Modified Critical Directions for Inequality Control Constraints

JAVIER F ROSENBLUETH
National Autonomous University of Mexico
Applied Mathematics and Systems Research Institute
Apartado Postal 20-126, Mexico DF 01000
MEXICO
jfrl@unam.mx

Abstract: For optimal control problems involving equality and inequality constraints in the control functions, some fundamental questions related to second order necessary conditions are posed. In particular, for a wide range of problems, we provide a direct derivation of such conditions in terms of a certain quadratic function, under some fundamental questions related to second order necessary conditions are posed. In particular, for a wide range of

Key–Words: Optimal control, second order conditions, equality and/or inequality constraints, regularity

1 Introduction
This paper deals with some fundamental questions related to the derivation of second order necessary conditions for certain classes of optimal control problems involving equality and inequality constraints in the control functions.

In particular, we shall be concerned with different convex sets of differentially admissible variations defining the critical directions of the extremal under consideration, as well as the assumptions imposed on the optimal control which may imply, as a necessary condition for optimality, the nonnegativity of a quadratic form in those sets.

The problem that concerns us can be stated as follows. Suppose we are given an interval \(I = [t_0, t_1] \) in \(\mathbb{R} \), two points \(\xi_0, \xi_1 \) in \(\mathbb{R}^n \), and functions \(L \) and \(f \) mapping \(T \times \mathbb{R}^n \times \mathbb{R}^m \) to \(\mathbb{R} \) and \(\mathbb{R}^n \) respectively, and \(\varphi = (\varphi_1, \ldots, \varphi_q) \) mapping \(\mathbb{R}^m \) to \(\mathbb{R}^q \) (\(q \leq m \)).

Consider the problem, which we label (P), of minimizing the functional

\[
I(x, u) := \int_{t_0}^{t_1} L(t, x(t), u(t)) \, dt
\]

over all couples \((x, u)\) with \(x: T \to \mathbb{R}^n \) piecewise \(C^1 \) and \(u: T \to \mathbb{R}^m \) piecewise continuous, satisfying

\[
\begin{align*}
\dot{x}(t) &= f(t, x(t), u(t)) \hspace{1cm} (t \in T); \\
x(t_0) &= \xi_0, \hspace{1cm} x(t_1) = \xi_1; \\
\varphi_\alpha(u(t)) \leq 0 & \text{ and } \varphi_\beta(u(t)) = 0 \\
(\alpha \in R, \beta \in Q, t \in T),
\end{align*}
\]

where \(R = \{1, \ldots, r\}, \quad Q = \{r + 1, \ldots, q\}. \)

We have chosen this fixed-endpoint control problem of Lagrange for simplicity of exposition, and to keep notational complexity to a minimum, but no difficulties arise in extending the theory to follow Bolza problems with possible variable endpoints (see, for example, [12, 13] for details).

We shall find convenient to use the following notation. Denote by \(X \) the space of piecewise \(C^1 \) functions mapping \(T \) to \(\mathbb{R}^n \), by \(U_k \) the space of piecewise continuous functions mapping \(T \) to \(\mathbb{R}^k \) \((k \in \mathbb{N})\), and set \(Z := X \times U_k \).

Elements of \(Z \) will be called \textit{processes} and a process \((x, u)\) is \textit{admissible} if it satisfies the constraints. An admissible process \((x, u)\) is a \textit{solution} to the problem (P) if \(I(x, u) \leq I(y, v) \) for any admissible process \((y, v)\).

We assume that \(L, f \) and \(\varphi \) are of class \(C^2 \) and the \(q \times (m + r) \)-dimensional matrix

\[
\begin{pmatrix}
\frac{\partial \varphi_i}{\partial u^k} & \delta_{\alpha\beta} \varphi_\alpha \\
\end{pmatrix}
\]

\((i = 1, \ldots, q; \alpha = 1, \ldots, r; \ k = 1, \ldots, m)\) has rank \(q \) in \(U \) (here \(\delta_{\alpha\alpha} = 1, \delta_{\alpha\beta} = 0 \ (\alpha \neq \beta) \)), where

\[
U := \{u \in \mathbb{R}^m \mid \varphi_\alpha(u) \leq 0 \ (\alpha \in R), \varphi_\beta(u) = 0 \ (\beta \in Q)\}.
\]

This condition is equivalent to the condition that, at each point \(u \) in \(U \), the matrix

\[
\begin{pmatrix}
\frac{\partial \varphi_i}{\partial u^k} \\
\end{pmatrix}
\]

\((i = i_1, \ldots, i_p; k = 1, \ldots, m)\)
has rank p, where i_1, \ldots, i_p are the indices $i \in R \cup Q$ such that $\varphi_i(u) = 0$ (see [9]).

The importance of deriving second order necessary conditions in optimal control, as well as questions related to existence of optimal solutions, not only from a theoretical point of view but also due to a wide range of applications, is fully explained in [1–9, 11, 15–19, 22–24] and references therein.

In particular, [1] considers an electromechanical system including a controlled voltage converter, an electrical drive and a mechanism as a two-mass design scheme. The system studied in [1] provides a reliable description of the position control processes for both azimuthal and elevation axes of a ground telescope rotary support.

To give another illustrative example, we refer to [16] which includes a full discussion on how, by solving numerically a certain Riccati equation related to a problem with constraints of the type we consider in this paper, one can find a solution to the classical problem of a planar Earth-Mars orbit transfer with minimal transfer time.

Two fundamental aspects of the theory of second order necessary conditions for this kind of problems are, firstly, to specify the set of critical directions where the second variations can be assured to be nonnegative and, secondly, to find the assumptions required so that the above condition holds.

These aspects are equally relevant for optimization problems in finite dimensional spaces (see [10]). Some examples illustrating the difficulties encountered when dealing with those two questions can be found in [20, 21]. New results related to these questions, and applicable to a wide range of optimal control problems, are presented in this paper.

This paper is organized as follows. In Section 2 we introduce some notation and exhibit three cones of admissible variations together with the definitions of regularity we shall deal with. Section 3 poses a basic question on second order necessary conditions which relates some regularity assumptions with a certain set of admissible directions. An answer to that question for a particular case is the content of Section 4. In Section 5 we provide a direct derivation of second order necessary conditions under strong normality assumptions which enlarges the classical set of admissible variations where the corresponding quadratic form is nonnegative. Finally, in Section 6, we provide two numerical examples illustrating some of the ideas treated in the paper.

2 Notation and regularity

For all $\mu \in R^q$ define the following subsets of indices of R:

$$\Gamma_0(\mu) := \{ \alpha \in R \mid \mu_\alpha = 0 \},$$

$$\Gamma_1(\mu) := \{ \alpha \in R \mid \mu_\alpha > 0 \}$$

and, for all $u \in R^m$, consider the set of active indices in u given by

$$I_0(u) := \{ \alpha \in R \mid \varphi_\alpha(u) = 0 \}.$$

For any $u \in R^m$ and $\mu \in R^q$ define the sets $\tau_0(u)$, $\tau_1(u, \mu)$ and $\tau_2(u)$ as follows:

$$\tau_0(u) := \{ h \in R^m \mid \varphi'_i(u)h = 0 (i \in I_0(u) \cup Q) \}.$$

$$\tau_1(u, \mu) := \{ h \in R^m \mid \varphi'_i(u)h \leq 0 \ (i \in I_0(u) \cap \Gamma_0(\mu)),$$

$$\varphi'_j(u)h = 0 \ (j \in \Gamma_1(\mu) \cup Q) \}.$$

$$\tau_2(u) := \{ h \in R^m \mid \varphi'_i(u)h \leq 0 \ (i \in I_0(u)),$$

$$\varphi'_j(u)h = 0 \ (j \in Q) \}.$$

Based on these sets, we define regularity as follows. Let (x, u) be an admissible process and let $\mu \in U_q$ with

$$\mu_\alpha(t) \geq 0, \ \mu_\alpha(t)\varphi_\alpha(u(t)) = 0 (\alpha \in R, \ t \in T).$$

