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Abstract: - A flexible controller for optimal control of linear time-varying stochastic systems with multiple time 
delays is developed.  The plants to be controlled are represented using a multi-input multi-output controlled 
autoregressive moving average model.  The delays are described using a diagonal matrix.  Input and output 
filters in the form of linear time-varying moving average operators are introduced into a generalized minimum 
variance control cost functional in order to meet the needs of various applications.  The controller is applicable 
to a large class of linear time-varying systems. 
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1 Introduction 
PID controllers are the most popular controllers in 
industry. Generalized minimum variance controllers 
(GMVCs) retains the integral action of the PID 
controllers for disturbance rejection and have been 
applied to single input and single output (SISO) 
systems for replacement of the traditional PID 
controllers for optimal control of DC motors [1-4].   
There are many multiple input and multiple output 
(MIMO) control systems, for example, vehicle 
control systems and chemical plants. The GMVCs 
have the potential to make significant performance 
improvement when applied to replace the PID 
controllers because each of the individual 
controllers in a MIMO control system will 
collaborate for optimal control to minimize a single 
cost functional.   

Koivo developed the MIMO generalized 
minimum variance controller for linear time-
invariant (LTI) systems [5].  It extended the 
GMVCs from LTI SISO systems [6], [7] for MIMO 
LTI plants.  The GMVCs have also been extended 
from transfer functions for SISO LTI state space 
models [8].   
     The GMVCs have the cost functional that 
includes both an output tracking error variance and a 
quadratic function of filtered input.  They are 
flexible providing a mechanism for compromise 
between output tracking accuracy and plant input 
fluctuation.  The introduction of filters for plant 

output and input allows more control of transient 
performance of the closed-loop control systems.   

The GMVCs are based on transfer functions that 
are defined for LTI systems only.  The standard LTI 
SISO GMVCs [6], [7] were extended from LTI 
SISO transfer functions for time-varying SISO 
transfer operators for control of linear time-varying 
(LTV) systems [9], where  LTV moving average 
filters are introduced and noncommutivity of time-
varying  transfer operators is overcome by a  pseudo 
commutation technique specifically developed for 
LTV plants.  An LTV GMVC was developed 
recently for LTV MIMO systems with a single delay 
[10].   

In this paper, we extend the LTV GMVC to LTV 
MIMO systems with multiple time delays. LTV 
moving average filters in standard forms are applied 
for optimization extending the standard LTI 
GMVCs from LTI MIMO systems with a single 
delay for LTV MIMO plants with multiple delays. 

 
 

2 Control Objective 
We consider LTV plants represented by a MIMO 
LTV controlled autoregressive moving average 
(CARMA) model, 

 
)(),()()(),( 11 kUqkBkYqDqkA    

             )()(),( 1 kWqDqkC    (1) 
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where U(k) and Y(k) are plant input and output, and 
W(k) is a zero mean, independent Gaussian vector.  
Variance of W(k) is time-varying and uniformly 
bounded away from infinity.  In CARMA model (1), 
q is a one-step-advance operator satisfying  

 

                 
))G(k-=F(k+

))qG(k-)=F(k+qF(k)G(k-

11          
212

 (2)   

and 
 
A(k,q 1 )=I+A )(1 k q 1 +A )(2 k q 2 +...+A )(kn

q n  

   B(k,q 1 )=B )(0 k +B )(1 k q 1 +…+B )(km
q m  (3) 

     C(k,q 1 )=I+C )(1 k q 1 +...+C )(kh
q h         

are LTV moving average operators (MAO's)  in the 
form of time-varying polynomials in the one-step-
delay operator q-1, where I is an identity matrix and 
all the time-varying parameter matrices )(kAi , 

)(kBj and )(kCr , i=1, 2, ..., n,  j=0, 1, ...,m,  r=1, 

2, ..., h, are square matrices with finite and the same 
dimension. They have norms that are uniformly 
bounded away from infinity.    It is also assumed 
that the determinant of )(0 kB is uniformly bounded 
away from zero.  In the CARMA model D(q) 
represents the multiple time delays between plant 
inputs and outputs.  It has the form of the following 
diagonal matrix. 

