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Abstract: - Paper describes active damping possibility of mechanical system with two not ideally stiffly con-
nected masses. This type of problem can by often see at speed or position servo systems with electromechanical 
actuators – electrical engines. There controlled values are usually measured directly on actuator and not on 
loading mass. This is a reason why the control precision depends on elimination of load mass to the actuator 
torque influence in control system. At many motion control tasks, the problem of oscillations existence in mul-
tidimensional system with limited motion control and imperfect or complicated state quantities measurement 
possibility exists. Paper also describes active damping simple possibility of these type systems and by two-di-
mensional system physical model shows active damping possibility also with indirect state quantities measure-
ment option 
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1 Introduction 
Frequent problem at mechanical system motion 
precision with speed or position control by actuator 
formed by electric or hydraulic engines is conse-
quence of fact that controlled value sensing is made 
commonly on motor, which causes that mechanical 
part, which is our interest subject, is controlled indi-
rectly.   

This problem is presented significantly in mo-
ment when between actuator mass (electric ma-
chine) and load mass isn't ideally rigid connection. 
It's in some detail common problem of any trans-
missivity arrangement containing e.g. the play, but 
especially significantly such system behavior 
demonstrates in case of e.g. harmonics gearbox 
utilization. 

This article deals first of all with one simple so-
lution of mentioned problem and forms some sim-
plified starting point for next part, which solves 
mentioned problem by means of full active damping 
with incomplete observer. 

In second part the paper goal is to introduce 
some pieces of knowledge relevant to active damp-
ing of mechanical systems with more degree of 
freedom with limited action interventions' possibili-
ties and limited or complicated quantities measure-
ment possibility. This problem often occurs at dif-
ferent mechanical systems motion control types 
serving as optical (surveillance) or other systems 
porter, which depend on effector systems positional 

state accuracy, and when actuators functions in 
some generalized coordinates only. 

As such system example can be cameras porter, 
laser scanning system porter created from no ideally 
stiff bodies, weapons porter system with uncon-
trolled projectiles, but also manipulator with no 
ideally stiff arms for exact assembly application, not 
to mention, for invasive medicine application. 

2 First Problem Formulation 

 

Fig.1 Two rotating masses system with no rigid 
mechanic interconnection by linear spring. 

 
If we suppose linear (ideal) torsion spring between 
both masses with stiffness k and with linear friction 
in its material, then motional equations system de-
scribing this arrangement is: 
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where  

21 b,b are viscous friction coefficients in mass m1 

and m2 bearings, 
b is viscous friction coefficient in spring material.  

If we think over linear cascade regulator ac-
cording to Fig. 2, (position P - regulator and speed 
PI-regulator), then it can be derive for Laplace pic-
tures vector 

 

Fig. 2  Masse J1 cascade position control 
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Consequently, for concrete parameters we obtain 
the transient and frequency characteristic of ( )s1ϕ  -
Fig. 3 and Fig. 4.  

 

Fig. 3 ( )s1ϕ transient characteristic   

 

Fig. 4 ( )s1ϕ frequency characteristic   

On Fig. 5 the transient characteristic of  ( )s2ϕ   is 
seen and on Fig.6 is seen its frequency characteris-
tic. 

 

Fig. 5 ( )s2ϕ transient characteristic   

 

Fig. 6 ( )s2ϕ frequency characteristic 

While angle ( )s1ϕ is quickly achieving its refer-
ence value without oscillations, angle ( )s2ϕ       os-
cillates through spring and mass J2 influence. 

3 Problem Power Interactions physical 
Model 
Further we present simulation of rotational masses 
speed control problem globally, whereas at using of 
problem physical model we'll study nonlinear spring 
whose dependence Q=f(∆ϕ) is on Fig.7. 
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Fig. 7 Nonlinear spring characteristics 

Speed controller we think with saturation, so 
with limitation to range 10± . 

