Distributed coordination strategy for target-enclosing operations by particle swarms

TAE-HYOUNG KIM
Chung-Ang University
School of Mechanical Engineering
221 Heukseok-dong, Dongjak-gu, Seoul
REPUBLIC OF KOREA
kimth@cau.ac.kr

Abstract: This paper presents a methodology for group coordination and cooperative control of \(n \) agents to achieve a target-enclosing operation in three-dimensional (3D) space. In the developed coordination strategy, multiple agents are controlled in a distributed manner to converge to an assigned formation while tracking the target object moving in 3D space. The distinctive features of the proposed method are as follows: First, it is a simple, memory-less control scheme. Second, no communication mechanism between agents is necessary, and thus it is inherently a distributed control strategy. From these viewpoints, it seems easy to implement. Further, it appears to be a practical method for the following reasons: (i) it is robust against any finite number of transient measurement errors and (ii) it can achieve the control objectives even when constraints on the control input exist. We also present a scheme to decrease the possibility of a collision between agents. Numerical examples are given to illustrate the efficacy of the proposed method and the achievement of an assigned formation in 3D space.

Key-Words: Multi-agent systems, distributed coordination, cooperative robot systems, circulant matrices

1 Introduction

Formation control, which coordinates the motions of relatively simple and inexpensive multiple agents, is one of the essential technologies that enable agents to cover a larger operational area and achieve complex tasks. Recently, several research groups developed coordination control strategies capable of achieving an enclosing formation around a specific area (object) by multiple agents using local information (see e.g. \([1, 2, 3, 4, 5, 6, 7]\)). This type of coordination of motion is not only interesting but also significant because it has many potential applications from an engineering standpoint, as mentioned in Marshall et al. \([2, 3]\) and Sepulchre et al. \([5]\). For instance, it is useful when hazardous terrestrial/oceanographic exploration, military surveillance, and rescue operations are performed by cooperative multi-agent systems.

In this line of research, Marshall et al. \([2, 3]\) proposed a formation control method under cyclic pursuit for multiple agents with motion constraints moving in a plane. Based on the above methodology, Kim and Sugie \([6, 7]\) proposed a distributed cooperative control scheme using a cyclic pursuit strategy for target-capturing tasks in three-dimensional (3D) space by multi-agent systems. In the above method, each agent’s behavior is determined by using local information on the target object and one other agent in its neighborhood. For target-capturing strategies, Kobayashi et al. \([4]\) suggested a decentralized control law based on a gradient descent method for multiple agents. However, in their method, each agent requires information on the target object and two other agents.

The above methods \([2, 3, 4, 6, 7]\) guarantee that agents’ coordination finally results in a circular formation. However, we cannot directly place each agent at the required location by these methods. Further, if the control schemes of Marshall et al. \([2, 3]\) and Kim and Sugie \([6, 7]\) are applied, each agent circulates continuously while maintaining a constant distance to its pursuing agent. Thus, the applicability of the given methods may be limited. Therefore, it is required within the framework of practical applicability to extend these approaches so that multiple agents are controlled in a distributed manner such that they converge to an assigned formation while tracking a target object moving in 3D space.

This paper proposes a distributed coordination strategy by which multiple agents converge to the formation assigned by the designer while tracking a target object moving in 3D space. To that purpose, we first consider a group of \(n \) agents randomly dispersed in 3D space. Then, based on the modification of the results by Kim and Sugie \([6, 7]\), simple distributed
control laws are developed. This coordination strategy guarantees the achievement of the desired global behaviors of the agents by using only locally available information; each agent individually decides its behavior based on local information on only one other agent and the target object, which is probably minimum. This scheme can thus reduce the information requirements as compared with conventional methods. In the numerical examples, we verify that (i) the proposed method is robust against any finite number of transient measurement errors and (ii) it can achieve the control objectives even when constraints on the control input exist. From the above viewpoint, the proposed method is practical and easily implemented. A scheme to decrease the possibility of a collision between agents is also proposed, and its effectiveness is verified through a simulation study. Note that the agent dynamics are not considered and full actuation is assumed in this paper.

