WSEAS TRANSACTIONS on SYSTEMS and CONTROL Amir Feizollahi, Rene V. Mayorga

On the modeling and the optimal motion planning
of manipulators via a modified D* Lite search algorithm

AMIR FEIZOLLAHI and RENE V. MAYORGA
Department of Industrial Systems Engineering
University of Regina
3737 Wascana Parkway, Regina, Saskatchewan
CANADA
Feizolla@uregina.ca and Rene.Mayorga@uregina.ca

Abstract: - The motion planning of the manipulators is a topic in robotics that has been studied extensively and
there are many solutions available in the literature. However, the motion planning of manipulators considering
the system dynamics with respect to their energy consumption level is still a challenging problem which
requires a combination of interdisciplinary studies to yield an optimal solution. In this paper, a framework is
developed to model the user-defined manipulator, design a motion planner implementing a proposed search
algorithm, and simulate the robot motion in different environments. The superiority of the search algorithm is
investigated and the development of the MATLAB framework is discussed thoroughly accompanying the
simulation results.

Key-Words: - Manipulator dynamics, Motion planning, Trajectory optimization, Graph search

1 Introduction In static environment, the obstacles, costs,
Manipulation is the main or part of many industrial workspace features, and other required information
and daily applications that involve picking, moving for obtaining the optimal path are known and can be
and placing objects in different workspaces. Saving computed in the pre-processing phase. Hart et al.
labor and reducing the cost of operation has been proposed an algorithm for dealing with this type of
always a big challenge for the designers to minimize motion planning problem which is known as A* [5].
the time and effort needed to perform these tasks. In The A* is an heuristic search algorithm and one of
many applications such as working in dangerous the most popular algorithms having an easy
environment [1], to dexterous manipulation [2], and implementation procedure.
inter-zonal placement in industrial workspaces [3], The D* algorithm is an informed incremental
using human operators can be either inefficient or graph search algorithm that has been widely used
dangerous. Industrial robotic manipulators, as one of for the automatic navigation of the mobile robots in
the main groups of robotS, are designed to unknown environment [6] The D* Lite [7] which is
manipulate objects and perform tasks with minimum an incremental heuristic search algorithm, combines
contact with a human. A* algorithm and Dynamic SWSF-FP algorithm [8]
Motion planning and developing an optimized to determine the best path for the robot while the
algorithm for converting a high-level task from path costs change due to discovering new obstacles
human to a low-level description for the robot, has or changes in obstacle features.
been one of the most challenging problems for the In this paper, the development and
programmers. Motion planning is the process of implementation of a MATLAB framework for
generating the best motion for the robot based on modeling the wide range of user-defined (industrial)
the defined criteria, restriction on the workspaces, manipulators and generation of a locally optimal
and the robot model. This process usually involves collision free trajectory is presented.
collision-free configuration, coordinating the robot’s A novel approach is applied to combine the
motion, dynamic modeling, and object manipulation dynamic model of the manipulator and its actuators
[4]. Motion planning can be generally classified into as a unified on-line equation of motion which yields
two main groups: motion planning in static to calculation of energy consumption of the robot
environment and motion planning in dynamic actuators between any two nodes with pre-defined
environment. constraints.

E-ISSN: 2224-2856 148 Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Here, also a novel modification is proposed to
the D* Lite [7] (one of the most recent search
algorithms) to make it considerably faster and more
efficient. The comparison between the proposed
search algorithm and other widely known, like the
A* [5], has been investigated and the results of
implementation of the modified search algorithm are
also presented correspondingly.

2 Robotic Manipulator Modeling

As mentioned in the previous section, there are
many research papers covering the manipulators
modeling and there also lots of articles for different
approaches of motion planning for the manipulators.
However, combining the robot model with motion
planning and including the output of the dynamic
model in the motion planning procedure requires a
novel methodology.

Deriving the equation of motion of the robot
associated with dynamics of the manipulator and its
actuating system (DC motors in this case), results in
the calculation of energy consumption between any
two nodes in the cost function of the search
algorithm. Of course, reaching a locally optimum
solution for the robot motion planning cannot be
effectively done when the cost function is solely
based on the kinematics of the robot.

