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Abstract: - Many processes are affected by external disturbances caused by the variation of variables that can 

be measured. This paper compares two control strategies which are suitable for rejection of measurable 

disturbances. The first method which can successfully handle known measurable disturbances is model 

predictive control (MPC). Known disturbances can be taken explicitly into account in predictive control. Two 

different approaches to computation of multi–step–ahead predictions incorporating known measurable 

disturbances into prediction equations are proposed. The second control algorithm is designed using polynomial 

theory developed for linear controlled systems. Both methods are based on a same model of a controlled 

process. Simulation results are also included and quality of control achieved by both methods is compared and 

discussed.  
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1 Introduction 
Many processes are affected by external 

disturbances caused by the variation of variables 

that can be measured. This situation is typical in 

processes whose outputs are affected by variations 

of the load regime. This paper compares two control 

strategies which are suitable for rejection of 

measurable disturbances. The first method which 

can successfully handle known measurable 

disturbances is model predictive control (MPC) [1], 

[2], [3]. Theoretical research in the area of 

predictive control has a great impact on the 

industrial world and there are many applications of 

predictive control in industry. Its development has 

been significantly influenced by industrial practice. 

At present, predictive control with a number of real 

industrial applications belongs among the most 

often implemented modern industrial process 

control approaches. First predictive control 

algorithms were implemented in industry as an 

effective tool for control of multivariable industrial 

processes with constraints more than twenty five 

years ago. The use of predictive control was limited 

on control of namely rather slow processes due to 

the amount of computation required. At present, 

with the computing power available today, this is 

not an essential problem. A fairly actual applications 

of predictive control are presented in [4], [5], [6], 

[7], [8], [9], [10], [11], [12], [13], [14]. An extensive 

surveys of industrial applications of predictive 

control are presented in [15], [16], [17]. 

The second algorithm is designed using 

polynomial theory developed for linear controlled 

systems [18], [19]. Both methods are based on a 

same model of a controlled process.  

Incorporation of disturbances to predictive 

control requires that the disturbance in the future is 

known. On the other hand a course of the known 

disturbance can be arbitrary. A controller based on 

polynomial methods can handle only with 

disturbances defined by a defined mathematical 

function from a certain class. In our case a 

sinusoidal disturbance was chosen in both cases. 

The proposed controllers then enable disturbance 

rejection of sinusoidal disturbance signals. This type 

of disturbance can occur for example in an electrical 

system where electromagnetic field of AC power 

lines is superimposed on the electromagnetic field 

of the control lines. 
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2 Theoretical Background 
 

2.1 Predictive Control 
The term Model Predictive Control designates a 

class of control methods which have common 

particular attributes [20], [21]: 

 Mathematical model of a systems control is used 

for prediction of future control of a systems 

output.  

 The input reference trajectory in the future is 

known. 

 A computation of the future control sequence 

includes minimization of an appropriate 

objective function (usually quadratic one) with 

the future trajectories of control increments and 

control errors. 

Only the first element of the control sequence is 

applied and the whole procedure of the objective 

function minimization is repeated in the next 

sampling period. 

The principle of Model Predictive Control [22], 

[23] is shown in Fig. 1, where   tu   is the 

manipulated variable,   ty   is the process output 

and  tw is the reference signal, N1, N2 and Nu are 

called minimum, maximum and control horizon. 

This principle is possible to define as follows: 

1. The process model is used to predict the future 

outputs   over some horizon. The predictions are 

calculated based on information up to time k and on 

the future control actions that are to be determined. 

2. The future control trajectory is calculated as a 

solution of an optimisation problem consisting of an 

objective function and constraints. The cost function 

comprises future output predictions, future reference 

trajectory, and future control actions. 

3. Although the whole future control trajectory was 

calculated in the previous step, only first element    

is actually applied to the process. At the next 

sampling time the procedure is repeated. This is 

known as the Receding Horizon concept. 

The computation of a control law of MPC is 

mostly based on minimization of the following 

criterion. 