2 Problem Statement

Consider a group of \(n \) agents dispersed in 3D space, as shown in Figure 1. Each agent is modeled as an autonomous point mass and all agents are ordered from 1 to \(n \); i.e., \(P_1, P_2, \ldots, P_n \). The position vectors of the target object and agent \(P_i \) (\(i = 1, 2, \ldots, n \)) in the inertial frame are denoted by \(\mathbf{p}_o(t) \in \mathbb{R}^3 \) and \(\mathbf{p}_i(t) \in \mathbb{R}^3 \), respectively. Suppose that each agent is described as

\[
\dot{\mathbf{p}}_i = \mathbf{u}_i, \quad (1)
\]

where \(\mathbf{u}_i \in \mathbb{R}^3 \) is the control input. It is assumed that agent \(P_i \) can measure the following vectors:

\[
\mathbf{r}_i := \mathbf{p}_i - \mathbf{p}_o, \quad \mathbf{a}_i := \mathbf{p}_i - \mathbf{p}_{i+1}. \quad (2)
\]

The target-fixed frame is defined as \(\{ \Gamma_{\text{obj}} \} \), where the origin is at the center of the target object and the \(X_{\text{obj}} \), \(Y_{\text{obj}} \) and \(Z_{\text{obj}} \) axes are parallel to the \(x \)-, \(y \)- and \(z \)-axes of the inertial frame, respectively. The projected vector of \(\mathbf{r}_i \) onto the \(X_{\text{obj}}-Y_{\text{obj}} \) plane in the target-fixed frame is denoted as \(\mathbf{d}_i \) and the scalars are defined as

\[
\theta_i = \angle(\mathbf{e}_x, \mathbf{d}_i), \quad \alpha_i = \angle(\mathbf{d}_i, \mathbf{r}_i), \quad r_i := |\mathbf{r}_i|, \quad (3)
\]

where \(\mathbf{e}_x \) denotes the unit vector in the \(X_{\text{obj}} \)-direction of \(\{ \Gamma_{\text{obj}} \} \), and \(\angle(\mathbf{x}, \mathbf{y}) \) denotes the counterclockwise angle from vector \(\mathbf{x} \) to vector \(\mathbf{y} \). Then, \(\mathbf{r}_i \) can be represented as

\[
\mathbf{r}_i = [r_i \cos \theta_i \cos \alpha_i, \ r_i \sin \theta_i \cos \alpha_i, \ r_i \sin \alpha_i]^T. \quad (4)
\]

Note that since \(\mathbf{r}_{i+1} = \mathbf{a}_i, \ \theta_{i+1} \) and \(\epsilon_i \), defined as

\[
\epsilon_i = \begin{cases}
\theta_{i+1} - \theta_i, & i = 1, 2, \ldots, n-1, \\
\theta_1 - \theta_n + 2\pi, & i = n,
\end{cases} \quad (5)
\]

can be calculated in a similar way based on (2). Let \(R \) denote the required distance between the target object and the agents.

Now we consider how to form a geometric pattern for the target-capturing task by the group of \(n \) agents. The detailed control objectives are stated as follows:

(A1) \(n \) agents enclose the target object, i.e., they are spaced out around the target object at intervals of assigned angles and maintain those angles.

(A2) Each agent approaches the target object, maintaining a distance \(R \).

(A3) The angle \(\alpha_i \), which corresponds to the altitude of each agent, converges to the assigned angle \(\Phi \).

Note that for the sake of clarity and page limits, this paper only considers the equal convergence positions for all agents, i.e., \(R_1 = R_2 = \cdots = R_n = R \) and \(\Phi_1 = \Phi_2 = \cdots = \Phi_n = \Phi \), whereas distinct positions for each agent can be assigned. In the following section, we will derive the control law that achieves objectives (A1)–(A3).
3 Distributed Coordination Strategy

From the practical viewpoint, it is important to achieve the desired global behavior through relatively simple control laws using local information. We therefore propose a distributed coordination scheme for target-enclosing tasks, which can realize the required geometric formation mentioned in Section 2.

In order to develop such a control strategy, we first denote the assigned angular locations of \(\theta_i \) (\(i = 1, 2, \ldots, n \)) by \(\hat{\theta}_i \), which satisfies \(0 \leq \hat{\theta}_1 < \hat{\theta}_2 < \cdots < \hat{\theta}_n < 2\pi \). Thus, the control objectives (A1)–(A3) presented in Section 2 can be formulated explicitly as follows:

(A1') \(\dot{\theta}_i(t) \to \dot{\theta}_i[\text{rad}] \) as \(t \to \infty \),

(A2') \(r_i(t) \to R \) as \(t \to \infty \),

(A3') \(\alpha_i(t) \to \Phi[\text{rad}] \) as \(t \to \infty \) for \(i = 1, 2, \ldots, n \).

