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Abstract: - In this paper control forces and torques automatic distribution algorithms for a vehicle actuators are 
considered. Base control algorithm is designed by position and path control method for vehicles [1] – [3]. This 
control algorithm is based on kinematics and dynamics equations of vehicle. Distribution of control forces and 
torques between actuators is solved by applying of the pseudoinverse matrix. Another approach is mathematical 
programming problem solution. These two approaches does not separate control channel as it is in conventional 
control systems [4]. The considered methods are applied in the control system of unmanned airship. Modeling 
results and estimation of algorithms accuracy and performance are presented. 
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1 Introduction 
Modern control systems of vehicles are based on 
movement separation and control of actuator as 
single input – single output system [5], [6]. In other 
word separate component of vehicle motion is 
controlled by separate actuator. For example, an 
aircraft pitch is controlled by an elevator [7]. This 
approach limits the abilities of vehicle control 
systems and modern control design methods.  

In this paper control system consists of two 
levels. The high level is designed by position and 
path control design method for vehicle. The result of 
the system high level operation is control forces and 
torques. These forces and torques are inputs of the 
low level of the control system. But the output of 
the system low level is actuator’s thrusts and angles. 
Such approach is valid if performance of actuators is 
high. This approach is used in different vehicles 
control systems [3], [8] – [10], [19] – [21]. In this 
case control system of actuator is local SISO 
system. Therefore the required thrusts and angles of 
engines are calculated as solution of the algebraic 
equations system. For instance, in [11] – [13] the 
algebraic equations system with rectangular matrix 
is solved by minimization of the required thrusts. In 
[12] – [13] the number of the algebraic system 
solutions is 96. Therefore the optimal solution is 
finding by exhaustive search in real time. In 
common case it is necessary to apply high 
performance algorithms. 

 
 

2 Task Statement 
Consider mathematical model. Let us consider a 
vehicle in a n-dimensional space. Control forces and 

torques are included in 1n×  vector uF . The 
number of a vehicle actuators is m . Every actuator 

has three components 
T

ix iy izP P P⎡ ⎤⎣ ⎦ , 1,i m= . 

Coordinates of actuator is given by the vector 

[ ]Ti i ix y z , 1,i m= , in associated coordinate 
system. In this case components of actuator’s forces 
and components of the control vector satisfy the 
next matrix equation: 

uF UP=  (1) 

where 1 1 1 2 2 2 ...
T

x y z x y z mx my mzP P P P P P P P P P⎡ ⎤= ⎣ ⎦ ; 

1 1 2 2

1 1 2 2

1 1 2 2

1 0 0 1 0 0 ... 1 0 0
0 1 0 0 1 0 ... 0 1 0
0 0 1 0 0 1 ... 0 0 1
0 0 ... 0

0 0 ... 0
0 0 ... 0

m m

m m

m m

U
z y z y z y

z x z x z x
y x y x y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− − −⎢ ⎥

⎢ ⎥− − −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 (2) 

It is necessary to find vector P  as the most 
accurate solution of system (1). 

 
 

3 Problem solution on base of 
pseudoinverse matrix 
If U  (2) is rectangular matrix, then system (1) has 
infinite set of solutions [14]. But the single solution 
determined by linear superposition of the rows and 
columns of conjugate matrix *U . This solution is 
called pseudoinverse matrix U +  [14]. It is known 
that the pseudoinverse matrix U +  determines the 
best solution of system (1) in term of criterion of a 
minimum of least squares. 

Thus vector P  is: 
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uP U F+=  (3) 
Thrusts and rotation angles of actuators are: 

2 2 2
i ix iy izp P P P= + +  (4) 

arctan iy
i

ix

P
P

α =  (5) 

arctan iz
i

ix

P
P

β =  (6) 

where ip  is the thrust of i-th actuator; iα  is the 
rotation angle of i-th actuator in the vertical plane of 
associated coordinate system; iβ  is the rotation 
angle of i-th actuator in the horizontal plane of 
associated coordinate system. Consider example of 
vehicle control system based on position and path 
method and algorithms (1) – (6). Consider control 
system of the prototype of stratospheric airship, 
similar to Lockheed-Martin P-791. It is shown in 
Fig. 1. 