     



uN

j

N

Nj

jkjkkJ
1

22
2

1

ue                           (1) 

where e(k+j) is a vector of predicted control 

errors, Δu(k+j) is a vector of future increments 

of manipulated variables, N1 and N2 are 

minimum and maximum prediction horizons, 

Nu is length of the control horizon and λ is a 

weighting factor of control increments. 

A predictor in a vector form is given by  

0
ˆ yuGy                                                             (2) 

where ŷ is a vector of systems output predictions 

along the horizon of the length N2-N1. The first 

element in the equation (2) represents the forced 

response of the system.  Δu is a vector of control 

increments and G is a matrix of the dynamics which 

contains values of the step sequence.  y0 is the free 

response vector. It is that part of the systems output 

prediction which is determined by past values of the 

systems inputs and outputs (the forced response is 

determined by future values of increments of the 

manipulated variable). 
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Fig. 1 Principle of predictive control 

The cost function (1) can be modified to the form 

below 

   

    uuwyuGwyuG

uuwywy





TT

TT
J





00

ˆˆ
              (3)

  

Where w is the vector of future reference 

trajectory. Minimisation of the cost function (3) now 

becomes a direct problem of linear algebra. The 

solution in an unconstrained case can be found by 

setting partial derivative of J with respect to u  as 

zero and yields 

   
0

1

ywGIGGu 
 TT                                    (4) 

where the gradient g  and Hessian H  are defined as 

 wyGg 
0

TT                                                      (5) 

IGGH  T                                                         (6) 

Equation (4) gives the whole trajectory of the 

future control increments and such is an open-loop 

strategy. To close the loop, only the first element is 

applied to the system and the whole algorithm is 

recomputed at time k+1.  
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If we denote the first row of the matrix 

  TT
GIGG

1

  as K then the actual control 

increment can be calculated as 

   
0

ywK  ku                                                    (7) 

Predictive control can also handle constraints of 

input, output and state variables. In this case the 

optimization problem is a task of quadratic 

programming.  

 

2.1 Polynomial Methods 
 

Polynomial control theory is based on the apparatus 

and methods of a linear algebra (see eg. [18] and 

[19]). The polynomials are the basic tool for a 

description of the transfer functions. They are 

expressed as the finite sequence of figures – the 

coefficients of a polynomial. Thus, the signals are 

expressed as infinite sequences of figures. The 

controller synthesis consists in solving of linear 

polynomial (Diophantine) equations in a general 

form [24]. 

The design of the controller algorithm is based 

on the general block scheme of a closed loop with 

two degrees of freedom (2DOF) according to Fig. 2. 

 

 
Fig. 2 Block diagram of a closed loop 2DOF control 

system  

The controlled process is given by a transfer 

function in the form of proper polynomial fractions 
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Where A and B are coprime polynomials that 

fulfill the inequality AB degdeg  . The controller 

contains a feedback part Gq and a feedforward part 

Gr, y is the controlled output, u is the manipulated 

variable, w is the reference signal and v is the load 

disturbance with transfer function 

 
 
 

 
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                                            (9) 

The controllers can be also expressed in the form 

of discrete transfer functions: 

 
 
 

 
 
 1

1

1

1

;









zP

zQ
zG

zP

zR
zG

qr
                            (10) 

The polynomial approach to the design of a 

control system with the disturbance rejection is used 

in [25], [26], [27]. 

The control algorithm is designed for the 

reference signal tracking and rejection of known 

sinusoidal disturbance. Step changes of the 

reference signal are usually used in practice and the 

sinusoidal disturbance is supposed as it was 

mentioned in the previous section. Then a step of 

height w1 can be expressed as 

 
 
  1

1

1

1

1

1 






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w
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w

w                                       (11) 

and the sinusoidal disturbance signal can be 

expressed as 

 
 
  21
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




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zf

zh
zV v

v

v




                             (12) 

Where Av is the amplitude of the sinusoidal 

signal, 
0

sin T   and 
0

cos2 T  ;  and T0 are 

the fundamental  angular frequency and the 

fundamental period of the sinusoidal signal. 