In order to calculate the energy consumption of
manipulator during its motion from the start node to
the goal node, the mathematical model of the robot
has to be developed. Using Hamilton’s principle [9]
for conservative systems between two states, the
dynamic model equation of the manipulator can be
derived as Eq. (1).

D(@)4+4'C(a)q+G(q) =7 1)

Where D, C, and G are the inertia matrix,
Christoffel matrix, and the gravity vector,
respectively. The DC motors, are widely used for
robot industrial application and are one of the most
common actuators for the robotic and control
systems. Developing the motion of equation of the
motor and its circuit dynamic equation using
Kirchhoff’s voltage law and combining the
developed equation with Eg. (1), the uniform
equation of motion of the robotic manipulator is:

0 1 0
0 o] [o
EQZO(C(GHBJ[K, j9+ov
dt : J+D@©)) \J+D(0) P 2
0 K _R
L L L -

E-ISSN: 2224-2856

149

Amir Feizollahi, Rene V. Mayorga

In which NGT (Nonlinear Gravitational Terms) can be
calculated using Eq. (3).

0

®)

NGT - 7[S0 j

J+D(0)

0

Table 1. List of parameters and variables in the
governing equation of the robot-actuator system

Name Explanation

J Rotor’s moment of inertia
" B Motor viscous friction constant
% Ke Electromotive force constant
E Kt Motor torque constant
. R Electric resistance

L Electric inductance
2 R Joint’s angular velocity
§ i Armature current
§ \Y Armature input voltage

Using the fourth order of Runge-Kutta method
for solving the derived differential equation of the
system gives a very consistent approximation of its
behavior which is the basis of the search algorithm.
More details on deriving the governing equation,
Eqg. (2) can be found in [10].

Dynamic Model
of The Actuators

)

— J
4 N

Energy

~————

e N
[Collision Free
—> Path length Cost Function And
L Energetically Optimized Path
\ J

)

Dynamic Model | |
of The Robot

~—————

)

Kinematic Model
of The Robot

~—————

L—> Heuristic Value [~

——
Figure 1. Cost function and the robot modeling relationship

3 Graph Traversal Search Algorithm
Graph traversal algorithms deal with the problems
that are expressible in terms of a search over a map
of nodes in order to find all the reachable nodes,
identify the best reachable nodes, and generate the
best path through a network of nodes with defined
constraints.

Graph search algorithms are mainly categorized
under either an incremental or an heuristic search
algorithm. In incremental search algorithms, the

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

search is based on the information from the previous
search information as a feed for the new search
while in heuristic search algorithms the heuristic
information of each node is considered to focus the
search on minimizing the distance to the goal node.

Incremental heuristic search algorithms refer to
the algorithms which use both incremental and
heuristic search features to speed up the search
while focusing on reaching the goal node.

Artificial Intelligence Algorithm Theory

Heuristic
Search

Incremental
Search

How to search using heuristic
info. to guide the search

How to use previous search
results efficiently

Figure 2. Incremental heuristic algorithms foundation

As previously mentioned, this article focuses on
solving of partially-known environment search
problems. In this case some of the reachable nodes
are known, and some of them are either unknown or
some of their features change during the robot
motion over the map. The D* Lite algorithm is one
of the most recent and most efficient graph search
algorithms for partially known environments [7].
The D* Lite is basically the incremental version of
A* algorithm. D* Lite implements same navigation
procedure as D* and it is at least as efficient as D*.
However, D* lite procedure is much shorter and
actually different than the D* algorithm.

In D* Lite two main estimates of cost are
assigned to each node, g and rhs:

Table 2. Features of each node in D* Lite algorithm

Feature Explanation
g the objective function value
rhs one-step Ipok-forw_ard of
the objective function value
consistent Electromotive force constant

inconsistent Motor torque constant

Inconsistent nodes are the nodes on the “open
list” with the priority of process. As a matter of fact,
the key value of a node defines the priority of that
node on the open list which is a combination of the
g, rhs and heuristic value of the node.