Then, the proposed local control law for the \(i \)th agent \(P_i \) is described as

\[
\begin{align*}
\dot{\theta}_i(t) &= k_1 \delta \theta_i(t), \quad (6) \\
\dot{r}_i(t) &= k_2 (R - r_i(t)), \quad (7) \\
\dot{\alpha}_i(t) &= k_3 (\Phi - \alpha_i(t)), \quad (8)
\end{align*}
\]

where \(k_1, k_2 \), and \(k_3 > 0 \) are the controller gains to be determined by the designer and

\[
\begin{align*}
\delta \theta_i(t) &:= \Psi_i \theta_{i+1}(t) - \theta_i(t), \quad i = 1, 2, \ldots, n - 1, \\
\delta \theta_n(t) &:= \Psi_n \theta_1(t) + 2\pi - \theta_n(t), \quad i = n,
\end{align*}
\]

with \(\Psi_i := \frac{\hat{\theta}_i}{\hat{\theta}_{i+1}} (i = 1, 2, \ldots, n - 1) \) and \(\Psi_n := \frac{\theta_n}{\theta_1 + 2\pi} \). Note that \(0 \leq \Psi_i < 1 \) holds for any \(i = 1, 2, \ldots, n \).

In order to analyze the overall multi-agent system, we rewrite (6) in the following vector form:

\[
\dot{\theta}(t) = A \theta(t) + B,
\]

where \(\theta := [\theta_1, \theta_2, \ldots, \theta_n]^T \in \mathbb{R}^n \) and \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^n \) are

\[
A := \begin{bmatrix}
-k_1 & k_1 \Psi_1 & 0 & \cdots & 0 \\
0 & -k_1 & k_1 \Psi_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -k_1 & k_1 \Psi_{n-2} \\
0 & \cdots & 0 & -k_1 & k_1 \Psi_{n-1} \\
-k_1 & \cdots & \cdots & \cdots & -k_1
\end{bmatrix}
\]

\[
B := [0, 0, \ldots, 0, 2\pi k_1 \Psi_n]^T.
\]

Next, key result (Geršgorin circle theorem), which is useful in stability analysis of our multi-agent systems will be presented [8].

Lemma 1 Let \(M \) be a complex \(n \times n \) with entries \(a_{ij} \), where \(i, j = 1, 2, \ldots, n \). For \(i, j \in \{1, 2, \ldots, n\} \), define \(R_i = \sum_{j=1, i \neq j}^n |a_{ij}| \), where \(|a_{ij}| \) denotes the complex norm of \(a_{ij} \). Then, each eigenvalue of the matrix \(M \) is in at least one of the disks

\[
D_i(M) = \{ z \in \mathbb{C} : |z - a_{ii}| \leq R_i, i = 1, 2, \ldots, n \}
\]

in the complex plane. Equivalently, the \(n \) eigenvalues of \(M \) are contained in the region in the complex plane determined by

\[
D(M) = \bigcup_{i=1}^n D_i(M).
\]

Note that \(a_{ii} = -k_1 \) and \(0 \leq R_i (= |k_1 \Psi_i|) < k_1 \) of the matrix \(A \) in (11), since \(0 \leq \Psi_i < 1 \) and \(k_1 > 0 \) for \(i = 1, 2, \ldots, n \). Hence, from Lemma 3.1, it can be easily verified that the \(n \) eigenvalues \(\lambda_i (i = 1, 2, \ldots, n) \) of the matrix \(A \) are in the set \(\Lambda := \{ \lambda \in \mathbb{C} : \text{Re}(\lambda) < 0 \} \), where \(\text{Re}(\lambda) \) denotes the real part of \(\lambda \in \mathbb{C} \). Then, the main result of the paper is stated as follows:

Theorem 2 Consider the system of \(n \) agents. It is assumed that all agents are initially arranged in 3D space as shown in Figure 1. Then, control laws (6)–(8) achieve (A1')–(A3') simultaneously.

Proof. Since it is obvious that (7) implies (A2') and (8) implies (A3'), we will prove that (A1') is achieved. Define \(e_i := \theta_i - \hat{\theta}_i \). Note that \(A\theta + B = 0 \), where \(\theta := [\theta_1, \theta_2, \ldots, \theta_n]^T \in \mathbb{R}^n \).