According to the scheme in Fig. 2 the output can be 

expressed as: 

 
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v
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rp  (13) 

By combining (8), (9), (10) and (13), expression 

for the control error can be derived 

     
           

       
 

   
       

 1

1111

11

1

1111

111111

111
























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  (14) 

To ensure the disturbance rejection, the 

polynomial  1zP  must contain the denominator of 

 1zV . 

    2111 1
~   zzzPzP                                   (15) 

The feedback part of the controller ensures 

stability of control and disturbance attenuation. It is 

given by solution of the following Diophantine 

equation 

           111111 ~   zMzQzBzPzfzA v            (16) 

where M is a stable polynomial. The asymptotic 

tracking is provided by the feedforward part of the 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Marek Kubalčík, Vladimír Bobál

E-ISSN: 2224-2856 96 Issue 3, Volume 8, July 2013



controller given by solution of the Diophantine 

equation 

           111111 ~   zMzRzBzPzfzT w            (17) 

where T is an auxiliary polynomial which does not 

affect controller design but which is necessary for 

calculation of (17). The degrees of individual 

polynomials must fulfill following equalities 

1degdeg2deg

1degdegdeg2deg

1degdeg

1deg
~

deg

1degdegdeg











v

wv

w

v

fAD

ffAT

fR

AP

fAQ

                       (18) 

The controller parameters then result from 

solution of polynomial equations (16) and (17) and 

depend on coefficients of the polynomial M that 

enables to obtain a suitable stabilizing and stable 

controller. 

 

3 Model of the System 
A model of the second order which is widely 

applied in practice and has proved to be effective for 

control of a range of various processes was chosen 

for the controllers design. It can be expressed by 

following transfer function 
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The disturbance is supposed to be modeled by 
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A widely used model in general model predictive 

control is the CARIMA (controller autoregressive 

integrated moving average) model which we can 

obtain by adding a disturbance model as 

       
 

 zE
Δ

zC
zUzBzYzA

s

1

11



                      (21) 

where 
s

E  is a non-measurable random disturbance 

that is assumed to have zero mean value and 

constant covariance and 11  zΔ . The colouring 

polynomial C will be further considered as 

  11 zC .  

Known disturbances can be taken explicitly into 

account in predictive control. The disturbances are 

included in prediction equations. In this case model 

(21) must be changed to include the disturbances 

           
 

 ke
Δ

zC
kvzDkuzBkyzA s

1
111


    (22) 

where v(k) is a known disturbance and D(z
-1

) is a 

polynomial defined in (20) as  

  2

2

1

1

1   zdzdzD                                            (23) 

 

4 Disturbance Rejection in Predictive 

Control 
 

The known disturbance must be included into 

computation of systems output predictions. The 

predictor (2) is then modified to include the 

measurable disturbances 

0
ˆ yvLuGy                                                 (24) 

The forced response is augmented by the term 

vL which is that part of the systems response 

which is determined by future values of increments 

of the disturbance. The matrix L is defined by the 

output values of the plant when a step disturbance is 

introduced. There are several methods how to derive 

prediction equations. This paper will be focused on 

two approaches: methods based on Diophantine 

equations [1] and straightforward computation on 

the basis of the CARIMA model [28]. 

Predictive controllers based on both introduced 

methods for computation of predictions were tested 

by simulation control of a range of systems. Results 

obtained for particular methods were compared each 

other. In all cases were obtained identical results. It 

means that each method makes the same final 

prediction equations. Thus in further simulation 

experiments will not be the particular methods for 

computation of prediction equations differentiated. 

Particular methods will be described in the 

following subsections. 

 

4.1 Method Based on Diophantine Equations  
It is possible to compute j-step ahead prediction 

from model (22) (for simplification, the operator z
-1

 

will be omitted in some expressions) 

       jke
ΔA

C
jkv

A

D
jku

A

B
jky s ˆ       (25) 

From the last term of this expression can be 

separated terms with positive powers of z where E is 

a polynomial of the order j minus one and F is a 

polynomial of the same order as the polynomial A. 