Table 3. List of functions associated with the priority
calculation of each node

Feature Calculation
rhs rhs(u)=min ..., (cost(u, p)+g(p))
min(g(u),rhs(u))+h(start,u
o key(u)= (9(u).rhs(u))+h()

min(g(u),rhs(u))

E-ISSN: 2224-2856

150

Amir Feizollahi, Rene V. Mayorga

The key value of a node, according to Table 3, is
the summation of the heuristic value of the node, h,
and the minimum of its g and rhs value. If the key
value of two nodes are calculated to be exactly the
same, the minimum of g and rhs values are
considered to be the tie breaker.

D* Lite algorithm has five main procedures:
Initialization, Main Procedure, Key Value
Calculation, Node Update, and Best Path Generation
[7]. Creating the open list, setting the initial value of
nodes (g and rhs), inserting the goal node to the
open list and setting its rhs value to zero are the
programming methods of Initialization procedure.
Unlike A*, the D* Lite algorithm starts the node
processing from the goal node and the graph search
will be terminated once the algorithm reaches the
start node. The Key Value Calculation procedure is
simply a function with the nodes as its input and the
key value as the output. This output is later returned
to the caller procedure (Figure 3).

Initializati on
Procedure

Kev Value
alculation Procedur

.
==

ths{gzoal =0 Key(8) (Table 3)

i l

UlInsert (goal Key(zoal)) / Retum(Key(s) /

(@) (b)
Figure 3. (a) Initialization procedure
(b) Key Value Calculation procedure

il

The Best Path Computation procedure basically
deals with the consistency of the input node, calls
the appropriate function based on the consistency
status of the node, and updates the open list. The
main procedure is the core procedure of the D* Lite
algorithm that is designed to repeat the other
procedures until the best path is found and the
manipulator reaches the start node.

According to the depicted procedures in Figure 3
Figure 4, and Figure 5, after popping the start node
and updating it, the best path between the start node
and the goal node can be generated by following the

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

gradient of g values from the start node. As a result,
to obtain the best path, the g values of all the
neighboring nodes have to be compared to each
other which requires a time-consuming sorting
process. A modification in generation of the best
path after processing the nodes between the start
node and the goal node can significantly increase
the efficiency of this algorithm.

Best Path
Computation
Procedure

T

Topk ey < Kev(start) or the(start) = glstart)

Yes
Yes
=

w Ll glufFx

Update Nodes

s

Figure 4. D* Lite Best Path Computation procedure

Main Procedure

m

Best Path Com putation

;

——

NoPossible Path

‘ S = I MMty (05 e 21 + 9P)) ‘

Yes

Apply the changes

Update Nodes
e

Figure 5. D* Lite Main procedure

By adding a function to Node Update procedure
of D* Lite algorithm, the best path can be easily
generated by connecting the output nodes of this

E-ISSN: 2224-2856

Amir Feizollahi, Rene V. Mayorga

function. According to Figure 6, “Store” function
saves the best neighbor node for the node that is
under process. After calculating the rhs value of the
input node, its best neighboring node is saved as a
feature of the node. Once the search algorithm
reaches the start node and the graph traversal is
terminated, the best path between the start node and
the goal node can be generated by adding the best
neighboring nodes one after each other from the
start node. This modifications totally eliminate any
extra sorting process after reaching the start node.
This process on a sample network of nodes is

depicted in Figure 7.
New Node Update
Procedure

T

- N

—_— — —

No

Store]
(/the Best Neighbour Node/ || s(u) [Equation 2-34]

N p |
~ _ __ ~"No
Yes

U.Remove(u)

U.Insert(u,key(u))

l
~ D

Figure 6. Modification to D* Lite, Node Update procedure

START

Figure 7. The best path between the start and the goal node
using modified D* Lite algorithm

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

4 MATLAB Framework Development

The process of robot modeling and also the
theoretical procedures for the proposed search
algorithm in partially-known environment were
provided in the previous sections. For implementing
the search algorithm on a user-defined manipulator,
a MATLAB framework is designed to model the
robot, implement the modified D* Lite algorithm,
and simulate the robot motion in different scenarios.

The designed framework consists of a very large
number of lines scripts in MATLAB with several
classes, functions, and properties. The overall steps
(classes) for obtaining a collision free and optimized
motion planning of a user-defined manipulator are
included in Table 4.

