≤ γ ≤ 1

 

 (48) 

This equation gives the expected value of p, E[p(γ)], 
which is the average number of mappings required 
to detect dissimilarity at any given γ, which will be 
denoted by p*, 

  1
γ1

4* 2 −−
=p    0 ≤ γ ≤ 1     (49) 

When the images are highly similar and near 
duplicate, γ is close to unity, and thus (γ + 1) ≅ 2. 
Then from (49), p* can be approximated by, 

γ1
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 (50) 

Using this approximation produces an error < 2.5% 
for γ > 0.705, and an error < 1% for γ > 0.809.  

When the images are highly dissimilar and γ is 
small, then from (49), p* can be approximated by, 

3)γ(* ≈= Ep  γ ≅ 0

 

 (51) 
Using this approximation produces an error < 2.5% 
for γ < 0.137 and an error < 1% for γ < 0.087. Eq. 
(51) also implies that this is the lowest possible 
expected mapping. This should not be incorrectly 
misinterpreted that 3 point mapping is the lowest 
possible number of mappings required to detect 
dissimilarity; it was already shown above that 2 
mappings are possible to detect dissimilarity. 

2. The Variance of p 
By definition, the variance of p is [55],   
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For the first term, E[p2], we proceed as follows, 
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The summation terms have the form Σp2xp. Using 
(A11), the first summation term in (53) reduces to, 
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Similarly, using (A11) for the second summation 
term in (53) produces, 
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Thus, substituting back in (53) results in, 
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Multiplying the terms out and rearranging produces, 
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or, 
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Further simplification results in, 
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This equation finally simplifies to, 
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Hence, substituting this result and E[p] back into 
(52) produces, 
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Simplifying we arrive at the final result, 

22

42

)γ1(
)1γγ2(8][

−
+−⋅

=pV   (62) 

When the images are highly dissimilar and γ is 
small, then, 

2)]γ([ ≈pV

  

 (63) 
Using this approximation produces an error < 2.5% 
for γ < 0.050 and an error < 1% for γ < 0.031.  

A plot of E(γ) and V(γ) is shown in Fig. 8. E(γ) 
increases slowly for low γ, but increases rapidly at 
higher γ values. V(γ) also increases as γ increases, 
but at a quicker rate than E(γ).  

4.7 Measuring similarity with PMMBI 
By measuring how quickly dissimilarity can be 

detected between images, i.e. how many mappings 
are required for detection and using PMMBI, the 
similarity (γ) between images can be estimated to a 
good degree. In such cases, several dissimilarity 
detection trials should be repeated and the mean 
value can be used as the value of p*. Then (49) can 
be used to estimate the amount of similarity, γ, 
between the images (see [56]). As a result, similarity 
can be measured and estimated to a good degree 
without the need to scan the entire images. This also 
implies that matching can be performed quickly 
regardless of image size. 

 
 
 
 
 
 
 

 
Fig. 8. Plots of E(γ) and V(γ). 
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5 Discussion 
Fig. 9 shows the images of the Reduced KU-

ME128B binary image set that was used for testing 
the probability model. The set consists of 12 
128x128 binary images of different scenes. The 
similarity values between all image pairs for this set 
are in the range of 0.002 ≤ γ ≤ 0.669, with a mean 
value of 0.231 and a standard deviation of 0.161. 
Every image was matched to every other image and 
the number of mappings, MDN, required for 
detection was recorded. Since with random mapping 
every mapping trial produces a different 
dissimilarity detection outcome as measured by 
MDN, matching of each pair of images was repeated 
1,000 times to obtain consistent and more accurate 
statistical results. The resulting MDN0.50, MDN0.90, 
MDN0.99 and MDN0.999 are plotted as a function of γ 
in Fig. 10. The theoretical iso-DC curves for 0.50, 
0.90, 0.99 and 0.99 are also plotted in the figure for 
comparison. Table 1 summarizes the dissimilarity 
detection mapping error statistics. Examining the 
discrepancy between PMMBI, the model’s 
prediction, with the empirical results obtained, we 
observe the following: 

• All MDNDC values have a high correlation 
(0.839 – 0.989) with the theoretical DC 
values as predicted by PMMBI as given in 
(18). 