 
 

 
 
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








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zΔA
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zzE

zΔA

zC jj

j                              (26) 

After substitution to equation (24) we can obtain 

the predictor in the form 
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         ke
ΔA

F
jkeEjkv

A

D
jku

A

B
jky s

j

sj ˆ (27) 

From original equation (22) we can compute the 

disturbance and substitute to equation (25) 

   
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C

F
jkv
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F
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B
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









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 (28) 

After substitution we obtain 

     

   jkeEky
C

F

jkΔv
C

DE
jkΔu

C

BE
jky

sj

j

jj



ˆ

            (29) 

Now let us make two simplifications: a white 

noise case will be considered and future noise 

values will be further omitted. 

       kyFjkΔvDEjkΔuBEjky jjj ˆ     (30) 

We can define polynomials Gj ans Lj as follows 

jj BEG              jj DEL                                    (31) 

       kyFjkΔvLjkΔuGjky jjj ˆ          (32)   

For the design of the  j – step ahead predictor the 

following Diophantine equation is solved  

j

j

j FzΔAE 1                                                    (33) 

Further is necessary to solve a recursion of 

Diophantine equation (33). Particular polynomials 

in the Diophantine equation can be expanded as 

follows 
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jjjjjj zFzFzFFzF            (36) 

Let us consider the Diophantine equation 

corresponding to the prediction  1ˆ  jky  
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It is possible to subtract Diophantine equation 

(33) from Diophantine equation (37) and obtain the 

following expression 
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Now it is possible to define the following term 

      1111

1
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  zRzRzEzE jjj                         (39) 

After substitution 
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it is obvious that   0
~ 1 zR   in order to obtain the 

zero polynomial on the left side of equation (40). 

The polynomial E can be then computed recursively 

according to the following expression 

    j

jjj zRzΕzΕ 

  11

1                                        (41) 

Following expressions can be obtained from 

equation (40) 
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Initial conditions for the recursion are as follows 

 AzFE
~

11 11                                            (43) 

By making the polynomials 

       1111   zGzzGzBzE jp

j

jj                      (44) 

       1111   zLzzLzDzE jp

j

jj                      (45) 

 the prediction equation can be written as 

         
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 (46) 

The last three terms of equation (46) depend on 

past values of the process output, input and 

disturbance and represent the free response of the 

process. The first two terms depend on future values 

of control increments and disturbances and represent 

the forced response of the system. Equation (46) can 

be rewritten as 

          jjj yjkΔvzLjkΔuzGjky 0

11ˆ    (47) 

Where 

           kyzFkvzLkuzGy jjpjpj

111

0 11      (48) 

is the free response.  

In case of the second order system, the 

polynomial A
~

  has the following form 

        3

2

2

12

1

1

11 11
~   zazaazazΔAzA    (49) 

Initial conditions of the recursion are  

11 E                                                                    (50) 

   

2

2

1

1

0

2

2

21

1

11 1
~

1

fzfzf

azaazaAzF








           (51) 
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 Initialization of the matrix of the free response 

and the matrices of the dynamics is following 

 22210 dbfffx                                     (52) 

1bG            1dL                                               (53) 

The recursion then proceeds according to 

previously introduced steps.  

0fR                                                                    (54) 

 1110  aRff                                                  (55) 

 1221 aaRff                                                 (56) 

22 Raf                                                                 (57) 

 REE                                                             (58) 

Extension of the matrices of the dynamics and 

the free response is as follows: 

   










ibib EE

G
G

21 1
                                         (59) 

 
   










idid EE

G
L

21 1
                                        (60) 

                                       

   










11 22210 idibfff EE

x
x                      (61) 

 

4.2 Method Based on Direct Computation 

from CARIMA Model 
This method is based on an analytical derivation of 

certain predictions and subsequent recursive 

derivation of later predictions. The number of 

predictions which are necessary to be computed 

directly depends on the order of the system. The a 

priori analytical computation, which is required, 

enables to reduce computational complexity of the 

previously introduced method. This is important in 

the adaptive predictive control where the 

computation must be performed in each sampling 

period. 