Table 4. List of MATLAB classes for modeling and
implementing the search algorithm*
Class Purpose

a class with several functions and properties

Robo? for modeling the robot, developing the
Dynamics . -
equations of motion
a class for developing the equation of motion
Motor of the user-defined actuator, solving the
Dynamics differential equations and calculating the
energy consumption
group of classes and sub-classes for
Occupancy generating random configuration of the
Analysis ~ manipulators and identifying the workspace
accordingly
a class that is designed to implement the
MPD* Lite proposed search algorithm and find the best
path with optimized energy consumption
Robot a class for simlating the robot miotion and
Simulation generating the corresponding graphic output

*all the MATLAB scripts can be found in Appendix A of [11].

In the Motor Dynamics class, all the robot
features such as, links’ length, mass, and
configuration, stored as cell arrays and are fed to
Robot Dynamics class where the symbolic methods
are created. Then all the equations are evaluated in
Motor Dynamics with the user-defined values and
also the robot configuration. Solving the equations
of motion and executing the closed loop control
method of Coe and Motor Dynamics, the energy
consumption can be calculated. The output of the
level of energy consumption for the motion of the
robot between two given nodes is sent to the search
algorithm as an input for the best path generation.
After generation of the best path, the plotting class
(Plot_2D) simulates the robot motion and provides
the corresponding graphs showing the joints rotation
and energy consumption during the robot’s motion.

E-ISSN: 2224-2856

152

Amir Feizollahi, Rene V. Mayorga

Robot’s Features
4{MomrDynamics }»

]

Jacobian

Jsymbolic

I

DSymbolic

Robot Dynamics i—v Coe

csymbolic ChrisMatrix

GMatrix

Two Desired
Nodes

Energy
Consumption

Figure 8. Workflow of computation of energy consumption

Start and Goal Nodes

i

Add to Free Nodes list H Current node initialization

Pop the neighbours

rhs calcualation

rhs changed

i

Best Neighbour =
Current Node

Loop Breaker
Condition

Store Free Nodes list

Figure 9. Workflow of the modified D* Lite algorithm

There are two main lists in the proposed search
algorithm: Open List, and Free Node List. The main
procedure in the graph search algorithm is to
prioritize the nodes for processing, labeling them for
either the Open List or the Free Node List, and
sorting them based on the defined cost (like energy
consumption). The first step is the calculation of the
key value of the Goal node’s neighbors and inserting
them to the Open List. Sorting the nodes based on
their key value, the node with highest value will be
checked, the Goal node is inserted to the Free Node
List, and all its neighbor will be inserted to the Open

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

List. By repeating the same procedure and checking
the nodes on the Open List and adding them to the
Free Node List, the graph search algorithm reaches
the Start node and finds the best path (Figure 9).

5 Simulation and Results

As discussed in the previous sections, defining some
typical industrial scenarios and simulation of the
manipulator’s motion in these scenarios is the last
step after the modeling and implementation of the
search algorithm. In this section, the performance of
A*, D* Lite, and the modified D* Lite MPD*
algorithms are compared to each other and the
simulation results are presented correspondingly.

One of the best approaches for comparing the
search methods and evaluation of their processing
time is their worst-case time, computational
complexity, or memory complexity (in the case they
are implemented using a computer programming
language).

If a search problem can be expressed by O(n) (or
a linear space), solving this problem takes at least
time O(n), but in most cases it often usually takes
much more than that. That is, to check a space with
size of n nodes, it will at least take n steps to
examine all over the space. In analyzing the
computational complexity, always the worst-case
should be considered for the evaluation purposes.
The average-case would be closer to reality but to
investigate the superiority of an algorithm in all sort
of problems, the verdict should be done based on the
worst-case scenario.

There are some assumptions associated with
deriving the computational complexity for the
search algorithms. For the graph traversal
algorithms, it is assumed that the nodes tree has a
depth of d and an average branching factor of b. The
depth can be simply considered as the number of
levels in the nodes network from the start node to
the goal node. The other factor, b, in the proposed
method of this Paper is equal to the number of
neighbors of each node in the search graph.

Another assumption for finding the
computational complexity of the search algorithms
would be the number of expansion needed to reach
the optimal path to the goal node. In general, the
search methods stop and indicate that they reached
the goal node once they pop a path with a string of
nodes that includes the goal node; but, not when the
path is on the queue of the sorting process. Thus, to
make sure that the found path is the optimal path,
the algorithm should expand one more time and
make the depth d+1 [12].