For $t \in T$ define

$$A(t) := f_x(t, x(t), u(t)),$$

$$B(t) := f_u(t, x(t), u(t)),$$

and denote by * the transpose. We shall say that

a. (x, u) is τ_0-regular (or strongly normal) if $z \equiv 0$ is the only solution to the system

$$\dot{z}(t) = -A^*(t)z(t),$$

$$z^*(t)B(t)h = 0 \text{ for all } h \in \tau_0(u(t)) \ (t \in T).$$

b. (x, u, μ) is τ_1-regular if $z \equiv 0$ is the only solution to the system

$$\dot{z}(t) = -A^*(t)z(t),$$

$$z^*(t)B(t)h \leq 0 \text{ for all } h \in \tau_1(u(t), \mu(t)) \ (t \in T).$$

The (x, u, μ) is τ_2-regular (or weakly normal) if $z \equiv 0$ is the only solution to the system

$$\dot{z}(t) = -A^*(t)z(t),$$

$$z^*(t)B(t)h \leq 0 \text{ for all } h \in \tau_2(u(t)) \ (t \in T).$$
For all \((t, x, u, p, \mu)\) in \(T \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^q \) let
\[
H(t, x, u, p, \mu) := \langle p, f(t, x, u) \rangle \\
- L(t, x, u) - \langle \mu, \varphi(u) \rangle,
\]
and, for all \((x, u, p, \mu) \in Z \times X \times \mathcal{U}_q \) and \((y, v) \in Z\), define
\[
J((x, u, p, \mu); (y, v)) := \int_0^{t_1} 2\Omega(t, y(t), v(t)) dt
\]
where, for all \((t, y, v) \in T \times \mathbb{R}^n \times \mathbb{R}^m\),
\[
2\Omega(t, y, v) := -[(y, H_{xx}(t)y) + 2\langle y, H_{xu}(t)v \rangle \\
+ \langle v, H_{uu}(t)v \rangle]
\]
and \(H(t)\) denotes \(H(t, x(t), u(t), p(t), \mu(t))\).

3 The main question

The next result (second order necessary conditions) is well-known in the literature. In particular, in [7], it was derived by reducing the original problem into a problem involving only equality constraints in the control.

Given an admissible process \((x_0, u_0)\) we shall denote by \([t]\) the point \((t, x_0(t), u_0(t))\).

Theorem 3.1 Suppose \((x_0, u_0)\) is a solution to (P) and there exists \((p, \mu) \in X \times \mathcal{U}_q\) such that

\(\alpha.\) \(\mu_\alpha(t) \geq 0\) and \(\mu_\alpha(t)\varphi_\alpha(u_0(t)) = 0\) for all \(\alpha \in R\) and \(t \in T;\)

\(\beta.\) \(\dot{p}(t) = -f^*_u[t]p(t) + L^*_x[t];\)

\(\gamma.\) \(0 = f^*_u[t]p(t) - L^*_x[t] - \varphi^{\prime \prime}(u_0(t))\mu(t);\)

\(\delta.\) \(H_\alpha(t, x_0(t), u_0(t), p(t), \mu(t)) = 0;\)

\(\varepsilon.\) \(J((x_0, u_0, p, \mu); (y, v)) \geq 0\)

for all \((y, v) \in Z\) satisfying

i. \(g(t) = f_x[t]y(t) + f_u[t]v(t) (t \in T);\)

ii. \(y(t_0) = y(t_1) = 0;\)

iii. \(v(t) \in \tau_0(u_0(t)) (t \in T).\)

It is important to mention that the same set of “admissible variations” defined by relations (i)-(iii) yields second order necessary conditions in other references (see, for example, [2–4, 11, 18]). Those conditions are obtained in different ways and, in some cases, under different assumptions, but they are all expressed in terms of the set of variations that include \(\tau_0(u_0(t))\) explicitly.

On the other hand, the same device used in [7], which consists in defining the functions
\[
\psi_\alpha(u, w) := \varphi_\alpha(u) + (w^\alpha)^2 \ (\alpha \in R),
\]
\[
\psi_\beta(u, w) = \varphi_\beta(u) \ (\beta \in Q),
\]
appears in [23] together with an application of the results obtained in [22].

The following example shows that the conclusion of Theorem 3.1 may not hold if the solution to the problem is weakly (and not strongly) normal.

Example 3.2 Let \(a, b > 0\) and consider the problem of minimizing
\[
I(x, u) = \int_0^1 \{u_2(t) + au_3(t)\} dt
\]
subject to \((x, u) \in Z;\)
\[
\begin{align*}
\dot{x}(t) &= u_1^2(t) + u_2(t) - bu_3(t) \ (t \in [0, 1]); \\
x(0) &= x(1) = 0; \\
u_2(t) &\geq 0, \ u_3(t) \geq 0 \ (t \in [0, 1]).
\end{align*}
\]

In this case \(T = [0, 1], n = 1, m = 3, r = q = 2,\)
\(\xi_0 = \xi_1 = 0\) and, for all \(t \in T, x \in R, a = (u_1, u_2, u_3),\)
\(L(t, x, u) = u_2 + au_3, \ f(t, x, u) = u_1^2 + u_2 - bu_3,\)
\(\varphi_1(u) = -u_2, \ \varphi_2(u) = -u_3.\)
We have
\[
H(t, x, u, p, \mu) = \ p(u_1^2 + u_2 - bu_3) - u_2 - au_3 + \mu_1u_2 + \mu_2u_3
\]
and so
\[
H_{uu}(t, x, u, p, \mu) = \begin{pmatrix} 2p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

It follows that, for all \((x, u, p, \mu) \in Z \times X \times \mathcal{U}_3\) and \((y, v) \in Z\), the second variation is given by
\[
J((x, u, p, \mu); (y, v)) = \ -\int_0^1 2p(t)v_1^2(t) dt.
\]

It is clear from the way the problem is posed that
\[
(x_0, u_0) \equiv (0, 0).\]
solves it. Now, define

$$\mu = (\mu_1, \mu_2) \equiv (0, a + b), \quad p \equiv 1,$$

and note that \((x_0, u_0, p, \mu)\) satisfies conditions (a)–(c) of Theorem 3.1.

In order to check the regularity assumptions, note first that

$$\varphi_1(u) = (0, -1, 0),$$

$$\varphi_2(u) = (0, 0, -1).$$

Therefore

$$\tau_0(u(t)) = \{ h \mid -h_2 = 0, -h_3 = 0 \},$$

$$\tau_1(u(t), \mu(t)) = \{ h \mid -h_2 \leq 0, -h_3 = 0 \},$$

$$\tau_2(u(t)) = \{ h \mid -h_2 \leq 0, -h_3 \leq 0 \}.$$

Since

$$f_x(t, x_0(t), u_0(t)) = 0,$$

$$f_u(t, x_0(t), u_0(t)) = (0, 1, -b),$$

the system

$$\dot{z}(t) = -A^*(t)z(t) = 0,$$

$$z^*(t)B(t)h = z(t)(h_2 - bh_3) = 0$$

for all \((h_1, h_2, h_3) \in \tau_0(u(t)) (t \in T)\) has nontrivial solutions and so \((x_0, u_0)\) is not \(\tau_0\)-regular.