The difference equation of the CARIMA model 

without the unknown term can be expressed as: 

           
       2121

3211

2121

2211





kvdkvdkubkub

kyakyaakyaky
  (62) 

It was necessary to directly compute three step 

ahead predictions in a straightforward way by 

establishing of previous predictions to later 

predictions. The model order defines that 

computation of one step ahead prediction is based 

on the three past values of the system output. The 

prediction equation (24) after modification can be 

written in a matrix form 

 
 
 

 
 

 
 

 
 
 
 
 

  

  

  

0

3534333231

2524232221

1514131211

23

12

1

23
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1

1

1

2

1

1

0

1
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ˆ

3ˆ

2ˆ

1ˆ

y
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
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
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

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
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




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






























































kv

ku

ky

ky

ky

ppppp

ppppp

ppppp

kv

kv

ll

ll

l

ku

ku

gg

gg

g

ky

ky

ky

                           (63) 

It is possible to divide computation of the 

predictions to recursion of the free response and 

recursion of the matrices of the dynamics. 

All the elements p(i,j) i=1…3, j=1…5 have to be 

directly computed to initialize the recursion. 

   

      

     

    

       

   

   

   
2212135

2212134

22133

211221132

2211131

212521241223

22112221121

2152142132112111

2
1

2
1

2

1
1

2

2
1

2
1

12
3

1

111

1
2

1

1

daadap

baabap

aaaaap

aaaaaaap

aaaaap

dapbapaap

aaaapaaap

dpbpapaapap

















    (64) 

The next row of the free response matrix is 

repeatedly computed on the basis of the three 

previous predictions until the prediction horizon is 

achieved. 

   
   
   
   
   

152252135145

142242134144

132232133143

122222132142

112212131141

1

1

1

1

1

papaapap

papaapap

papaapap

papaapap

papaapap











                     (65) 

The forced response in equation (63) has 

following form: 
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 
       

 
 


























1

111

1

0

211211

2

1121

1211

1

ku

ku

bbabababaa

bbab

b

uG     (66) 

 
       

 
 





























1

11
2

1

1

0

2112111121

1211

1

kv

kv

ddadadabaa

ddad

d

vL    (67) 

The recursion of the matrices G and L is similar 

to the recursion of the free response matrix. The 

next element of the first column is repeatedly 

computed and the remaining columns are shifted. 

This procedure is performed repeatedly until the 

prediction horizon is achieved. If the control horizon 

is lower than the prediction horizon a number of 

columns in the matrix G is reduced. Computation of 

new elements is performed as follows: 

   
   

12221314

12221314

1

1

lalaalal

gagaagag




                            (68) 

 

 

5 Disturbance Rejection by 

Polynomial Methods 

Degrees of the particular polynomials in the 

control loop are obtained from equations (18). 

51241degdeg2deg

411241degdegdeg2deg

0111degdeg

1121deg
~

deg

31221degdegdeg


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



v

wv

w

v

fAD

ffAT

fR

AP

fAQ

(69) 

Consequently, the particular polynomials are in 

the following form 

 
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 
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1
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1
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1

3

3

2

2

1
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1

1
~
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


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


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zpzP

zqzqzqqzQ

    (70) 

After substitution of polynomials (70) to 

Diophantine equation (16) we can obtain a system 

of linear equations with unknown controllers 

parameters 
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
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p

q

q

q

q
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b










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  (71) 

Similar approach can be used for Diophantine 

equation (17) to obtain the parameter r0 

21

54321

0

1

bb

mmmmm
r




                              (72) 

The control law which ensues from Fig. 2 and 

transfer functions (10) is then given as 

           
         3211

321

111

32100





kupkupkup

kyqkyqkyqkyqkwrku


 (73)  

 

6 Simulation Examples 

 

Both controllers were tested by simulation control 

of a range of systems. Control of the following 

system is given as an example 

 
 
  21

21

1

1

55,051,11

17,020,0












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zG

p
                     (74) 

 
 
  21
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1

1

55,051,11

20,010,0













zz

zz

zA

zD
zG

v
                     (75) 

A sinusoid of angular frequency 1 rad/sec and 

amplitude 1 was applied as the disturbance. Tuning 

parameters of the predictive controller are the 

weighting factor   and the prediction and control 

horizons. The controller based on polynomial 

methods has as tuning parameters poles of the 

polynomial D.  