              D(q)=diag( ),...,, 21 pddd qqq    (4) 

where 0id , i=1, 2, …, p, are positive integers 
representing the time delay between the ith input 
and the ith output.  Without losing generality we 
assume 1 ii dd .  The LTV CARMA model can be 
rewritten in the following standard form. 
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where 
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 (6)  

with the superscript T representing matrix transpose. 
The inverse operator of an LTV MAO, for example 

),,( 1qkA  is called an LTV autoregressive operator 
(ARO) as in the LTI cases and is denoted by 

),( 11  qkA  [9].   

As in the LTI case filters can be introduced to 
improve transient performance of the GMVC 
systems.  Given a p-dimensional uniformly bounded 
reference vector S(k) and LTV MIMO moving 
average filters  
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(7) 

the generalized output and generalized reference are 
defined as 
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 (8) 

The cost functional of the LTV MIMO GMVC is as 
follows.   

))()()(())()({[()( kZkkkZkEkJ T 
)}(/)](),()())(),(( 11 kDatakUqkRkVkUqkR T   

   (9) 

where  Data(k)={Y(k), U(k), Y(k-1), U(k-1), …} is 
the data set that has the input and output up to and 
including current time k representing all the 
available data for control on current time k,  E is for 
the mathematical expectation conditioned on 
Data(k) and 
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is an LTV MIMO moving average filter for 
generalized plant input )(),( 1 kUqkR  .  The 
control objective is to find appropriate U(k) such 
that the cost functional of the LTV MIMO GMVC 
is minimized and all the variables in the closed-loop 
control systems are uniformly bounded away from 
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infinity.  In the cost functional, )(k  and V(k) are 
uniformly positive definite time-varying weighting 
matrices for the generalized tracking error and 
filtered input.  They are chosen to be uniformly 
bounded away from infinity.  It is assumed that the 
LTV ARO’s ),( 11  qkP and ),( 11  qkQ  are 
exponentially stable and all the time-varying 
parameter matrices of the three LTV MIMO filters 
are uniformly bounded away from infinity.   In 
addition, the determinates of Q0(k) and R0(k) are 
assumed to be uniformly bounded away from zero.  
These assumptions are not restrictive because the 
choice of the three filters is in our hands. 
 
 
3 GMVC 
We first develop a minimum variance predictor 
(MVP) for LTV CARMA model (1) for prediction 
of the filtered output )()(),( 1 kYqDqkP   in order 
for dealing with the multiple delays and the 
stochastic part of the system for development of the 
LTV GMVC.  Left dividing (1) using  

),(),( 111  qkPqkA  on both sides and noting (8) 
we have  
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


 (11) 

 
The first term on the right hand side of the above 
equation is the deterministic part of the filtered 
output.  The second term is the stochastic part.  The 
key for the prediction is to separate the stochastic 
part into two components.  The first depends only 
on the noise to occur in the future and the second 
depends only on the noise up to and including 
current time k.  The noise up to and including the 
current time can be estimated using Data(k).  The 
stochastic part can be rewritten as  
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1111
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 (12) 

 
We apply the following long division in order to 
divide the above noise into two parts. 
 

),(),(),()(),( 111   qkGqkFqkAqDqkC  (13) 
where 
 

qkFqkFqkFqkF d
dd )(...)()(),( 1

1
10 

   (14) 

is the quotient with d being the maximum time 
advance in D(q) and  

s
s qkgqkgkgqkG   )(...)()(),( 1

10
1 (15) 

is the remainder.  Substituting (13) into (12) we 
have 
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
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

  (16) 

Noting (3), (7) and (15) we know that the last term 
on the right hand side of the above equation depends 
only on the noise up to and  including current time 
k.  However, noting (7) and (14) we know the first 
term on the right hand side depends on not only the 
future noise but also the noise up to and including 
current time k if the output filter ),( 1qkP is not an 
identity matrix.  We introduce the following 
equation in order to separate the future noise from 
the first term. 