On Fig.8 the power interactions model of ana-
lysed system in system Dynast for mechatronics 
systems simulation and analysis is presented, in-
cluding nonlinear spring and controlled  by P-I reg-
ulator with limitation (antiwind-up). 

 

Fig.8 Analysed system power interactions physical 
model. 

 

Fig.9 Block diagram of non-damped speed control 
system 

On Fig.9 is block-diagram this non-damped 
speed control system. 

 

Fig.10 Response on first mass speed requested value 
jump  

Complete system simulation acknowledges 
problem of linear variant analysis. Because infor-
mation about motion (angular velocity) is measured 
on the first mass, second mass, connected over 
spring, oscillates with damping.      

3.1. Simple active Damping Principle 

Try to solve introduced problem of mass J2 oscilla-
tion connected over spring on the basis of empiric 
procedure: 

First of all pose question, what's mentioned be-
haviour reason! Is evident, that mass J2 oscillations 
and by interaction over spring also mass J1 oscilla-
tions causes just mass J2, which is in torque interac-
tion with the rest of system over torsional spring. 

Are we able to reconstruct somehow these ef-
fects, that we could damp them subsequently? Is 
evident, that on mass J1 functions partly outer 
torque Qext (reduced by friction in first masses 
bearings) and this torque we have under control. We 
are able to determine it from regulator output ur. 

And further functions on this mass the J2 mass 
over spring. So total dynamic acting force on mass 
J1 is     

2J_react1ext QbQ −ω⋅−  

But this torque has to be in every instant in bal-
ance with mass J1 inertial torque. So: 

2J_react1ext
1

1 Qb̂Q
dt

d
J −ω⋅−=ω⋅  

Assume, that we know how estimate moment of 
inertia J1 size.  

Designate this estimation  (measurement, cata-

logue specification) 1Ĵ . Never mind further reads 
that we know how „to determine" rotational acceler-

ation
dt

d 1ω . Designate it ε̂ . Then in every instant 

reads: 

ε⋅−ω⋅−≈ ˆĴb̂QQ 11extJ_react 2
            (3) 

By introduction of correction proportional to this 
reaction to the speed reference value, the active 
oscillations damping of second mass can be acquire. 
Then both masses will behave approximately in the 
same way. 

 

Fig.11 Theoretical block diagram of damped speed 
control system 
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One question remains. How perform ε̂
reconstruction in real industrial environment? 

3.2. Acceleration Reconstruction in industrial 
Conditions 

Because in real conditions is direct derivation signal 
generation problematic, perform its following re-
construction: 

 
Fig.12 Derivation reconstruction 

From Fig.12 follows 
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So, for this arrangement reads 

 
Fig.13 Block of derivation reconstruction 

and we obtain derivations with 1th order filter. 

 

Fig.14 Result of signal with noise derivation 

On Fig.14 is see that signal with random signal 
noise is not simple to differentiate! And how signal 
with noise mathematical derivation would look? 

3.3. Application of simple active Damping 

On Fig.15 the power interactions multiport model of 
analysed system is presented, where the active 
damping is introduced by means of mass J1 acceler-
ation reconstruction. 

 
Fig.15. Analysed system power interactions with 
acceleration reconstruction and active damping 

On Fig.16 is response of system with active 
damping to identical mass J1 requested speed jump 
like in Fig. 10. 

 

Fig.16. Response on first mass position requested 
value jump                       with active damping   

Is evident, that whereas in the event of 
undamped motion, the mass J1 speed required (and 
sensing on it) evokes mass J2 oscillations, in second 
case mass J1 „will wait" on mass J2 and so it is pos-
sible to adjust it also at scanning on actuator (en-
gine) mass.    

The first part paper shows and gives reasons for 
one from simple motion control problem solution 
with scanning on actuator and forms that way start-
ing point to second part of those motion control way 
of solution. 

4 Active Damping with State Regulator 

4.1. Description of system with one direc-
tional motion and its active damping princi-
ple 

For linear system from Fig.17, where force f(t)  is 
created by actuator according to Fig.18  reads: 

Mass J2 
influence 
reconstruction 

min/tours700n ref_1 =
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Fig. 17 Principle of system with motion in one di-
rection. 