On the other hand, \(z \equiv 0\) is the only solution to the system

$$\dot{z}(t) = 0, \quad z(t)(h_2 - bh_3) \leq 0$$

for all \((h_1, h_2, h_3) \in \tau_2(u_0(t)) (t \in T)\) since both \((0, 1, 0)\) and \((0, 0, 1)\) belong to \(\tau_2(u_0(t))\) implying that \(z(t) \leq 0\) and \(-z(t) \leq 0 (t \in T)\), so that \((x_0, u_0)\) is \(\tau_2\)-regular.

Finally, the system

$$\dot{z}(t) = 0, \quad z(t)(h_2 - bh_3) \leq 0$$

for all \((h_1, h_2, h_3) \in \tau_2(u_0(t), \mu(t)) (t \in T)\) has nontrivial solutions implying that \((x_0, u_0, \mu)\) is not \(\tau_1\)-regular.

Let \(v = (v_1, v_2, v_3) \equiv (1, 0, 0)\) and \(y \equiv 0\). Then \((y, v)\) solves the system

$$\dot{y}(t) = f_x(t)[y(t) + f_u(t)v(t)] = v_2(t) - bv_3(t) \quad (t \in T),$$

$$y(0) = y(1) = 0, \quad v(t) \in \tau_0(u(t))$$

and

$$J((x_0, u_0, p, \mu); (y, v)) = -\int_0^1 2p(t)v_3^2(t)dt$$

$$\leq -2 < 0.$$
I^1, I^2 are two disjoint finite index sets, $f: A \to \mathbb{R}^n$, $L: A \to \mathbb{R}, \ t: \mathbb{R}^n \to \mathbb{R}, \ \varphi: \mathbb{R}^n \to \mathbb{R}^k, \ g_i: \mathbb{R}^m \to \mathbb{R}$ ($i \in I^1 \cup I^2$).

For this problem, second order necessary conditions are obtained in [13] as well as a generalized notion of conjugate points.

The main result of the paper (Theorem 4.6) states that, assuming

- the control set U is convex,
- the couple (x_0, u_0) is a regular extremal which actually solves the problem,
- the function $I_a(u_0(\cdot))$ is piecewise constant, then the underlying open time interval contains no generalized conjugate points to t_1. This result is an immediate consequence of a previous result (Theorem 4.3), stated in terms of the second variation which shows that, in the regular case, the existence of a generalized conjugate point implies the existence of an admissible variation for which the second variation is negative. The term “regular” in [13], when the problem posed above is inserted in the context of this paper, corresponds precisely to τ_1-regularity as defined in Section 2.

It is important to mention that, in the theory to follow in the next two sections, no convexity assumptions are imposed.

4 A particular case

Let us begin by stating a definition and some auxiliary results taken up from [9].

Definition 4.1 A set $A \subseteq \mathbb{R} \times \mathbb{R}^q$ will be called admissible if, given $(s, v) \in A$, there exist $\epsilon > 0$ and $w: [s - \epsilon, s + \epsilon] \to \mathbb{R}^q$ continuous whose elements $(t, u(t))$ are in A and $u(s) = v$. Its elements are called admissible elements.

Suppose we are given an interval $T = [t_0, t_1]$, an admissible set A, and $F: A \to \mathbb{R}$ continuous. Let

$C := \{u: T \to \mathbb{R}^q \mid u \text{ is piecewise continuous and} (t, u(t)) \in A \ (t \in T)\}$

and consider the problem of minimizing J on C where

$J(u) := \int_{t_0}^{t_1} F(t, u(t)) dt$.

Lemma 4.2 Let $u_0 \in C$. Then u_0 minimizes J on C if and only if $F(t, u) \geq F(t, u_0(t)) \ (t \in T)$ whenever $(t, u) \in A$. Moreover, these relations imply that $F(\cdot, u_0(\cdot))$ is continuous on T.

Lemma 4.3 Let D be a region of points in $\mathbb{R} \times \mathbb{R}^q$, $\varphi = (\varphi_1, \ldots, \varphi_m): D \to \mathbb{R}^m$ of class C^1, and let

$A = \{ (t, u) \in D \mid \varphi_\alpha(t, u) \leq 0 \ (\alpha \in A), \ \varphi_\beta(t, u) = 0 \ (\beta \in B) \}$

where $A = \{1, \ldots, p\}$, $B = \{p+1, \ldots, m\}$. Assume that the $m \times (m + q)$-dimensional matrix

$$
\left(\frac{\partial \varphi_\alpha}{\partial u^k}\delta_{\alpha\beta}\varphi_\beta\right) =
\begin{pmatrix}
\frac{\partial \varphi_1}{\partial u^1} & \cdots & \frac{\partial \varphi_1}{\partial u^q} & \varphi_1 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
\frac{\partial \varphi_m}{\partial u^1} & \cdots & \frac{\partial \varphi_m}{\partial u^q} & 0 & \varphi_m
\end{pmatrix}
$$

has rank m on A. Then A is admissible.

Lemma 4.4 Let D be a region of points in $\mathbb{R} \times \mathbb{R}^q$, $\varphi = (\varphi_1, \ldots, \varphi_m): D \to \mathbb{R}^m$ and $f: D \to \mathbb{R}$ continuous functions having continuous derivatives with respect to u on D, and let

$A = \{ (t, u) \in D \mid \varphi_\alpha(t, u) \leq 0 \ (\alpha \in A), \ \varphi_\beta(t, u) = 0 \ (\beta \in B) \}$

where $A = \{1, \ldots, p\}$, $B = \{p+1, \ldots, m\}$. Assume that the $m \times (q + p)$-dimensional matrix

$$
\left(\frac{\partial \varphi_\alpha}{\partial u^k}\delta_{\alpha\beta}\varphi_\beta\right)
$$

$(\alpha = 1, \ldots, m; \beta = 1, \ldots, p; k = 1, \ldots, q)$ has rank m on D. Consider the set

$C := \{u: T \to \mathbb{R}^q \mid u \text{ is piecewise continuous and} (t, u(t)) \in A \ (t \in T)\}.

Let $u_0 \in C$ and suppose that $f(t, u) \geq f(t, u_0(t)) \ (t \in T)$ whenever $(t, u) \in A$. Then there exists a unique $\mu: T \to \mathbb{R}^m$ such that, if

$F(t, u, \mu) = F(t, u) + \langle \mu, \varphi(t, u) \rangle$,

then

$F_u(t, u_0(t), \mu(t)) = 0 \ (t \in T)$.

Moreover, $\mu_\alpha(t) \geq 0 \ (\alpha \in A, t \in T)$ and $\mu_\alpha(t) = 0$ whenever $\varphi_\alpha(t, u_0(t)) < 0$. The function μ is piecewise continuous on T and continuous at each point of continuity of u_0.

Let us now return to our original optimal control problem (P). Throughout this section we shall consider the case when $\tilde{L}(t, x, u) = L(t, u)$, i.e., L does not depend on x.
For our problem, define
\[C = \{ u \in U_m \mid (t, u(t)) \in \mathcal{A} (t \in T) \}, \]
where
\[\mathcal{A} = \{ (t, u) \in T \times \mathbb{R}^m \mid \varphi_\alpha(u) \leq 0 (\alpha \in R), \]
\[\varphi_\beta(u) = 0 (\beta \in Q) \}. \]

Lemma 4.5 Suppose \(u_0 \) minimizes \(I \) over \(C \). Then there exists a unique \(\nu \in U_q \) such that, if
\[F(t, u, \nu) = L(t, u) + \langle \nu, \varphi(u) \rangle \]
then
\[F_u(t, u_0(t), \nu(t)) = 0. \]
Moreover, \(\nu_\alpha(t) \geq 0 \) with
\[\nu_\alpha(t)\varphi_\alpha(u_0(t)) = 0 \] \((\alpha \in \mathbb{R}, \ t \in T) \),
and
\[\langle h, F_u(t, u_0(t), \nu(t))h \rangle \geq 0 \]
for all \(h \in \tau_1(u_0(t), \nu(t)) \).