        ),(),(),(),( 11   qkLqkHqkFqkP  (17) 

where  
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has all the terms that have advance operator q and 
),( 1qkL  has all the terms that have either the 

operator q0 or the delayed operator q-1.   Substituting 
(12), (13) and (17) into (11) we have 
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  (19) 

where the only term that depends on the future noise 
is ).(),( kWqkH  Because of independency of the 
noise it is impossible to know this term at current 
time k and our best estimate of this term is its mean 
value. Taking mathematic expectation on both sides 
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of (19) conditioned on the data up to and including 
current time k we have the minimum variance 
prediction of the filtered output, 
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3.1 GMVC Theorem   
If the LTV AROs ),,( 11  qkA  ),( 11  qkC  and 

),( 11  qkP are exponentially stable, the LTV MIMO 
GMVC for CARMA model (1) with multiple delays 
is given by 
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where  
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3.2 Proof  

Subtracting (20) from (19) we have 

  )(),()()( 1
^
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Substituting (24) into GMVC cost functional (9) it 
follows that 
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Thus  
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and 
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Because the second derivative in (27) is positive 
definite the cost functional (9) can be minimized by 
equating derivative matrix (26) to zero for solving 
control variable U(k).   Substituting (20) into (26), 
setting it to zero and left dividing the result by 

)()(2 0 kkBT  we have 
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Left dividing the above equation by ),( 1qkP  and 
solving for U(k) we have 
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The noise in the above equation can be determined 
using CARMA model (1) and Data(k).  Left 
multiplying (1) using ),()( 111  qkCqD on both 
sides we have 
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Comparing (21) with (30) we have  

                  OkWqDqkC  )()(),(
~

1  (31) 

where O is a zero matrix with appropriate dimension 
and 
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          )()()(
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is the estimation error.  It will decay exponentially 
to zero because of exponential stability of LTV 
ARO C ),( 11  qk .  Substituting (32) into (22) we 
have 
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Noting (1), (32) and (33) we have the closed-loop 
system for the LTV GMVC, 
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where 
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The inverse of the left most matrix in close loop 
(34) is the closed-loop LTV ARO that determines 
closed-loop stability.  It is determined by the three 
diagonal LTV MAO’s of the matrix because of its 
triangular form.  In (34) the diagonal delay matrix 
D(q) does not affect stability because it is simply a 
delay operator.  Therefore the closed-loop stability 
is determined by the LTV ARO’s ),,( 11  qkA  

),( 11  qkC  and ).,( 11  qkT   Because of exponential 
stability of the LTV ARO’s ),( 11  qkA  and 

),( 11  qkC  the closed-loop control system is 
exponentially stable if and only if ),( 11  qkT  is 
exponentially stable.   As shown by (23) stability of 

),( 11  qkT  can be chosen by us because the choice 
of the weighting matrices and the filtering LTV 
MAO’s is in our hands. 

 
 

4 Simulation 
We consider a first order 2I2O LTV CARMA 
model.   The delay matrix is 

                   ),()( 2qqdiagqD   (36)

The three LTV MAO’s of the CARMA model have 
the forms, 
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LTV MAO’s ),( 1qkA ,  B ),( 1qk and ),( 1qkC  
are triangular matrices.  Stability of their ARO’s is 
determined by the diagonal matrix A(k), B(k) and 
C(k).  Both LTV ARO’s ),( 11  qkA , and 

),( 11  qkC  are exponentially stable because the 
absolute values of the diagonal elements of A(k) and 
C(k) are uniformly less than unit.    However, 

),( 11  qkB  is not exponentially stable because B(k) 
is a triangular matrix and the absolute value of its 
first diagonal element is one.  The weighting 
matrices are chosen as 
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The input filter is 
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The output and reference filters are chosen as 
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Here we use the same output and reference filter in 
order to make the actual output to follow the 
reference.  Fig.1 and Fig.2 show that both outputs 
follow their references well.  The control variable is 
shown in Fig.3.   
 
 
5 Conclusion 
A flexible GMVC has been developed for MIMO 
LTV systems that have multiple delays.  It extends 
our previous LTV GMVC from single delay MIMO 
plants for multiple delay systems.  The LTV GMVC 
uses LTV MAO filters for flexibility and robustness 
of closed-loop control systems.  It is able to ensure 
optimal control for a large class of LTV systems 
even when there are multiple delays between the 
plant outputs and inputs.  This GMVC can be 
extended for a generalized predictive controller 
(GPC) extending the LTV GPC [11] from LTV 
SISO systems for LTV MIMO systems with 
multiple delays. 
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Fig.1  Simulation for the first output. 

 
 

 
Fig.2  Simulation for the Second output. 
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Fig.3  GMVC output. 
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