The performances of both controllers were 

compared by means of control quality criteria, 

which are the sum of powers of control errors and 

the sum of increments of manipulated variables.  

For both controllers it is possible to set the rate 

of changes in the manipulated variable (for the 

predictive controller by the parameter   and for the 

controller based on polynomial methods by poles of 

the polynomial D). As larger changes in 

manipulated variable as better quality of asymptotic 

tracking of reference signal is achieved. However, 

large changes of manipulated variable are often 

undesirable. In order to compare the performances 

of both controllers, the rate of changes of the 

manipulated variable was set to be approximately 

the same in both cases. For the polynomial 

controller a suitable multiple pole 0,2 was found. 

The predictive controller was tuned by the 

weighting factor to achieve approximately the same 

sum of increments of the manipulated variable. It 

was achieved for 077,0 .  

In Fig. 3, Fig. 4, Fig. 7 and Fig. 8 are time 

responses of control without the disturbance. In Fig. 

9 and  Fig. 10 are time responses of control with the 

predictive controller with the disturbance when the 

prediction equations do not include information 

about the disturbance. The controller based on 

polynomial methods was designed for the specific 

shape of the disturbance and thus it is not possible to 
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simulate control without the disturbance rejection. 

In Fig. 5, Fig. 6, Fig. 11, Fig. 12, Fig. 13 and Fig. 14 

are time responses with the disturbance when both 

controllers  take into account the disturbance.  It is 

obvious that the influence of disturbance was 

suppressed. 

In case of predictive controller, the objective 

function (1) was used for computation of control 

sequence. We considered an unconstrained case 

even though possibility of incorporation of 

constraints is very important in predictive control 

since one of the main advantages of predictive 

control is its ability to deal effectively with 

constraints. But the paper is focused on another part 

of predictive control: computation of predictions 

with incorporation of known disturbance. So that the 

simulated control problem was simplified to be 

unconstrained. In this case computation of optimal 

control is a direct problem of linear algebra.  
 

 
Fig. 3 Controller based on polynomial methods-

control without disturbance  

 

 
Fig. 4 Controller based on polynomial methods-

control without disturbance-manipulated variable 

 
Fig. 5 Controller based on polynomial methods-

control with disturbance with disturbance rejection  
 

 
Fig. 6 Controller based on polynomial methods-

control with disturbance with disturbance rejection-

manipulated variable 

 

 
Fig. 7 Predictive control without disturbance 

01,0  
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Fig. 8 Predictive control without disturbance 

01,0 -manipulated variable 

 

 
Fig. 9 Predictive controller 01,0 - control with 

disturbance without disturbance rejection 

 

 
Fig. 10 Predictive controller 01,0 - control with 

disturbance without disturbance rejection-

manipulated variable 

 
Fig. 11 Predictive controller 077,0 - control with 

disturbance with disturbance rejection 

 
Fig. 12 Predictive controller 077,0 - control with 

disturbance with disturbance rejection-manipulated 

variable 

Fig. 13 Predictive controller 01,0 - control with 

disturbance with disturbance rejection 
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Fig. 14 Predictive controller 01,0 - control with 

disturbance with disturbance rejection-manipulated 

 

 

 
Table. 1 Control Quality Criteria   

Controller  2e   2u  

Polynomial 115,04 64,79 

Predictive 077,0  45,32 64,79 

Predictive 01,0  37,12 271,03 
 

 

7 Conclusions 

Two different control algorithms which enable 

suppression of measurable disturbances were 

proposed and compared. If a controller based on 

polynomial methods is applied then for each shape 

of the disturbance a different controller must be 

derived. For the predictive controller it is possible to 

put into a general prediction equation an arbitrary 

disturbance. The polynomial controller for 

sinusoidal disturbance was derived and 

performances of both controllers were compared by 

simulation. The simulation results proved that both 

controllers can be successfully applied for 

disturbance suppression. According to the chosen 

control quality criteria better performance has the 

predictive controller. On the other hand the 

controlled variable has slightly oscillatory character 

when using the predictive controller. The 

oscillations can be suppressed by larger rate of 

changes of the manipulated variable, which is 

however often undesirable.  
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