 

Fig. 18  Masse M  cascade position control. 
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and for state model reads: 
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If mass m is „extended" to 1m in the positive di-
rection and reference value 0x

žM = , then after mass 

m releasing, the regulators in cascade will ensure 
almost mass M  perfect still stand. Mass m after 
releasing practically oscillates without damping. 
Mentioned on Fig.19 is seeing. 

 

Fig. 19 The mass m undamped oscillation and mass 
M  stabilization after releasing of extended mass m  

 

Fig. 20 System (4) response on mass M required 
position jump xMž = 5 m 

On Fig. 20 is response of both mass seen at 
required mass M  position jump 5m. Again is seen 
the perfect masses M  behaviour and masses m 
undamped oscillations.  

For ;kg1000m;kg400M == ;m/N10.2k 5=  and 
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If we'll require to obtain the new required poles 
by help of designed complete state regulator  
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then is possible to create this complete state regula-
tor as 

[ ]8750011667000833300104440rT .. .. −=    (5) 
(see Fig.20). 

 

Fig. 21 Complete state regulator 

Control structure from Fig.21 will ensure the 
system behaviour for the same mass m „extending„ 
to 1m according to Fig.22. 
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Fig. 22 Complete state regulator damping influence. 

It is evident that mass M  controlled then way 
suppresses mass m oscillations now. 

Fig.23 shows such system response on mass M  
desired position jump xMž = 5 m. 

 

Fig. 23 Response on required M position jump with 
m and M  masses oscillations’ active damping 

4.2. Linear observer utilisation for active 
damping of one dimensional system 

Measurement of mass m position and speed 
(eventually) presents indeed problem in general.  

Because for selected parameters is 
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and the system (4) is observable. 
We can design complete linear observer system 

with select observer matrix eigenvalues 
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we can obtain the observer equation 
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and we will use only part of reconstructed state 
quantities from it, so the structure from Fig. 24.  

On Fig 25 is seen that active damping with non-
measurable variables reconstruction by linear 
observer give the same result as state controller with 
full measurable state variables (compare Fig. 23 and 
Fig. 25). 

 

Fig. 24 Active damping with linear observer of m 
and M masses 

 

Fig. 25 Response on required M position jump with 
m and M  masses oscillations’ active damping with 
observer utilization 

 

 

( )

( )

( ) ( )

( ) ( )[ ]tŷtx
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4.3 Active damping of masses motion system 
in plane 

Study ordering from Fig. 26 and Fig 27, so the sys-
tem with planar motion without friction, normal to 
gravitation direction, whereas external mass M  is 
controlled by e.g. electrohydraulic translational 
positional servo system producing force f(t) . This 
mass can move only in x axis direction. 

 
Fig. 26 Ordering of two masses system with four 
degree of freedom 

 

Fig. 27 Two masses system with four degree of 
freedom scheme 

Inside of this material „frame" is mass m, „hung" 
on two linear springs without dissipative damping, 
whose axes are, in quiescent state (mass M  and m 
centres of gravity are in identical point, point [0, 0], 
angle ϕ= 0) displaced in a parallel way from coordi-
nates axes. Mass m positive rotation direction is 
counter-clockwise. 

Create physical simulation model of given or-
dering by means of simulation system for multiport 
simulation physical models DYNAST [6]: 

 

Fig. 28 Multiport physical model of system from 
Fig.27 

„Extend" at first the inner mass m to 0.3 m in 
positive x axis direction, require by frame M driving 
servo to remained this frame quiescent and release 
mass m in time t = 0. 

On Fig. 29 and Fig. 30 is result of this 
experiment. Is see, that inner mass m oscillates 
undamped after releasing, whereas the oscillations 
energy subsequently „overflows" from x axis to the 
y axis and inner mass „spins" (angle ϕ). 