Proof: Since \(u_0 \) minimizes
\[I(u) = \int_0^{t_1} L(t, u(t)) dt \]
over \(C \) and, by Lemma 4.3, \(\mathcal{A} \) is admissible, it follows by Lemma 4.2 that
\[L(t, u) \geq L(t, u_0(t)) \] \((t \in T) \)
whenever \((t, u) \in \mathcal{A} \). Therefore, by Lemma 4.4, there exists a unique \(\nu \in U_q \) satisfying the first assertions of the lemma. The last assertion follows since \((t, u_0(t)) \) is normal with respect to \(\mathcal{A} \) and so normal with respect to the set of modified tangential constraints (a full account of these ideas can be seen in [9]).

We are now in a position to prove one of the main results of the paper. It states that Theorem 3.3 does indeed hold in the event that \(L \) does not depend on \(x \) and the optimal control also minimizes \(I \) over \(C \).

Note that this last assumption is needed in the proof since the optimality of the process \((x_0, u_0) \) does not imply that of the control \(u_0 \) over \(C \).

Example 4.6 A simple example of this fact is given by the problem of minimizing
\[I(u) = \int_0^1 u(t) dt \]
subject to
\[\dot{x}(t) = u^2(t), \ x(0) = x(1) = 0, \ u(t) \leq 0. \]
Then \((x_0, u_0) = (0, 0) \) solves \((P) \), being the only admissible process, but \(u_0 = 0 \) does not minimize \(I \) over the set
\[C = \{ u \in U_1 \mid u(t) \leq 0 \}. \]

Proposition 4.7 Suppose \((x_0, u_0) \) solves \((P) \) and there exists \((p, \mu) \in X \times U_q \) satisfying
\begin{enumerate}
\item \(\mu_\alpha(t) \geq 0 \) and \(\mu_\alpha(t)\varphi_\alpha(u_0(t)) = 0 \) for all \(\alpha \in \mathbb{R}, \ t \in T \);
\item \(\dot{p}(t) = -A^*(t)p(t) (t \in T); \)
\item \(p^*(t)B(t) = L_u(t, u_0(t)) + \mu^*(t)\varphi'(u_0(t)) \) \((t \in T) \).
\end{enumerate}

Suppose also that \(u_0 \) minimizes \(I \) over \(C \). If \(p \equiv 0 \) then
\[J((x_0, u_0, p, \mu); (y, v)) \geq 0 \]
for all \((y, v) \in Z \) with \(v(t) \in \tau_1(u_0(t), \mu(t)) \) \((t \in T) \). In particular, if \((x_0, u_0, \mu) \) is \(\tau_1 \)-regular, then \(p \equiv 0 \).

Proof: Let
\[F(t, u, \nu) = L(t, u) + \langle \nu, \varphi(u) \rangle. \]
By Lemma 4.5, there exists a unique \(\nu \in U_q \) such that
\[F_u(t, u_0(t), \nu(t)) = L_u(t, u_0(t)) + \nu^*(t)\varphi'(u_0(t)) \]
\[= 0 \] \((t \in T). \)
If \(p \equiv 0 \) then, by (c), also
\[F_u(t, u_0(t), \mu(t)) = 0. \]
By uniqueness, \(\mu \equiv \nu \). By Lemma 4.5 we also have
\[\langle h, F_u(t, u_0(t), \mu(t))h \rangle \geq 0 \]
for all \(h \in \tau_1(u_0(t), \mu(t)) \). Note that
\[H(t, x, u, p, \mu) = -F(t, u, \mu) \]
and so
\[2\Omega(t, y, v) = \langle v, F_u(t, u_0(t), \mu(t))v \rangle. \]
Hence
\[J((x_0, u_0, p, \mu); (y, v)) \geq 0 \]
for all \((y, v) \in Z \) with \(v(t) \in \tau_1(u_0(t), \mu(t)) \) \((t \in T) \). Suppose now that \((x_0, u_0, \mu) \) is \(\tau_1 \)-regular. By (c) and (1), we have
\[p^*(t)B(t) = \sum_{i=1}^{q} (\mu_\alpha(t) - \nu_\alpha(t))\varphi'_\alpha(u_0(t)) \]
and so, for all \(h \in \tau_1(u_0(t), \mu(t)) \),
\[
p^*(t)B(t)h = \sum_{\alpha \in N(t)} -\nu(\alpha(t))\varphi_\alpha(u_0(t))h
\]
where
\[
N(t) = \{ \alpha \in I_a(u_0(t)) \mid \mu_\alpha(t) = 0 \}.
\]
Thus \(p^*(t)B(t)h \geq 0 \) for all \(h \in \tau_1(u_0(t), \mu(t)) \). This implies that \(-p\) is a solution to the system
\[
\dot{z}(t) = -A^*(z(t)) - z^*(t)B(t)h \leq 0
\]
for all \(h \in \tau_1(u(t), \mu(t)) \) (\(t \in T \)). Since \((x_0, u_0, \mu)\) is \(\tau_1 \)-regular, \(p \equiv 0 \).

5 A direct approach

In the previous section we proved that Theorem 3.3 does indeed hold if some assumptions are imposed on the integrand \(L \) and the optimal control.

In this section we shall derive a simpler version of Theorem 3.3 by proving that, for certain cases, it does hold under a strong normality assumption instead of that of \(\tau_1 \)-regularity. In other words, the classical set of admissible variations is enlarged, thus obtaining an improved set of necessary conditions, but the assumptions on the control remain those of \(\tau_0 \)-regularity.

To do so, let us first introduce a set whose elements are embedded into a one-parameter family of admissible processes and for which the derivation of second order conditions is straightforward.

Definition 5.1 For all \((x_0, u_0)\) admissible and \(\mu \in U_\delta\) denote by \(\mathcal{W}(x_0, u_0, \mu)\) the set of all \((y, v)\) in \(Z\) for which there exist \(\delta > 0\) and a one-parameter family
\[
(x(\cdot), u(\cdot), \epsilon) \quad (|\epsilon| < \delta)
\]
of processes such that
i. \((x(t, 0), u(t, 0)) = (x_0(t), u_0(t)) \) (\(t \in T \));
ii. \((x(\epsilon, 0), u(\epsilon, 0)) = (y(t), v(t)) \) (\(t \in T \));
iii. \((x(\cdot, \epsilon), u(\cdot, \epsilon))\) is admissible \((0 \leq \epsilon < \delta)\);
iv. \(\mu_\alpha(t)\varphi_\alpha(u(t, \epsilon)) = 0\) for all \(\alpha \in R, t \in T, 0 \leq \epsilon < \delta\).

Lemma 5.2 Suppose \((x_0, u_0)\) solves \((P)\) and there exists \((p, \mu) \in X \times U_\delta\) such that
a. \(\mu_\alpha(t) \geq 0\) with \(\mu_\alpha(t) = 0\) if \(\varphi_\alpha(u_0(t)) < 0\) for all \(\alpha \in R, t \in T\);
b. \(\dot{p}(t) = -H_x^*(t, x_0(t), u_0(t), p(t), \mu(t))\) and \(H_u(t, x_0(t), u_0(t), p(t), \mu(t)) = 0\).