• The mean mapping error between predicted 
and empirical data is very small with less 
than one mapping for all DC values, except 
for MDN0.999 which has a higher mean error 
value of ~1.5 mappings, which is expected 
due to the larger expected value for p at 
higher DC values. 

The results exemplify the high accuracy of the 
model in predicting how fast dissimilarity can be 
detected.  

 

 
Table 1: Mapping Results Statistics for the  

Reduced KU-ME128 binary image set 
  Mapping  Error 

DC  Correlation Max Mean Std. dev. 
0.500 0.839 1.000 0.629 0.391 
0.900 0.989 2.185 0.455 0.353 
0.990 0.986 2.464 0.675 0.530 
0.999 0.956 6.868 1.502 1.359 

 
 

 
 
Fig. 9. The Reduced KU-ME128 binary image set. 
 
 

 
Fig. 10. Plots of MDNDC versus γ for DC = 0.50, 
0.90, 0.99 and 0.999. The theoretical DC curves are 
also shown. 
 
  
6 Conclusion 

In this paper we have presented a p robabilistic 
model, called the Probabilistic Matching Model for 
Binary Images (PMMBI), for the quick detection of 
dissimilarity between binary images. The model is 
based on randomly mapping pixels between images. 
The model predicts the probability of detecting 
dissimilarity between binary images as a function of 
the similarity between images and the number of 
mappings between them. The model shows that 
dissimilarity can be detected fairly quickly when the 
images are highly dissimilar, requiring only a f ew 
mappings between the images. As the images 
become more similar, more mappings are required 
to detect similarity, but still only a small fraction 
compared to processing the entire images. Even 
near-duplicate images, where more than 99.5% of 
the image content is similar, the model shows that 
on average only 200 mappings are required to detect 
dissimilarity, regardless of image size! The model’s 
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invariance to image size is a u nique feature of the 
model that gives it its strength, particularly when the 
images are huge. Testing with real images produced 
dissimilarity detection results in agreement with that 
predicted by the model, showing the accuracy of the 
model.  

Our future work will focus on s howing how 
PMMBI can be used efficiently for template 
matching and image registration, even in the 
presence of noise. We will also focus on developing 
a similar probabilistic model for greyscale images.  
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6 Appendix 
In this section, we provide the proofs for several 
infinite series results used in the theoretical 
derivations of our work. The following infinite 
series is a geometric series with constant 1 and ratio 
x with sum given by, 
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 (A1) 
As long as |x| < 1, then the sum converges. 
 
A.1 The sum of an infinite series of the form xp 
starting at p = 2 
The sum of an infinite series of the form xp starting 
at p = 2 is given by, 
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Adding and subtracting (1 + x), 
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Recognizing the first term as (A2) produces, 
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Factoring out (1 − x) in the denominator and 
recognizing the difference in square term, 
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The summation can then be finally stated as, 
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A.2 The sum of an infinite series of the form pxp 
starting at p = 2 
The sum of an infinite series of the form pxp starting 
at p = 2 is, 
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Proof: Since, 
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Writing the term in brackets as a su mmation 
produces, 
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Recognizing the summation appearing on the right-
hand side of this equation as (A1) produces, 
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This finally produces, 
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A.3 The sum of an infinite series of the form p2xp 
starting at p = 2 
The sum of an infinite series of the form p2xp 
starting at p = 2 is, 
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Proof: Since, 
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Let the first term on the RHS be S, then, 
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Subtracting these two equations and factoring out x 
produces, 
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Dividing both sides by x, 
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This can be rewritten as, 
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By algebraic manipulation, calculus and (A1), the 
sum of the first term of (A17) becomes, 
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The second term of (A17) is given by (A1). Hence,  
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which simplifies to, 
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Finally substituting this equation back into (A12) 
produces, 
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