Then, it follows from (10) that \(e(t) = Ae(t) \), where \(e := [e_1, e_2, \ldots, e_n]^T \in \mathbb{R}^n \) and \(A \) is a stable matrix, as shown in Lemma 3.1. Therefore, it holds that \(e(t) \to 0 \) as \(t \to \infty \).

The above theorem implies that the control laws given in (6)–(8) guarantee that all agents assemble into the assigned formation around the freely moving target object in 3D space. The control scheme has additional distinctive features, in that each agent individually obtains the required information using the sensor systems implemented on its body, which means that no communication mechanism between agents is introduced. In addition, it is a memoryless controller in the sense that agent \(P_i \) (\(i = 1, 2, \ldots, n \)) determines its next behavior based only on the current information on agent \(P_{i+1} \), independently of the past behavior of \(P_{i+1} \). Thus, it is an easily implementable method from the engineering viewpoint. Moreover, it is a practical method because it is robust against any finite number of transient measurement errors (e.g.,
cases in which agent \(P_{i+1} \) is invisible from agent \(P_i \) for a period of time). These properties will be verified through simulation studies in the following section (see Section 4.2).

It may be in order to describe \(u_i \) explicitly. From (1), (2), and (4), it is straightforward to obtain

\[
u_i = \dot{r}_i + \dot{\theta}_i e_{\Psi_i}
\]

subject to (6)–(8). Note that it is inevitable to exploit \(\dot{p}_o \) in order to achieve target capturing without any errors irrespective of the control strategies. When each agent knows the target velocity in the steady state, \((A'1')–(A'3')\) will be satisfied. We will evaluate the performance in the case where \(\dot{p}_o \) is not available at all in Section 4.

On the other hand, the full actuation agent is considered in this paper, but there are times when full actuation may be infeasible because of the actuator limitation. As one of the possible methods to overcome such a problem, we can set constraints on \(\dot{\theta}_i, \dot{r}_i, \) and \(\dot{\alpha}_i (i = 1, 2, \cdots, n) \) in (6)–(8) as

\[
|\dot{\theta}_i(t)| \leq \theta_{i,\text{max}}, \quad |\dot{r}_i(t)| \leq r_{i,\text{max}}, \quad |\dot{\alpha}_i(t)| \leq \alpha_{i,\text{max}},
\]

for \(\forall t \geq 0 \), where \(\theta_{i,\text{max}}, r_{i,\text{max}}, \) and \(\alpha_{i,\text{max}} \) are given by the designer. In Sections 4.1 and 4.2, we will demonstrate that the control objectives \((A'1')–(A'3')\) can be achieved without problem even when the control laws (6)–(8) subject to (15) are applied.

Next, we consider the collision avoidance problem. The proposed distributed coordination control laws (6)–(8) cannot guarantee that no collision occurs; e.g., if \(\Psi_i(t) \approx 1 \), which probably results in \(\dot{\theta}_i(t) < 0 \), agent \(P_i \) may collide with agent \(P_{i-1} \), which satisfies \(\dot{\theta}_{i-1}(t) > 0, \dot{\alpha}_{i-1}(t) > 0, \dot{r}_{i-1}(t) = r_i(t), \) and \(\alpha_{i-1}(t) = \alpha_i(t) \). In order to decrease the possibility of collisions, we consider the following: Consider that \(n \) agents are dispersed in a counterclockwise star formation \((l, 6, 7, 9)\) at the initial time instant (see Figure 1, where \(d_i > 0, 0 < \epsilon_i < 2\pi \) for \(i = 1, 2, \cdots, n \), and \(\sum_{i=1}^{n} \epsilon_i = 2\pi \)). Then, we redefine the assigned angular locations \(\theta_i \) of \(\Psi_i \) in (9) as

\[
\begin{align*}
\theta_i &:= \hat{\theta}_i + 2\ell\pi, \quad i = 1, 2, \cdots, n, \\
\Psi_i &:= \frac{\dot{\theta}_i}{\dot{\theta}_{i+1}}, \quad i = 1, 2, \cdots, n-1, \\
\Psi_n &:= \dot{\theta}_n/(\dot{\theta}_1 + 2\pi),
\end{align*}
\]

where \(\ell \) denotes the positive integer. Note that 0 < \(\Psi_i < 1 \) holds for any \(i = 1, 2, \cdots, n \), and thus the convergence property given in Theorem 3.2 is also preserved. However, for \(\ell \gg 1 \), one can obtain \(\Psi_i \approx 1 \). Therefore, (16) has all agents circulating in a counterclockwise direction, finally converging to their assigned locations \(\theta_i \) for \(i = 1, 2, \cdots, n \). Note that if \(\Psi_i = 1 \), no collision occurs, as shown in Kim and Sugie [6, 7]. Thus we can see that the above simple technique (16) would be useful for collision avoidance. Its effectiveness will be demonstrated through numerical examples in Section 4.3. Note that a clockwise formation can be treated in a similar way.