E-ISSN: 2224-2856

153

Amir Feizollahi, Rene V. Mayorga

The A* as an informed search algorithm or a
best-first search would have the computational
complexity of O(b™') [12]. This degree of
complexity can be easily proved by considering the
worst-case in which the goal node is at the far, right
corner node of the network [12]. In the A* search
algorithm, the graph search function has to search
all the nodes, and one more expansion at the end is
needed to verify the stopping condition. As a result,
the processing time of the A* algorithm has an
exponential relationship with the number of nodes.
This relationship can be investigated in the results
depicted in Figure 11.

To derive the computational complexity of the
D* Lite algorithm, and the MPD* Lite algorithm,
and compare them with the complexity of the A*,
the approach has to be different. For this purpose,
the implemented MATLAB program is investigated
on its steps complexity which is equivalent to the
computational complexity of D* Lite algorithm and
MPD* Lite algorithm. In such investigation the
number of nodes is considered as the input to the
algorithm and the worst-case scenario is developed
accordingly [13].

The computational complexity, with such
considerations, is a function of number of the
randomly generated nodes (N) in the preprocessing;
obstacles (P); average number of neighbors (b);
number of degree of freedom of the robot (DOF);
and the changes on the node network (C). The
computational complexity of the modified D* Lite
MPD* algorithm based on the MATLAB coding
explained in section 4, is presented in Table 5.

Table 5. Computational complexity of modified
D* Lite MPD* algorithm

Procedure Worst-case Computational Cost
Robot configuration DOF
Robot configuration P

Obstacle avoidance 11xPxbxN + 15xPxb+8xPxDOF 2xN
Start/End initialization 2

Map initialization 5xN
Finding the best path N 2+ 2xbxN 2+ 10xN + 12xb
Generating the best path 8xN 2+ 3xNxb + 2xN % + 3xN
Change input C

(2b+11)N 2+ (11P.b+8P.DOF *+3b+18)N

TOTAL +15P.b+12b+DOF+P+C+2

The modified D* Lite MPD* algorithm has the
computational complexity of O(N®) as shown in

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Table 5, which expresses a polynomial relationship
between the computational cost and number of
nodes. The only difference between D* Lite
algorithm, and its proposed modified version in this
article, is their procedures for finding the best path
and its generation. To calculate the computational
cost of best path generation in D* Lite algorithm,
Table 5 has to be updated to 2xbxN? + 10xPxbxN?
+ 5xN. This change vyields the computational
complexity of O(N®) for D* Lite algorithm.

For verifying the above-mentioned relationships
between the processing time and complexity of the
problem for the A*, the D* Lite, and the modified
D* Lite MPD* algorithm; five different scenarios
are defined as the ones in Figure 10. The search
algorithms are applied to these problems and the
processing time versus number of the nodes in the
best path (which is factor of difficulty of a problem)
are then plotted to make a comparison between the
performances of the search algorithms.

The results in Table 6 and Figure 11 show that
the relationships that were mentioned earlier for the
complexity analysis of these three search algorithms
are correct.

o eV sl A
Piviin ~ 4157 H f“f 81550
NP NP
B E B E
m |

E A %‘E i ;A\y&*ﬁﬂ
AEEQY/AVS: SN = s
N1 R i IAN Sk
PN 7 / = %% ﬂ;z,
B BE

(®)
Figure 10. Five scenarios for comparing modified D* Lite
MPD*, and A* algorithms efficiency

E-ISSN: 2224-2856

Amir Feizollahi, Rene V. Mayorga

Table 6. Comparison between the modified D* Lite MPD*, D*
Lite, and A* search algorithms for five different scenarios

. Total Best Path Processing Time (s)
Scenario d L h) .
Nodes engt MPD* Lite D* Lite A*
1 91 3 0.125 0.348 0.094
2 91 7 0.344 1.553 0.891
3 91 10 1.031 8.564 78.125
4 182 13 1.063 9.678 593.218
5 273 21 3.047 40.849 2450.375