Then
\[
J((x_0, u_0, p, \mu); (y, v)) \geq 0
\]
for all \((y, v) \in \mathcal{W}(x_0, u_0, \mu)\).

\[\text{Proof:}\text{ Define, for all } (x, u) \in Z,\]
\[
K(x, u) := \langle p(t_1), \xi_1 \rangle - \langle p(t_0), \xi_0 \rangle
\]
\[
+ \int_{t_0}^{t_1} F(t, x(t), u(t))dt
\]
where, for all \((t, x, u) \in T \times \mathbb{R}^n \times \mathbb{R}^m,\)
\[
F(t, x, u) := L(t, x, u) - \langle p(t), f(t, x, u) \rangle
\]
\[
+ \langle \mu(t), \varphi(u) \rangle - \langle \dot{p}(t), x \rangle.
\]
Observe that
\[
F(t, x, u) = -H(t, x, u, p(t), \mu(t)) - \langle \dot{p}(t), x \rangle
\]
and, if \((x, u)\) is admissible, then
\[
K(x, u) = I(x, u) + \int_{t_0}^{t_1} \langle \mu(t), \varphi(u(t)) \rangle dt.
\]
Let \((y, v) \in \mathcal{W}(x_0, u_0, \mu)\) and let \(\delta > 0\) and
\[
(x(\cdot, \epsilon), u(\cdot, \epsilon)) \quad (|\epsilon| < \delta)
\]
be as in Definition 5.1. Then
\[
g(\epsilon) := K(x(\cdot, \epsilon), u(\cdot, \epsilon)) \quad (|\epsilon| < \delta)
\]
satisfies
\[
g(\epsilon) = I(x(\cdot, \epsilon), u(\cdot, \epsilon)) \geq I(x_0, u_0)
\]
\[
= K(x_0, u_0) = g(0) \quad (0 \leq \epsilon < \delta).
\]
Note that
\[
F_x[t] = -H_x(t, x_0(t), u_0(t), p(t), \mu(t)) - \dot{p}^*(t) = 0,
\]
\[
F_u[t] = -H_u(t, x_0(t), u_0(t), p(t), \mu(t)) = 0
\]
and therefore \(g'(0) = 0\). Consequently
\[
0 \leq g''(0) \geq K''(0) \geq J((x_0, u_0, p, \mu); (y, v))\]

Definition 5.3 For all \((x_0, u_0)\) admissible and \(\mu \in U_\delta\) denote by \(Y(x_0, u_0, \mu)\) the set of all \((y, v)\) in \(Z\) satisfying
i. \(\dot{y}(t) = f_x[t]y(t) + f_u[t]v(t)\) (\(t \in T \));
ii. \(y(t_0) = y(t_1) = 0\);
iii. \(v(t) \in \tau_1(u_0(t), \mu(t)) \) (\(t \in T \)).
Note 5.4 For all \((x_0, u_0) \in Z_ε(U)\) and \(μ \in U_q\), \(W(x_0, u_0, μ) \subset Y(x_0, u_0, μ)\).

Proof: Let \((y, v) \in W(x_0, u_0, μ)\) and let \(δ > 0\) and \((x(.), u(\cdot), v(\cdot)) \in \mathcal{E}\) \(\forall (t, \epsilon) \in [0, δ]\) be as in Definition 5.1. By 5.1(iii) we have, for all \(0 ≤ \epsilon < δ\),

\[
\dot{x}(t, ϵ) = f(t, x(t, ϵ), u(t, ϵ)) \quad (t \in T),
\]

\[
\chi(t_0, ϵ) = ξ_0, \quad \chi(t_1, ϵ) = ξ_1
\]

Also by 5.1(iii) we have, for all \((t, ε) \in T \times [0, δ]\),

\[
φ_α(u(t, ϵ)) ≤ 0 \quad (α \in R),
\]

\[
φ_β(u(t, ϵ)) = 0 \quad (β \in Q).
\]

Fix \(i \in ℝ \cup Q\) and \(t \in T\), and set \(γ(ε) := φ_i(u(t, ϵ))\) so that

\[
γ'(0) = φ'_i(u(0))(t)(v)(t).
\]

If \(i \in I_a(u(0)(t))\) then \(γ'(0) ≤ 0\) and, if \(μ_i(t) > 0\) or \(i \notin Q\), then \(γ ≡ 0\). Thus 5.3(i) and (ii) hold implying that \((y, v) \in Y(x_0, u_0, μ)\).

Let us now show that, under certain conditions, \(Y(x_0, u_0, μ)\) and \(W(x_0, u_0, μ)\) coincide. We shall invoke the following assumptions related to an admissible process \((x_0, u_0)\) and a process \((y, v) \in Y(x_0, u_0, μ)\).

(A1) There exist \((y_i, v_i) (i = 1, . . . , n)\) satisfying

\[
\dot{y}(t) = f_ε[t]y(t) + f_u[t]v(t) \quad (t \in T)
\]

and such that \(y_i(t_0) = 0\) for all \(i = 1, . . . , n\), \(|y_1(t_1) \cdot \cdot \cdot y_n(t_1)| \neq 0\), and \(φ'_i(u(0)(t)v_i(t)) = 0\) for all \(i \in I_a(u(0)(t)) \cup Q\), \(i = 1, . . . , n\), \(t \in T\).

(A2) \(I_a(u(0)(\cdot))\) is piecewise constant.

(A3) Let \(T_1, . . . , T_s\) denote the subintervals of \(T\) where \(I_a(u(\cdot))\) is constant and \(u_0, v, v_1, . . . , v_n\) are continuous. If there exist \(i \in ℝ \) and \(t \in T_j\) such that \(φ_i(u(0)(t)) < 0\), then \(T_j\) is closed.

Lemma 5.5 Suppose \((x_0, u_0)\) is an admissible process and \(μ \in U_q\) with \(μ_0(t) ≥ 0\) \((α \in R, t \in T)\). If \((y, v) \in Y(x_0, u_0, μ)\) and (A1)–(A3) hold then \((y, v) \in W(x_0, u_0, μ)\).

Proof: For all \(j = 1, . . . , s\) and \(t \in T_j\), let \(p_j\) be the cardinality of \(I_a(u(0)(t)) \cup Q\) and denote by \(φ_j\) the function mapping \(R^n\) to \(R^{p_j}\) given by

\[
φ_j(u) = (φ_{i_1}(u), . . . , φ_{i_{p_j}}(u))
\]

where \(I_a(u(0)(t)) \cup Q = \{i_1, . . . , i_{p_j}\}\). For all \(j = 1, . . . , s\) define

\[
\bar{u}(t, ε, α, λ) := u_0(t) + εv(t) + \sum_{i=1}^{n} α_i v_i(t) + φ_j^*(u_0(t))\lambda
\]

for all \((t, ε, α, λ) \in T_j \times R \times R^α \times R^p\) and let

\[
h_j^2(t, ε, α, λ) := φ_j(\bar{u}(t, ε, α, λ)) - εφ_j^*(u_0(t))v(t).
\]

Note that \(h_j^2(t, 0, 0, 0) = 0\) and

\[
|h_j^2(t, 0, 0, 0)| = |Λ_j(t)| \neq 0 \quad (t \in T_j)
\]

where \(Λ_j(t) = φ_j^*(u_0(t))φ_j^*(u_0(t))\). By the implicit function theorem, there exist \(ν_j > 0\) and functions

\[
σ_j : T_j \times (-ν_j, ν_j) \times (-ν_j, ν_j)^n → R^{p_j}
\]

such that, for all \(t \in T_j\), \(σ_j(t, 0, 0) = 0\), \(σ_j(t, t, \cdot, \cdot)\) is \(C^2\) and

\[
h_j^2(t, ε, α, λ) = \varphi_j(\bar{u}(t, ε, α, σ_j(t, t, ε, α))) - εφ_j^*(u_0(t))v(t) = 0.
\]

Let \(ν := \min\{ν_j\}_{j=1}^s\) and let \(σ(t, ε, α) := σ_j^2(t, ε, α)\) \((t \in T_j, j = 1, . . . , s, |ε| < ν, |α_i| < ν)\). Thus

\[
φ_j^2(\bar{u}(t, ε, α, σ(t, ε, α))) =
\]

\[
eq eφ_j^*(u_0(t))v(t) \quad (t \in T_j, |ε| < ν, |α_i| < ν).
\]

Taking the derivative with respect to \(ε\) and \(α_i\) at \((ε, α) = (0, 0)\) we get

\[
0 = φ_j^*(u_0(t))[v(t) + φ_j^*(u_0(t))σ_ε(t, 0, 0)]
\]

\[
- φ_j^*(u_0(t))v(0) = λ_j(0)σ_ε(t, 0, 0),
\]

\[
0 = φ_j^*(u_0(t))[v_i(t) + φ_j^*(u_0(t))σ_{α_i}(t, 0, 0)]
\]

\[
= λ_j(t)σ_{α_i}(t, 0, 0)
\]

and, therefore, \(σ_ε(t, 0, 0) = σ_{α_i}(t, 0, 0) = 0\) \((t \in T)\).