 
Fig. 1 Hybrid airship 

 
Main parameters of the airship: length 38 m, 

width 17 m, height 10 m, envelope volume 4 100 
m3, weight (with empty ballonets) 3 300 kg, one 
ballonet volume 900 m3. Coordinates of gravity 
center in reference to volume center (0 m, -1.5 m, 0 
m). Main propulsion engines generate thrust of 5 
000 N each. Engines are rotated in vertical plane in 
range from -180º up to +180º. Coordinates of main 
engines gravity centers are (0 m, 0 m, ±9 m). Tail 
steering motors generates up to 500 N each. They 
rotate in range from -90º up to +90º both in 
horizontal and vertical planes. They are located in 
tail part of airship and have coordinates (–20 m; 0 
m; ±3.5 m). 

Thus vector P  for the given airship is: 

1 1 2 2 3 3 3 4 4 4

T

x y x y x y z x y zP P P P P P P P P P P⎡ ⎤= ⎣ ⎦  (7) 
The power of steering motors is poor to control 

lateral motion of the airship. Therefore position and 
path control system calculates 5 1×  vector of the control 
forces and torques: 

T

u ux uy ux uy uzF F F N N N⎡ ⎤= ⎣ ⎦  (8) 
Algorithms of calculation of vector (5) are 

presented in [2], [3], [15], [16]. 

In this case matrix (2) is: 

1 2 3 3 4 4

1 2 3 3 4 4

1 1 2 2 3 3 4 4

1 0 1 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0 1 0
0 0 0 0

0 0 0 0
0 0

U z z z y z y
z z z x z x
y x y x y x y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

 (9) 

Coordinates of the airship propellers are: x1=0; 
x2=0; x3=-21.63; x4=-21.63; y1=0; y2=0; y3=0; y4=0; 
z1=-10.7; z2=10.7; z3=-4.1; z4=4.1. 

Modeling results of the airship closed-loop 
system are presented in fig. 2 – 4. Linear 
coordinated of the airship are presented in fig. 2. 
The airship motors thrusts and rotation angles are 
presented in fig. 3 and fig. 4. 

 
Fig. 2 The airship linear coordinates 

 

 
Fig. 3 The airship main motors thrusts and rotation 

angles 
 

Notations in fig. 2 are: x0 and z0 are the airship 
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coordinates in horizontal plane; y0 is altitude of the 
airship. 

 

 
Fig. 4 The airship steering motors thrusts and rotation 

angles 
 
On the first stage the airship is moving from point 

(0; 550; 0) to point (5000; 500; 0). After the airship 
is moving to point (7000; 500; 6000). The airship 
ground speed is 10 m/s. Wind speed is 5 m/s. 

The main advantage of this method is automatic 
distribution of the control forced and torques 
between actuators. Searching operations and 
iterations are not used. Disadvantage of the method 
is miss of the motors thrusts and rotation angles 
limitations. But the limitations can be accounted 
after performing (1) – (6). 

It is necessary to note that algorithms (1) – (6) 
allow synchronize vehicle actuators in the steady-
state modes. In conventional vehicles control 
systems the synchronization of actuators is 
performing by designers for every movement mode. 
From fig. 3 and fig. 4 it is clear that thrusts and 
rotation angles of the left and right motors are equal 
to same values. In the transients thrusts and rotation 
angles of the left and right motors are different. 
 
4 Problem solution on base of the 
method of mathematical programming 
The problem described in section II can be 
formulated as the problem of mathematical 

programming: 
( )( )* min uP

P norm F UP= −  (10) 
2 2 max 2 2 max
1 1 1 2 2 2

2 2 2 max 2 2 2 max
3 3 3 3 4 4 4 4

; ;

;
x y x y

x y z x y z

P P P P P P

P P P P P P P P

+ < + <

+ + < + + <
 (11) 

where max max max max
1 2 3 4, , ,P P P P  are maximal values 

of the airship thrusts. 
The problem (10), (11) is solved by Matlab 

function fmincon. This function is based on the 
trust-region-reflective algorithm [17]. Modeling 
results of the closed-loop control system of the 
airship are presented in fig. 5 and fig. 6. 

 
Fig. 5 The airship linear coordinates with problem 

(10), (11) 
 

 
Fig. 6 The airship main motors thrusts and rotation 

angles with problem (10), (11) 
The method of nonlinear mathematical 

programming allows to account nonlinear convex 
limitations in the searching area of (1). But the 
method of nonlinear mathematical programming 
requires high performance of the computer and 
dependes from initial point of solution. 
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5 Position and path control 
Design of motion control algorithm is performed on 
the base of position-trajectory control for mobile 
objects [2, 3, 15, 16]. Main cruising engines have 
time constant of 1 s, when steering – 0.5 s, that is in 
order of magnitude less than airship time constants. 
It allows not to include engines and motors equation 
in main control loop and control system is 
developed with equations of dynamics and 
kinematics presented in [8, 18]. In accordance with 
position-trajectory control method we introduce 
trajectory error 

1 2 3tr mAY Y AY Aψ = + +  (12) 

Herein [ ]0 0 0
TY x y z ψ ϑ γ=  is position 

vector of airship in ground coordinate system; 

[ ]( )0 0 0
T

mY diag x y z ψ ϑ γ=  is diagonal 

matrix; 1 2 3, ,A A A  are matrixes and vector, which 
coefficients define motion trajectory. 