Processing Time vs Length of the Best Path - MPD* Lite

Processing Time (s)
— o
\
-

1 3 5 T 9 11 13 15 17 19 21
Best Path Length (node)

(a)

Processing Time vs Length of the Best Path - D* Lite

1 3 5 7 9 11 13 15 17 19 21
Best Path Length (node)

(b)

Processing Time vs Length of the Best Path - A¥

Processing Time (s)
z 5] =]
B 8 8 8
K
L]

1 3 5 7 9 11 13 15 17 19 21
Best Path Length (node)
(©)
Processing Time vs Length of the Best Path - Comparison
3000
-
- +
=
E 2000
=
2 1000
2
g .
0 = B —]

()
1 4 7 10 13 16 19
Best Path Length (node)

EMPD* Lite AD* Lite #A*

(d)
Figure 11. MPD* Lite, D* Lite, and A* graphs:
a) MPD* Lite algorithm: processing time graph
b) D* Lite algorithm: processing time graph
c) A* Lite algorithm: processing time graph
d) Comparative graph for five simulated scenarios

154 Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

In the following section, the modeling and
motion planning of the manipulators based on the
energy consumption in typical industrial problems
are discussed. The simulation parameters for
modeling the DC motors are presented in Table 7.

Table 7. Simulation parameters of robot’s actuators

Parameter Description Value
R Electric resistance 1Q
L Electric inductance 05 H
K, Motor torque constant 0.01 N.m.Amp™
K, Electromotive force constant 0.02 V.rad™'s™
b Motor viscous friction constant 0.1 N.ms
K, PD-Control gain constant 0.1 N.ms

5.1. Energetically Optimized Path

In the first scenario, the motion planner is evaluated
in a classic manipulation task for a three-link
manipulator. The start and the goal node are set to
be on the right side and left side of the obstacle,
respectively. The desired nodes are set very close to
the obstacle to verify the collision-free attribute of
the planner. The obstacle in Figure 12 can be
considered as the divider of two different sections in
an assembly line. More details on the result can be
found in Figure 12 and Table 8.

200

=1
o =

Angle (6)

-100¢

-200*-
Time

Galibrated Energy ()
N S

Joint 1 Baghe: 425
Jeint 7 Bnghe: LS
o Joint F3 Bnghe 02

x Jeint #1 Enargy Cosampion: XLIT
Joint 57 Ensogy Cosampion: .3
Joint 73 Ensogy Cosamplion: 1535

Figure 12. Energetically optimized path for a typical
manipulation task

Table 8. Case 1 — detailed results

Variable Value
Total number of nodes 87
Start Node 4
Goal Node 31
Joint #1 energy consumption 32.77
Joint #2 energy consumption 16.90
Joint #3 energy consumption 3.93
Total energy consumption 53.61
Best path length (nodes) 16

E-ISSN: 2224-2856

155

Amir Feizollahi, Rene V. Mayorga

One of the typical manipulation problems for
robotic arms is their maneuverability in a tight
crowded workspace. To verify the capability of the
proposed search algorithm in finding the optimized
path, a workspace is defined as the one in 13. Six
obstacles in different shapes and sizes are located to
limit the robot’s workspace. The robot’s mission is
to safely manipulate an object from the right corner
of the workspace and place it in another corner
between two obstacles while avoiding any collision
with them. The manipulator is defined to have four
links of the same length. The energy consumption
graph, the processing time and the best path is
depicted in Figure 13 and Table 9.

200¢

Angle (B}

Time

Time

it 1 hagle 2251
it 2 agle: T
0 it 0 Aagle: BLID
Jaiat ¥4 Pagle: 9144

Jait 1 Envigy Cosemplon: 6250
ot B2 Enwrgy Cosemption: 119
Jait €3 Energy Cossmptivn: 1127
Jalt 4 Envigy Cosempion: 1525

Figure 13. Energetically optimized path for the manipulator in a
crowded workspace

Table 9. Case 2 — detailed results

Variable Value
Total number of nodes 86
Start Node 7
Goal Node 79
Joint #1 energy consumption 62.88
Joint #2 energy consumption 33.39
Joint #3 energy consumption 13.27
Joint #4 energy consumption 3.52
Total energy consumption 1131
Best path length (nodes) 11

In the third case, the manipulator has seven links,
six smaller ones to increase the maneuverability and
one long link to improve the reachability of the goal
node. In this case, the manipulator is located in the
center of a very tight workspace and the start and
the goal nodes are defined on the opposite sides of
the workspace. The manipulator’s actuators, as
depicted in 14 erugiF, change the direction of their
motion several times in order to accomplish the
manipulation task. More detailed information can be
found in Table 10.