Define now

\[
w(t, ε, α) := \bar{u}(t, ε, α, σ(t, ε, α))
\]

and observe that, in view of the above relations, we have

\[
w_ε(t, 0, 0) = v(t), \quad w_{α_i}(t, 0, 0) = v_i(t) \quad (t \in T).
\]

By the embedding theorem of differential equations, the equations

\[
\dot{z}(t) = f(t, z(t), w(t, ε, α)) \quad (t \in T), \quad z(t_0) = ξ_0
\]

have unique solutions

\[
z(t, ε, α) \quad (t \in T, |ε| < η, |α_i| < η)
\]

E-ISSN: 2224-2856 Volume 10, 2015

222
with \(0 < \eta < \nu\), such that \(z(t, 0, 0) = x_0(t)\). The function \(z(t, \epsilon, \alpha)\) is continuous and has continuous first and second derivatives with respect to the variables \(\epsilon, \alpha_1, \ldots, \alpha_n\). The functions \(z(t, \epsilon, \alpha)\) and their first and second derivatives with respect to \(\epsilon, \alpha_1, \ldots, \alpha_n\) are piecewise continuous with respect to \(t\). By differentiation with respect to \(\epsilon\) and \(\alpha_i\) at \((\epsilon, \alpha) = (0, 0)\) it is found that

\[
\begin{align*}
\dot{z}_\epsilon(t, 0, 0) &= A(t)z_\epsilon(t, 0, 0) + B(t)v(t), \\
z_\epsilon(t, 0, 0) &= 0, \\
\dot{z}_{\alpha_i}(t, 0, 0) &= A(t)z_{\alpha_i}(t, 0, 0) + B(t)v_i(t), \\
z_{\alpha_i}(t, 0, 0) &= 0
\end{align*}
\]

and therefore

\[
z_\epsilon(t, 0, 0) = y(t), \quad z_{\alpha_i}(t, 0, 0) = y_i(t) \quad (t \in T).
\]

Let \(S := (-\eta, \eta)\) and define \(g: S \times S^n \to \mathbb{R}^n\) by

\[
g(\epsilon, \alpha) := z(t_1, \epsilon, \alpha) - \xi_1.
\]

Note that \(g(0, 0) = 0\) and \(|g_\alpha(0, 0)| = |M| \neq 0\) where

\[
M = (y_1(t_1) \cdots y_n(t_1)).
\]

By the implicit function theorem there exist \(0 < \delta < \eta\) and \(\beta: (-\delta, \delta) \to \mathbb{R}^n\) of class \(C^2\) such that \(\beta(0) = 0\) and \(g(\epsilon, \beta(\epsilon)) = 0\) \((|\epsilon| < \delta)\). We have, taking the derivative with respect to \(\epsilon\) at \(\epsilon = 0\), that

\[
0 = g_\epsilon(0, 0) + g_\alpha(0, 0)\beta'(0)
\]

\[
= y(t_1) + M\beta'(0) = M\beta'(0)
\]

implying that \(\beta'(0) = 0\). By continuity we may choose \(\delta > 0\) so that \(\beta_i(\epsilon) < \eta\) for all \(|\epsilon| < \delta, i = 1, \ldots, n\). The one-parameter family

\[
x(t, \epsilon) := z(t, \epsilon, \beta(\epsilon)),
\]

\[
u(t, \epsilon) := w(t, \epsilon, \beta(\epsilon)) \quad (t \in T, |\epsilon| < \delta)
\]

has the properties of the theorem since

\[
x_\epsilon(t, 0) = z_\epsilon(t, 0, 0)\beta'(0) + y(t) = y(t),
\]

\[
u_\epsilon(t, 0) = w_\epsilon(t, 0, 0)\beta'(0) + v(t) = v(t).
\]

Moreover,

\[
x(t_1, \epsilon) - \xi_1 = z(t_1, \epsilon, \beta(\epsilon)) - \xi_1 = g(\epsilon, \beta(\epsilon)) = 0
\]

so that \(x(\cdot, \epsilon) (|\epsilon| < \delta)\) joins the endpoints of \(x_0\). Finally, for all \(|\epsilon| < \delta\) and \(t \in T_j\), we have

\[
\varphi^j(u(t, \epsilon)) = \varphi^j(\bar{u}(t, \epsilon, \beta(\epsilon), \sigma(t, \epsilon, \beta(\epsilon))))
\]

so that, for all \(i \in I_\alpha(u_0(t_0)) \cup Q = \{i_1, \ldots, i_p\}\),

\[
\varphi_i(u(t, \epsilon)) = \varphi^j_i(u_0(t_0))v(t) \quad (|\epsilon| < \delta, \ t \in T).
\]

Therefore, if \(i \in I_\alpha(u_0(t))\) and \(\mu_i(t) = 0\) then \(\varphi_i(u(t, \epsilon)) \leq 0 \) \((0 \leq \epsilon < \delta)\). If \(\mu_i(t) > 0\) or \(i \in Q\) then \(\varphi_i(u(t, \epsilon)) = 0 \) \((|\epsilon| < \delta)\).

For the case \(i \in R\) with \(\mu_i(t) = 0\) and \(i \notin I_\alpha(u_0(t))\), that is, \(\varphi_i(u_0(t_0)) < 0\), note that if \(t \in T_j\) then \(\varphi_i(u_0(s)) < 0\) for all \(s \in T_j\). By (A3) there exists \(\delta_j > 0\) such that

\[
\varphi_i(u(s, \epsilon)) < 0 \quad (|\epsilon| < \delta, s \in T_j).
\]

Diminishing \(\delta > 0\) if necessary, so that \(\delta < \min \delta_j\), it follows that \((x(\cdot, \epsilon), u(\cdot, \epsilon)) \in Z_\alpha(U)\) \((0 \leq \epsilon < \delta)\) and \(\mu_i(t)\varphi_i(u(t, \epsilon)) = 0 \) \((i \in R, t \in T, 0 \leq \epsilon < \delta)\). This shows that \((y, v) \in W(x_0, u_0, \mu)\).

As we show next, assumption (A1) is equivalent to that of strong normality.

Lemma 5.6 Let \((x_0, u_0) \in Z_\alpha(U)\). Then the following are equivalent:

a. \((x_0, u_0)\) is strongly normal.

b. \((x_0, u_0)\) satisfies assumption (A1).