4 Simulation examples

In this section, the performance of the coordination strategy proposed in Section 3 is evaluated in the case where \(\dot{p}_o \) is not available at all, i.e., \(\dot{p}_o(t) = 0 \) in (14).

4.1 Case 1

To illustrate the dynamic performance of the proposed distributed coordination scheme, a simulation is carried out in which \(n = 10 \) agents are initially randomly dispersed in 3D space before finally achieving the required formation stated in Sections 2–3. Specifically, the assigned locations \(\theta_i, \) \(R_i \), and \(\Phi \) for \(P_i \) (\(i = 1, 2, \cdots, 10 \)) are determined as follows: \(R = 8, \Phi = 0, \theta_1 = 0.3, \theta_2 = 0.75, \theta_3 = 1.35, \theta_4 = 2.1, \theta_5 = 2.8, \theta_6 = 3.93, \theta_7 = 4.36, \theta_8 = 4.90, \theta_9 = 5.5, \) and \(\theta_{10} = 6.1 \). The initial locations of agents are chosen as shown in Figure 2. The controller gains \(k_1, k_2, \) and \(k_3 \) in (6)–(8) are chosen as \(k_1 = k_2 = k_3 = 5 \). The sampling time is \(\tau_s = 0.01[\text{s}] \) and the simulation is performed for \(t = 7[\text{s}] \). The path of the target object

![Figure 2: Simulation result of Case 1: Position trajectories of \(P_i \) (\(i = 1, 2, \cdots, 10 \)).](image-url)
is set as follows: \(p_o(t) = [5t, 0, 0]^T \) for \(t \in [0, 2.5] \); \(p_o(t) = [5t, -5(t-2.5), 0]^T \) for \(t \in (2.5, 5] \); \(p_o(t) = [25, -12.5, 0]^T \) for \(t \in (5, 7] \). Note that each agent does not know \(p_o(t) \) [i.e., \(p_o(t) = 0 \) in (14)]. It is supposed that \(\Delta \theta_i(t) := \theta_i(t) - \theta_i(t - t_o) \), \(\Delta r_i(t) := r_i(t) - r_i(t - t_o) \), and \(\Delta \alpha_i(t) := \alpha_i(t) - \alpha_i(t - t_o) \) \((i = 1, 2, \ldots, 10)\) for \(t \in (0, 7] \) are constrained as

\[
\begin{align*}
\Delta \theta_i(t) &= \begin{cases}
0.02, & \text{if } \Delta \theta_i(t) > 0.02 \\
\Delta \theta_i(t), & \text{if } |\Delta \theta_i(t)| \leq 0.02 \\
-0.02, & \text{if } \Delta \theta_i(t) < -0.02
\end{cases} \\
\Delta r_i(t) &= \begin{cases}
0.1, & \text{if } \Delta r_i(t) > 0.1 \\
\Delta r_i(t), & \text{if } |\Delta r_i(t)| \leq 0.1 \\
-0.1, & \text{if } \Delta r_i(t) < -0.1
\end{cases} \\
\Delta \alpha_i(t) &= \begin{cases}
0.01, & \text{if } \Delta \alpha_i(t) > 0.01 \\
\Delta \alpha_i(t), & \text{if } |\Delta \alpha_i(t)| \leq 0.01 \\
-0.01, & \text{if } \Delta \alpha_i(t) < -0.01
\end{cases}
\end{align*}
\]

The simulation results are shown in Figures 2 and 3. First, Figure 2 illustrates the resulting position trajectories of a group of ten agents during the simulation; the agents assemble into the assigned configuration and track the freely moving target object simultaneously. The time plots of \(\Delta \theta_i(t) \) and \(\Delta r_i(t) \) are shown in Figures 3(a) and 3(b), which verify that constraints (17)–(18) are satisfied. Also, \(\Delta \theta_i(t) \) satisfies (19) and its time plot is similar to Figure 3(b). The changes of \(e_i := \Delta \theta_i \) \((i = 1, 2, \ldots, 10)\) with respect to time are plotted in Figure 3(c), where all \(e_i \) values finally converge to zero. The results show that all agents converge to the assigned formation around the target object and maintain their coordinates. The above simulation results clearly demonstrate that control goals (A1)–(A3) mentioned in Section 3 are achieved by the developed simple distributed control laws, (6), (7), and (8), subject to constraints (17), (18), and (19).

Figure 3: Simulation results of Case 1: Time plots of \(\Delta \theta_i(t) \), \(\Delta r_i(t) \), and \(e_i(t) \) \((i = 1, 2, \ldots, 10)\).
In Section 3, we proposed a method to lessen the possibility of a collision between agents. Here we will demonstrate its effectiveness. The initial locations of agents are identical to those used in Section 4.2. Their assigned final positions are given in Figure 7. The controller gain k_1 in (6) is set as $k_1 = 15$. Other design parameters and the target’s path are set identically to those of Section 4.2. Constraints such as (17)–(19) are not considered. Note that ten agents are initially dispersed in a counterclockwise star formation (9, 6, 7), i.e., $\theta_i(0) > \theta_{i+1}(0)$ holds. If we perform the simulation based on (6)–(8) under the above setting, a counterclockwise star formation is not preserved. This means that a case such as $\theta_i(t) > \theta_{i+1}(t)$ happens at some time instant. Note that the above situation could lead to a collision between agents.

In order to avoid a collision, we introduce the technique given in (16). The assigned angular locations are set as $\bar{\theta}_i := \hat{\theta}_i + 2\pi (i = 1, 2, \cdots, 10)$, where the values of $\bar{\theta}_i$ are given in Figure 7. Then, $\Psi_i := \begin{bmatrix}
\begin{array}{c}
0 \\
\cdot \cdot \cdot \\
0
\end{array}
\end{bmatrix}
$.

![Figure 7: Simulation result of Case 3: Position trajectories of $P_i (i = 1, 2, \cdots, 10)$.](image)
control objectives even when constraints on the con-
sistent measurement errors and (ii) it can achieve the
consensus: (i) it is robust against any finite number of tran-
sional methods. From these viewpoints, the proposed
method is easily implemented. Furthermore, it ap-
pears to be a practical method for the following rea-
information requirements as compared with conven-
havior. This means that this scheme can reduce the
be adopted to generate the desired global group be-
tion mechanism, only local sensor systems need to
of the use a global information and/or communica-
mation,
cides its behavior using only locally available infor-
igner while tracking a target object moving in 3D
as to converge to the formation assigned by the de-
by particle swarms. In this scheme, multiple agents
coordination strategy for a target-enclosing operation
In this paper, we have proposed a simple distributed
5 Conclusion

Figure 8: Time plots of $\theta_i(t)$ [rad] ($i = 1, 2, \cdots, 10$).

$\theta_i/\bar{\theta}_{i+1}$ ($i = 1, 2, \cdots, 9$) and $\Psi_{10} := \theta_{10}/(\bar{\theta}_1 + 2\pi)$
are used in control law (6) with (9). The simulation re-
results are illustrated in Figures 7 and 8. They show that
all agent circulate in a counterclockwise direction and
then converge to the assigned locations. Further, Fig-
ure 8 demonstrates that a counterclockwise star for-
mation is preserved and no collisions occur between
agents. From the above results, we can see that the
proposed simple collision avoidance technique (16) in
Section 3 is a feasible one in our coordination scheme.

Acknowledgements: This research was supported by
Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (No.
2012-012295).

References:

[1] A. Sinha and D. Ghose, Generalization of the
cyclic pursuit problem, Proceedings of Ameri-

Francis, Formations of vehicles in cyclic pur-
suit, IEEE Transactions on Automatic Control,

Pursuit formations of unicycles, Automatica, 42,
2006, pp. 3–12.

decentralized capturing behavior by multiple
robots, IEEE Workshop on Distributed Intelli-
gent Systems: Collective Intelligence and its ap-

Group coordination and cooperative control of
steered particles in the plane, Group Coordina-
tion and Cooperative Control, Springer-Verlag:
Lecture Notes in Control and Information Sci-

target capturing based on a cyclic pursuit strat-
egy, The 35th SICE Symposium on Control The-

target-capturing task based on a cyclic pursuit