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

i
200¢
- -
o = = :
: | |
Total Enssew Comamotica: 1182 |

Energetically optimized path for the manipulator in a
tight workspace

Calibrated Er

Figure 14.

Table 10. Case 3 — detailed results

Variable Value
Total number of nodes 152
Total energy consumption 1702
Best path length (nodes) 13
CPU time 0.41s

Large obstacle avoidance is another challenge for
industrial manipulators motion planning.
Minimizing the energy consumption and
accomplishing the assigned task to the manipulator
with consideration of its motion in the free collision
zone, makes the problem more difficult. In Figure
15, the start and the goal node are defined at tow
opposite corners of the workspace. The robot has to
undergo few tangles to avoid the big surrounding
obstacle. In such cases, the pre-process phase, map
analysis node generation, plays a big role in finding
the best path for the robot motion from the start
node to the goal node. More detailed results can be
found in Table 11.

Juint 1 hagh: 4
Joo 1 Bagh: 183
o - . . - ¥ Juint €3 haghe: 1012
® Jui 11 Enesgy Commmplive: 2560
Ju € Envogy Cosmmption: 1164
Joot 3 Eneegy Crtamptve: 1220
Tetal Emtrgy Commamplon: W50
P Timme Fou Finding Th et Pash Ling MPD" Line L4055
STARTmede: 1T — GOAL node X
The Best Pash Between S and Goat WL RINBANIE

“toergy Comampon Wabors ke Calbewed

Figure 15. Energetically optimized path for the manipulator in a
workspace with large obstacle

E-ISSN: 2224-2856

156

Amir Feizollahi, Rene V. Mayorga

Table 11. Case 4 — detailed results

Variable Value
Total number of nodes 42
Joint #1 energy consumption 25.68
Joint #2 energy consumption 11.64
Joint #3 energy consumption 2.22
Total energy consumption 39.54
Best path length (nodes) 11

5.2. Re-planning Using the Modified D* Lite
In the first case, to verify the re-planning procedure
of the search algorithm, the robotic arm is located in
a partially-known environment where some of the
obstacles are pre-defined (Figure 16). The
manipulator detects a new obstacle during its
motion toward the goal node. As a result, all the
nodes neighboring the new obstacle will have an
update in their cost and the search algorithm takes
the re-planning procedure to find another path with
minimum energy consumption. The corresponding
result and more details on this scenario can be found
in Figure 16.

Manipulation in hazardous workspace is another
of the typical applications of manipulators and
robotic arms. Excessive heat level or radiation can
ruin the electronics or mechanical component of
such systems. To minimize the failure chance during
the manipulation, a common practice is to avoid the
above mentioned conditions by means of defining
virtual obstacles as the “No Enter” zones.

In the defined scenario to test the effectiveness of
the path planner, the side triangles in Figure 17 are
the “No Enter” areas with high temperature that is
not tolerable for the manipulator. The robot initially
takes a route that is so close to the right-side
obstacle. The generated path has the minimum cost
but taking this route might be so risky for the robot.
Defining a tolerance threshold, the path planner
regenerates the path which is shown with the lighter
color in Figure 17.

S —ccom s) W]

= ~

2 0

< -100}

[

o s WEm
Time o,
=
’?ﬂ. Y \bf
ol | A7 w\‘\" W

Calibrated Er

Juint 1 Ancle: 1673

Figure 16. Re-planning using the modified D* Lite MPD*
algorithm in case of detecting new obstacle

Volume 12, 2017

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

[T
& o
S 8

Angle ()
S8 o 8

Calibrated Energy (j)

Time

Juion #1 Emvegy Comamption: 115
Juion 2 Envgy Commmpion: L1
Juion £3 Emvgy Commmption: 1511

Figure 17. Re-planning using the modified D* Lite algorithm in
case of avoiding special conditions

6 Conclusions

In the field of robotics, using manipulators in
different sizes and shapes for delivering a wide
range of tasks from simple repetitive manipulation
to performing the maintenance procedure in
hazardous workspaces, has been always an
interesting and challenging problem. In this Paper,
the optimized motion planning of the industrial
manipulators in partially-known environment is
addressed and a modified search algorithm is
proposed and applied to the solution to this problem.
The mathematical modeling of the robot and its
actuators is done and the corresponding formulation
has been derived. The D* Lite algorithm as one of
the most well-known search algorithms is discussed,
its superiority over A* algorithm is studied, and a
modification has been proposed to enhance its
efficiency. This algorithm was implemented using a
MATLAB framework for generating the best path
for the user-defined manipulators in different
scenarios. Although there may be much more
possible scenarios to study the efficiency of the
proposed motion planner, the selected results from
tens of investigated scenarios are the most concise
and informative cases. Ongoing research is focused
on expanding the framework to add the 3D feature
to the simulation block and improving the
computation time in the pre-process phase that can
be a huge jump in increasing the efficiency of the
developed framework.

ACKNOWLEDGMENTS

The authors thank Mahdi F. Ghajari for his fruitful
endeavors in developing the preliminary framework
and providing A* algorithm results for comparison
purposes.

E-ISSN: 2224-2856

157

Amir Feizollahi, Rene V. Mayorga

This paper research has been supported by a grant (No:
155147-2013) from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References:

[1] K. S. Senthilkumar and K. K. Bharadwaj, “Multi-
robot exploration and terrain coverage in an
unknown environment,” Robotics and Autonomous
Systems, vol. 60, no. 1, pp. 123-132, 2012.

P. Sabetian, A. Feizollahi, F. Cheraghpour, and S.
A. A. Moosavian, “A compound robotic hand with
two under-actuated fingers and a continuous finger,”
IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR), 2011, pp. 238-244.

M. Hvilshgj, S. Bggh, O. S. Nielsen, and O.
Madsen, “Autonomous industrial mobile
manipulation (AIMM): past, present and future,”
Industrial Robot, vol. 39, no. 2, pp. 120-135, 2012.
I. Tortopidis, and E. Papadopoulos. “On point-to-
point motion planning for underactuated space
manipulator systems,” Robotics and Autonomous
Systems vol. 55, no. 2, pp. 122-131, 2007.

P. Hart, N. Nilsson, and B. Raphael, “A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
A. Stentz, “Optimal and efficient path planning for
partially-known environments,” IEEE International
Conference on Robotics and Automation (ICRA),
pp. 3310-3317, 1994.

S. Koenig and M. Likhachev, “D*Lite,” Eighteenth
National Conference on Artificial Intelligence,
American Association for Artificial Intelligence, pp.
476-483, 2002

Koenig, Sven, Maxim Likhachev, and David Furcy.

"Lifelong planning Ax." Artificial Intelligence vol.
155, no.2, pp. 93-146, 2004.
H. Goldstein, Classical
Education India, 1965.

A. Feizollahi and R. V. Mayorga, “Optimized
Motion Planning of Manipulators in Partially-
Known Environment Using Modified D* Lite
Algorithm”, WSEAS Transactions on Systems, vol.
16, no. 10, pp. 69-75, 2017.

A. Feizollahi. “Collison Free and Energetically
Optimized Motion Planning of Manipulators in
Partially Known Environment Using Modified
D* Lite Algorithm;” M.A.Sc. Dissertation Faculty
of Graduate Studies and Research, University of
Regina, 2016.

[12] S. Arora, and B. Barak, “Computational
Complexity: A Modern Approach,” Cambridge
University Press, 20009.

Y. Lu, X. Huo, O. Arslan, and P. Tsiotras,
“Incremental Multi-Scale Search Algorithm for
Dynamic Path Planning With Low Worst-Case
Complexity,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) vol. 41, no.6,
pp. 1556-1570, 2011.

2]

[3]

[4]

[5]

[6]

[7]

[8]

mechanics. Pearson

[9]
[10]

[11]

[13]

Volume 12, 2017

	Acknowledgments