Proof:

(a) \(\Rightarrow\) (b): Let \(Z(t) \in \mathbb{R}^{n \times n}\) satisfy

\[
\dot{Z}(t) = -Z(t)A(t) \quad (t \in T), \quad Z(t_1) = I
\]

and denote by \(z_1, \ldots, z_n\) the row vectors of \(Z\), so that

\[
\dot{z}_i(t) = -A^*z_i(t) \quad (t \in T, i = 1, \ldots, n).
\]

For each \(t \in T\) let \(\hat{\varphi} = (\varphi_{i_1}, \ldots, \varphi_{i_p})\) where

\[
I_\alpha(u_0(t_0)) \cup Q = \{i_1, \ldots, i_p\}
\]

that is, \(i_1, \ldots, i_p\) are the indices \(\alpha \in R \cup Q\) such that \(\varphi_\alpha(u_0(t)) = 0\), and define

\[
\hat{\mu}_i(t) = (\mu_{i_1}(t), \ldots, \mu_{i_p}(t))
\]

by

\[
\hat{\mu}_i(t) := \Lambda^{-1}(t)\varphi_i'(u_0(t))B^*(t)z_i(t)
\]

where \(\Lambda(t) = \varphi_i'(u_0(t))\varphi_i''(u_0(t))\). We extend the function \(\hat{\mu}_i\) to include all other indices in \(R\) by setting

\[
\mu_i(t) = (\mu_{i_1}(t), \ldots, \mu_{i_p}(t))
\]

where

\[
\mu_i(t) := \begin{cases}
\hat{\mu}_i(t) & \text{if } \alpha = i_r, \ r = 1, \ldots, p \\
0 & \text{otherwise}
\end{cases}
\]
Clearly we have \(\mu^i_a(t) \varphi_a(u_0(t)) = 0\) for all \(i = 1, \ldots, n, \alpha \in R, \) and \(t \in T\). Moreover,

\[
\varphi^*(u_0(t)) \hat{\mu}^i(t) = \left(\sum_{j=1}^{p} \frac{\partial \varphi_j}{\partial u_1}(u_0(t)) \hat{\mu}^i_j(t) \right) = \varphi^*(u_0(t)) \mu^i(t).
\]

Now set

\[
v_i(t) := B^*(t) z_i(t) - \varphi^*(u_0(t)) \hat{\mu}^i(t)
\]

and let

\[
c_{ij} := \int_{t_0}^{t_1} \langle v_i(t), v_j(t) \rangle dt.
\]

Note that the functions \(v_1, \ldots, v_n\) are linearly independent on \(T\) since, otherwise, there would exist constants \(a_1, \ldots, a_n\) not all zero such that

\[
0 = \sum_{i=1}^{n} a_i v_i(t)
\]

for all \(t \in T\) and therefore, if

\[
\mu(t) := \sum_{i=1}^{n} a_i \mu^i(t) \quad (t \in T),
\]

the function \(z(t) := \sum_{i=1}^{n} a_i z_i(t)\) would be a nonnull solution to the system

\[
\dot{z}(t) = -A^*(t) z(t), \quad B^*(t) z(t) - \varphi^*(u_0(t)) \mu(t) = 0
\]

with \(\mu_a(t) \varphi_a(u_0(t)) = 0\) \((\alpha \in R, t \in T)\). Hence the rank of \(C = (c_{ij})\) is \(n\). Note also that

\[
\varphi'(u_0(t)) v_i(t) = \varphi'(u_0(t)) B^*(t) z_i(t) - \Lambda(t) \hat{\mu}^i(t) = 0
\]

and so the second condition of (A1) holds. Now, let \(y_i\) be the solution to

\[
\dot{y}(t) = A(t) y(t) + B(t) v_i(t) \quad (t \in T), \quad y(t_0) = 0
\]

and observe that

\[
\frac{d}{dt} \langle z_i(t), y_j(t) \rangle = z_i^* A(t) y_j(t) + B(t) v_j(t) - z_i^* A(t) y_j(t) = \langle v_i(t), v_j(t) \rangle
\]

and so

\[
\langle z_i(t), y_j(t) \rangle = c_{ij} \quad (i, j = 1, \ldots, n).
\]

Since the right member has rank \(n\) and \(Z(t_1)\) is nonsingular, the matrix \((y_j^*(t_1))\) has rank \(n\).

(b) \(\Rightarrow\) (a): Suppose we are given \(p \in P\) and \(\mu \in \mathcal{U}_q\) satisfying

i. \(\mu_a(t) \varphi_a(u_0(t)) = 0\) \((\alpha \in R, t \in T)\);

ii. \(\dot{p}(t) = -A^*(t) p(t)\) \((t \in T)\);

iii. \(B^*(t) p(t) = \varphi^*(u_0(t)) \mu(t)\) \((t \in T)\).

Let \((y_i, v_i) (i = 1, \ldots, n)\) be solutions to

\[
\dot{y}(t) = f_z[t] y(t) + f_u[t] v(t) \quad (t \in T)
\]

such that

\[
\text{a. } y_i(t_0) = 0 \quad (i = 1, \ldots, n);
\]

\[
\text{b. } |y_1(t_1) \cdots y_n(t_1)| \neq 0;
\]

\[
\text{c. } \varphi_a(u_0(t)) v_i(t) = 0 \quad \forall \alpha \in I_a(u_0(t)) \cup Q, i = 1, \ldots, n, t \in T.
\]

Clearly the result will follow if we show that, for all \(i = 1, \ldots, n, \langle p(t), y_i(t) \rangle = 0\), but this is an immediate consequence of the fact that \((p(t), y_i(t))\) is constant for all \(t \in T\), since

\[
\frac{d}{dt} \langle p(t), y_i(t) \rangle = p^*(t) A(t) y_i(t) + p^*(t) B(t) v_i(t) - p^*(t) A(t) y_i(t) = \mu^*(t) \varphi'(u_0(t)) v_i(t) = 0.
\]

The previous results imply the following set of necessary conditions for optimality.

Theorem 5.7: Suppose \((x_0, u_0)\) is a strongly normal solution to (P) and there exists \((p, \mu) \in X \times \mathcal{U}_q\) such that

\[
\text{a. } \mu_a(t) \geq 0 \quad \forall \alpha \in R, t \in T;
\]

\[
\text{b. } \dot{p}(t) = -H^*_z(t, x_0(t), u_0(t), p(t), \mu(t)) \quad \text{and} \quad H_u(t, x_0(t), u_0(t), p(t), \mu(t)) = 0.
\]

If \((y, v) \in Z\) satisfies

i. \(\dot{y}(t) = f_z[t] y(t) + f_u[t] v(t) \quad (t \in T)\);

ii. \(y(t_0) = y(t_1) = 0\);

iii. \(v(t) \in \tau_1(u_0(t), \mu(t)) \quad (t \in T)\),

and (A2) and (A3) hold, then

\[
J((x_0, u_0, p, \mu); (y, v)) \geq 0.
\]

Proof: Note first that, since \((x_0, u_0)\) is strongly normal, Theorem 3.1 implies that the pair \((p, \mu)\) is
unique. By Lemma 5.6, \((x_0, u_0)\) satisfies assumption (A1). Now, if \((y, v)\) satisfies conditions (i)--(iii) then \((y, v) \in Y(x_0, u_0, \mu)\) and, by Lemma 5.5, \((y, v) \in \mathcal{V}(x_0, u_0, \mu)\). The result then follows by Lemma 5.2. I

6 Two numerical examples

Let us end by providing two numerical examples which illustrate the kind of optimal control problems one can deal with.