We require variable (12) to be: 
!ψtr +T1ψtr = 0  (13) 

Herein 1T  is the tune coefficient of controller. 
From (12), (13) we obtain: 
( )1 2 12 0m trAY A RX Tψ+ + =  (14) 

Herein R  is a matrix of the airship kinematics. 
We make requirements for airship velocity: 

4 5vel A X Aψ = +  (15) 

Herein 
T

x y z x y zX V V V ω ω ω⎡ ⎤= ⎣ ⎦  is vector 
of airship velocities and angular rates in body 
coordinate systems; 54 , AA  are matrix and vector, 
defining required velocity of airship for motion 
along trajectory. 

Total error is: 
( )1 2 1 4 52 m trAY A RX T A X Aψ ψΣ = + + + +  (16) 

We require variable (16) to be 
!ψvel +T2ψvel = 0  (17) 

Here in 2T  is the tune coefficient of controller. 
Hence from (12) – (17) we define control: 

Fcon = −Fd −M 2A1Ym + A2( )R+ A4( )
−1
×

× 2A1 !YmRX + 2A1Ym + A2( ) !RX +T1ψtr +T2 +T1ψvel( )
 (18) 

Here in ,
T

d dyn ext dyn extF F F N N⎡ ⎤= + +⎣ ⎦  is vector of 
dynamic and external forces and moments, acting on 
airship; !Ym = diag RX( )  is diagonal matrix; !R  is 

matrix of time derivatives of R  matrix elements, M 
is matrix of inertial parameters of the airship. 

Let straightforward motion of an airship with 10 

m/s velocity along linear trajectory described with 
following equations has to be provided 

0
0 2000

12
x

y = + , 0 0z = , 0ψ = , 1
12

ϑ = , 0γ = ,  

Than matrixes and vectors 1 2 3, ,A A A , 4 5,A A  are: 

( )1 6,6A zeros= , 2

0 0 0 0 0 0
1 1 0 0 0 0
12
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

3

0
2000
0
0
1
12
0

A

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

, 
4

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
5

10
0
0
0
0
0

A

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
 

6 Conclusion 
In this paper two methods of the control forces and 
torques distribution between vehicle actuators are 
studied. The problem is solution of the linear 
algebraic equations system with rectangular matrix. 
The first method is solution based on the 
pseudoinverse matrix. The second method is 
minimization of the solution error norm by the 
method of mathematical programming. These two 
methods are applied in the airship control system. 
The first method ensures for the given control 
system accuracy about 10-14 N. Time of the problem 
solution is about 1 nanoseconds. The second method 
ensures accuracy about 10-3 N and time of the 
problem solution about 1,5 microseconds. The 
studied methods are characterized by the absence of 
decomposition procedure "control channel - 
controlled variable". The problem is solved, if the 
time constants of actuators are much less than the 
time constants of a vehicle. If the inertia of the 
actuators is comparable with the inertia of a vehicle, 
the system (1) becomes the differential one. In this 
case it is possible to apply control algorithms 
described in [15], [16]. Described methods are able 
to compensate failure of actuators. Consider failure 
of the airship tail motors. In this case matrix (2) is 

1 2

1 2

1 1 2 2

1 0 1 0
0 1 0 1
0 0

0 0
U z z

z z
y x y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (12) 

Simulation results of the airship flight with only 
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main propulsion motors in fig. 7. Wind speed is 5 
m/s. Coordinates of the main propulsion engines 
are: x1=5 m; x2=5 m; y1=-2 m; y2=-2 m; z1=-10.7 m; 
z2=10.7 m. From fig. 7,8 it is clear that error of 
control system is about 70 m. In addition in steady 
state mode we can see oscillations of the airship 
altitude. 

 

 
Fig. 7 The airship linear coordinates with motors 

failure 

 
Fig. 8 The airship motors thrusts and rotation angles 

with failure 
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