It’s seen that the outer M  mass fast movement to 
required position produces not only mass m oscilla-
tions in x axis, but also in y axis. In addition, thanks 
to asymmetric springs bearing, at this mass m yaw-
ing oscillation happens and successively mechanical 
energy "flows" between both axes. 

 

Fig. 29 The mass m undamped two dimensional 
oscillations and mass M stabilization after releasing 
of extended mass m 
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Fig. 30 Centre of mass undamped m trajectory in 
plane for mass M stabilization after releasing of 
extended mass m 

Fig.31 shows system undamped response on 
mass M  required position jump in time t =0s; 
xMž=3m. 

 

Fig. 31 Undamped system from Fig .26 and Fig.27 
behaviour for required M  mass jump of position 

If cuboid side size of mass m is equal 2am, then 
motional equations of described system are 

(7) 

where 

Mx is coordinate of M mass 

TT y,x are centre of m mass coordinates 
ϕ  is angle of m mass body with regard to global x 
axis. 

Simplify this nonlinear system thinking ϕ small, 
so 

ϕ≈ϕ≈ϕ sin;1cos  
and use cascade position controller with two 
proportional regulators 
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Then we obtain state system equations of 8th order  
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With regard of this both material bodies linear 
description and their possible motion control way 
with complete linear observer, simplify problem and 
use only x axis for active damping.  

It's withal whole rows of real motional systems 
possibility, when we have available not only 
measurement at limited points, but also limited 
operational intervention. 

Employ piece of knowledge from previous one-
dimensional case. Design complete state regulator 
for control and active damping in x axis and 
subsequently propose linear observer for MTm xx −
and

MxTxm vv − reconstruction. It means, we suppose 

that we are able to measure mass M  position and 
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speed in x axis and differences MTm xx − and

MxTxm vv − we will obtain from observer. 

Require the same mass M  jump as in Fig. 31, but 
with above mentioned active dumping with state 
regulator and observer in x axis. On Fig. 32 is seen 
that system mechanical behaviour is damped. Not 
perfectly, because we dumped only part of energy.  

 
Fig. 32 Behaviour of system from Fig. 26 and 
Fig. 27 damped in one axis at M  position desired 
jump 
 
5 Conclusion 
Paper shows controlled mechanical systems’ active 
damping simple possibilities, applicable in case 
those state variables measurement is made on 
actuator and the action interventions are available 
only in one axis. Designed one-dimensional 
complete state regulator is able- thanks „energy 
overflow" of unsymmetrical embedded springs- to 
damp significantly also oscillations of mass, which 
it is impossible to influence directly by action 
quantities.   
This is frequent problem at mechanical system 
motion precision with speed or position control by 
actuator formed by electric or hydraulic engines and 
it is consequence of fact that controlled value 
sensing is made commonly on motor, which causes 
that mechanical part, which is our interest subject, is 
controlled indirectly.   

This problem is presented significantly in mo-
ment when between actuator mass (electric ma-
chine) and load mass isn't ideally rigid connection. 
It's in some detail common problem of any trans-
missivity arrangement containing e.g. the play, but 
especially significantly such system behavior 
demonstrates in case of e.g. harmonics gearbox 
utilization. 

This article forms some simplified starting point 
for next part, which solves mentioned problem by 
means of full active damping with incomplete 
observer. 

In second part some pieces of knowledge 
relevant to active damping are introduced. There are 
the knowledge relevant to active damping of 
mechanical systems with more degree of freedom 
with limited action interventions' possibilities and 
limited or complicated quantities measurement 
possibility.  

This problem often occurs at different 
mechanical systems motion control types serving as 
optical (surveillance) or other systems porter, which 
depend on effector systems positional state 
accuracy, and when actuators functions in some 
generalized coordinates only. 

As such system example can be cameras porter, 
laser scanning system porter created from no ideally 
stiff bodies, weapons porter system with uncon-
trolled projectiles, but also manipulator with no 
ideally stiff arms for exact assembly application, not 
to mention, for invasive medicine application 
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