The first is taken up from [14] and it corresponds to the optimal control of the van der Pol Oscillator. In the model proposed, the state variables are the voltage \(x_1(t)\) and the electric current \(x_2(t)\); the control represents the voltage at the generator. The optimal control problem is that of minimizing

\[
I(x, u) = \int_0^5 [u^2(t) + x_1^2(t) + x_2^3(t)] dt
\]

subject to

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t), \\
\dot{x}_2(t) &= -x_1(t) + x_2(t)(1 - x_1^2(t)) + u(t), \\
x_1(0) &= 1, x_2(0) = 0, \\
-x_2(t) - 0.4 &\leq 0 \quad (t \in [0, 5]).
\end{align*}
\]

This problem is discussed in [14] where the authors apply a result, based on the solvability of an auxiliary Riccati equation related to second order sufficient conditions, and obtain an optimal local solution to the problem. A slight modification of the model could involve constraints in the control of the type considered in this paper, instead of the state constraints, and so the Hamiltonian would take the form

\[
H = p_1 x_2 + p_2 [-x_1 + x_2(1 - x_1^2)] + u]
\]

\[-u^2 - x_1^2 - x_2^2 - \mu \varphi(u).
\]

Depending on the function \(\varphi\), one can readily verify the assumptions of Theorems 3.1 or 5.7, and find candidates for a solution to the problem.

The second example deals with a weakly normal solution \((x_0, u_0)\) to \((P)\) with \((p, \mu)\) a pair such that \((x_0, u_0, p, \mu)\) is an extremal (it satisfies (a) and (b) of Theorem 5.7), but

\[
J((x_0, u_0, p, \mu); (y, v)) < 0
\]

for some \((y, v) \in Z\) satisfying (i) and (ii) of Theorem 5.7 with \(v(t) \in \tau_2(u_0(t))\) \((t \in T)\).

Consider the problem \((P)\) of minimizing

\[
I(x, u) = \int_0^1 [u_1(t) + u_2^2(t)] dt
\]

subject to

\[
\dot{x}(t) = u_1^2(t) + u_2^2(t), \\
 u_1(t) \geq 0, u_2(t) \geq u_2(t) \ (t \in [0, 1])
\]

and \(x(0) = x(1) = 0\).

In this case we have \(T = [0, 1], n = m = r = q = 2, \xi_0 = \xi_1 = 0\) and, for any \(t \in T, x \in \mathbb{R}, u \in \mathbb{R}^2\) with \(u = (u_1, u_2),\)

\[
L(t, x, u) = u_1 + u_2^2, \quad f(t, x, u) = u_1^2 + u_2,
\]

\[
\varphi_1(u) = -u_1, \quad \varphi_2(u) = u_2 - u_1.
\]

Observe first that

\[
H(t, x, u, p, \mu, 1)
\]

\[
= p(u_1^2 + u_2) + u_1 - u_2^2 + (\mu_1 + \mu_2)u_1 - \mu_2 u_2
\]

so that

\[
H_u(t, x, u, p, \mu, 1)
\]

\[
= (2pu_1 - 1 + \mu_1 + \mu_2, p - 2u_2 - \mu_2),
\]

and

\[
H_{uu}(t, x, u, p, \mu, 1) = \begin{pmatrix} 2p & 0 \\ 0 & -2 \end{pmatrix}.
\]

Therefore, for any \((x, u, p, \mu) \in \mathbb{Z} \times X \times \mathbb{U}_2\) and \((y, v) \in \mathbb{Z}\),

\[
J((x, u, p, \mu); (y, v)) = -2 \int_0^1 [p(t)v_1^2(t) - v_2^2(t)] dt.
\]

Clearly \((x_0, u_0) \equiv (0, 0)\) solves the problem. Since

\[
\varphi_1'(u_0(t)) = (-1, 0),
\]

\[
\varphi_2'(u_0(t)) = (-1, 1),
\]

we have

\[
\tau_0(u_0(t)) = \{ h \in \mathbb{R}^2 \mid -h_1 = 0, -h_1 + h_2 = 0 \}
\]

\[
\tau_1(u_0(t), \mu(t)) = \{ h \in \mathbb{R}^2 \mid -h_1 \leq 0 \text{ if } \mu_1(t) = 0, -h_1 = 0 \text{ if } \mu_1(t) > 0, -h_1 + h_2 \leq 0 \text{ if } \mu_2(t) = 0, -h_1 + h_2 = 0 \text{ if } \mu_2(t) > 0 \}
\]

\[
\tau_2(u_0(t)) = \{ h \in \mathbb{R}^2 \mid -h_1 \leq 0, -h_1 + h_2 \leq 0 \}.
\]

Now, since

\[
f_x(t) = 0, \quad f_u(t) = (0, 1),
\]

the system

\[
\dot{z}(t) = -A^*(t)z(t) = 0,
\]
z^*(t)B(t)h = z(t)h_2 = 0
for all \((h_1, h_2) \in \tau_0(u_0(t)) \) \((t \in T)\) has nonnull solutions and therefore \((x_0, u_0)\) is not \(\tau_0\)-regular. On the other hand, \(z \equiv 0\) is the only solution to the system
\[
\dot{z}(t) = 0, \quad z(t)h_2 \leq 0
\]
for all \((h_1, h_2) \in \tau_2(u_0(t)) \) \((t \in T)\) since both \((0, -1)\) and \((1, 1)\) belong to \(\tau_2(u_0(t))\) implying that
\[-z(t) \leq 0 \quad \text{and} \quad z(t) \leq 0 \quad (t \in T), \]
and so \((x_0, u_0)\) is \(\tau_2\)-regular. Let \(\mu = (\mu_1, \mu_2) \equiv (0, 1)\) and \(p \equiv 1\) so that
i. \(\mu_\alpha(t) \geq 0\) and \(\mu_\alpha(t) \varphi_\alpha(u_0(t)) = 0\) for \(\alpha = 1, 2\) and \(t \in T\);
ii. \(\dot{p}(t) = -H_x(t, x_0(t), u_0(t), p(t), \mu(t), 1)\)
for all \(t \in T\);
iii. For all \(t \in T\) we have
\[
H_u(t, x_0(t), u_0(t), p(t), \mu(t), 1) = (\mu_1(t) + \mu_2(t) - 1, p(t) - \mu_2(t)) = (0, 0)
\]
and so \((x_0, u_0, p, \mu)\) is an extremal with \((x_0, u_0)\) a weakly normal solution to the problem. Note also that
\[
\tau_1(u_0(t), \mu(t)) = \\
\{(h_1, h_2) \in \mathbb{R}^2 \mid -h_1 \leq 0, \ h_1 = h_2\}
\]
and therefore the system
\[
\dot{z}(t) = 0, \\
z(t)h_2 \leq 0 \quad \text{for all} \quad (h_1, h_2) \in \tau_1(u_0(t), \mu(t)) \quad (t \in T)
\]
has nonnull solutions implying that \((x_0, u_0, \mu)\) is not \(\tau_1\)-regular.

Now, if we set \(v = (v_1, v_2) \equiv (1, 0)\) and \(y \equiv 0\), then \(v(t) \in \tau_2(u_0(t))\), \((y, v)\) solves
\[
\dot{y}(t) = v_2(t) \quad (t \in T)
\]

together with \(y(0) = y(1) = 0\), and so it satisfies (i) and (ii) of Theorem 5.7. However,
\[
J((x_0, u_0, p, \mu); (y, v)) = -2 < 0.
\]

7 Conclusions

This paper considers optimal control problems involving equality and inequality constraints in the control function which might yield negative second variations.

It studies the nonnegativity of the second variation in certain sets of critical directions, defined in terms of differentially admissible variations, as a necessary condition for optimality under different regularity assumptions.

Two different results are proved in this respect. A first result shows that, under mild assumptions, if the Lagrangian does not depend on the state, then \(\tau_1\)-regularity implies the nonnegativity of the second variation in the convex cone defined precisely by the space of \(\tau_1\) or modified admissible variations.

A second result deals with strongly normal solutions, that is, \(\tau_0\)-regular optimal controls, and it is shown that, by imposing a condition related to inactive constraints, the desired second order necessary condition expressed in terms of modified admissible variations does hold.

References:
[8] E.G. Gilbert and D.S. Bernstein, Second order necessary conditions in optimal control:

